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Extracellular vesicles, particularly their subpopulation of exosomes, have emerged as a promising avenue
for cell-free anti-cancer therapies in the current decade of exosomal research, opening a new chapter in
cancer precision medicine. This paradigm shift towards plant-based exosomes holds significant
implications for both therapeutic efficacy and sustainability. Plant-derived exosomes offer a non-toxic
agents, addressing concerns about both patient well-being and the
environmental impact of treatment production. This sustainable approach has the potential to make

source for anti-cancer
cancer precision therapy more affordable, scalable, and accessible, while simultaneously inspiring
scientific minds to explore the vast potential of this "Green Therapy”. This article delves into the potential
of fruit-based exosomes in cancer precision therapy, exploring their advantages, challenges, and future
perspectives. We discuss the current understanding of fruit exosome biogenesis, leading and isolation
techniques, cargo loading mechanisms, their interactions with recipient cellular targets and challenges
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exosome-based cancer therapy appears research and
collaborations are crucial to fully unlock the therapeutic potential of fruit-derived exosome-based

impactful natural cancer treatment.

promising. Continued interdisciplinary
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Sustainability spotlight

Exosomes derived from fruits present a promising avenue for sustainable and environment-friendly cancer treatment and drug delivery. These naturally
sourced nanovesicles offer inherent biocompatibility, biodegradability, and low immunogenicity, positioning them as ideal carriers for therapeutic cargo.
Notably, fruit-derived exosomes demonstrate significant anti-cancer properties with minimal toxicity compared to their mammalian and synthetic
counterparts. Their ability to encapsulate and deliver a variety of anti-cancer agents, including anti-carcinogenic drugs, proteins, and nucleic acids, while
selectively targeting cancer cells, underscores their therapeutic potential. This green nanomedicine approach, utilizing fruit-derived exosomes, minimizes
the ecological footprint associated with conventional drug delivery systems, paving the way for effective, affordable, and globally accessible cancer
treatments.

including exosomes, for precise drug delivery, offers a new era
for personalized treatment of chronic diseases, especially
cancer.**** Mammalian-derived exosomes, while promising,
face clinical translation hurdles due to potential immune
rejection, toxicity risks, and production challenges. Fruit-
derived exosomes offer a safer alternative, leveraging struc-
tural and functional similarities while mitigating significant
risks.”*** Plant and fruit extracts have long been investigated

1. Introduction

Cancer remains a significant global health burden, necessi-
tating the development of innovative therapeutic approaches
to combat its multifaceted complexities."> Conventional
cancer treatments, such as chemotherapy, radiation therapy,
and surgical interventions, have inherent limitations,
including systemic toxicity, drug resistance, and a lack of

tumor-targeted specificity.>” The rapidly evolving field of
nanomedicine, particularly the use of extracellular vesicles,
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for their potential anticancer properties, with numerous
studies highlighting the ability of their bioactive compounds
to inhibit tumor growth and progression.'*'® However, har-
nessing these beneficial effects for clinical applications has
proven challenging.’® Fruit-derived exosomes, derived from
abundant, edible sources, ensure scalability and biocompati-
bility. These exosomes represent a novel strategy for utilizing
the anticancer properties of these phytochemicals. These
nanovesicles offer a naturally engineered platform for encap-
sulating and delivering concentrated doses of these bioactive
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compounds (phytochemicals) to targeted tumor sites,
enhancing their bioavailability and therapeutic efficacy.">*"**
Fruit-derived  exosomes simultaneously = demonstrate
a remarkable ability to encapsulate and deliver a variety of
therapeutic cargoes, including chemotherapeutic drugs, small
interfering RNAs, and microRNAs, directly to tumor sites. This
targeted delivery of therapeutics using fruit-derived exosomes
enhances drug efficacy by selectively transporting the cargo to
tumor cells, while minimizing off-target effects on healthy
tissues and associated adverse reactions. The inherent
biocompatibility and tumor-homing capabilities of these

Asmit Das is a dedicated
Research  Associate at the
Neuron Institute of Applied
Research, specializing in exo-
some research and cancer nano-
medicine. He actively contrib-
utes to the field as a Member of
both the Indian Extracellular
Vesicle Society (IEVS) and the
Malaysian Extracellular Vesicle
Society (MEVS). His research
endeavors extend to collabora-
tions with the Center for Global
Health Research at Saveetha
Medical College and Hospital in Chennai, India. Asmit brings
a strong analytical background from his experience in Quality
Assurance within the FMCG industry, ensuring rigor and precision
in his research.

Asmit Das

Mr Swarup Sonar is a distin-
guished member of the Indian
Extracellular Vesicles Society
(IEVS) and the International
Society of Liquid Biopsy (ISLB).
Recently, he joined the Malay-
sian  Extracellular  Vesicles
Society (MEVS), further expand-
ing his professional network. He
is involved in research activities
with the Center for Global
Health Research at Saveetha
Medical College and Hospital,
Chennai, Tamil Nadu, India.
His research interests include exosome-based cancer medicine,
biomarkers for early diagnosis and prognosis of cancer, extracel-
lular vesicle-based liquid biopsy, and the targeted application of
nano-medicine in cancer research. He has published several arti-
cles in these domains.

Swarup Sonar

146 | Sustainable Food Technol., 2025, 3, 145-160

View Article Online

Review

naturally-derived nanoparticles allow for safer and more
precise drug delivery, addressing a key limitation of conven-
tional cancer treatments. Furthermore, research indicates that
fruit-derived exosomes can modulate the tumor microenvi-
ronment, influencing the complex interplay between cancer
cells and their surroundings to inhibit tumor growth and
progression. Fruit-derived exosomes can also be engineered to
enhance their targeting capabilities, drug-loading efficiency,
and anti-tumor properties.'”** They show immense potential
for improving the clinical translatability of plant-based cancer
therapies and improving cancer treatment outcomes.'®*
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Timeline of Exosome from establishment to application and
clinical trial cancer therapy
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Fig.1 Exosome-based cancer therapeutic developmental landscape (reproduced with permission under Creative Commons CC BY 4.0 license

from ref. 22. Copyright @ 2022 The Authors).

Despite the promising results, further research is needed to
fully understand the mechanisms of action, optimize the
production and purification methods, and ensure the safety
and efficacy of fruit-derived exosomes in clinical settings.
Ongoing clinical trials and regulatory developments will also
play a crucial role in the translation of these novel therapeu-
tics from the bench to the bedside (Fig. 1).

This review explores the burgeoning field of fruit-derived
exosomes as a novel, green, and sustainable approach to
cancer therapy. Fruit exosomes, naturally occurring nano-
vesicles, offer a unique convergence of plant-derived exosome
advantages and potential edible benefits as functional foods.
This dual functionality positions them as a revolutionary tool
for cancer management, providing both accessible targeted
therapeutic intervention and nutritional support. Their
biocompatibility, inherent targeting ability, and capacity to
encapsulate diverse anticancer payloads highlight their poten-
tial to enhance treatment efficacy while minimizing off-targets
and systemic toxicity. Their unique ability to modulate the
tumor microenvironment further positions them as a prom-
ising alternative to conventional therapies. Although the
potential for edible incorporation into diets exists, further
research is essential to standardize extraction and character-
ization methods, ensuring consistent therapeutic efficacy and
safety.

© 2025 The Author(s). Published by the Royal Society of Chemistry

2. Fruit exosome biogenesis

Plants employ various pathways for exosome biogenesis (Fig. 2),
including those resembling the exosomal pathway in
mammals>?* (involving endosomal compartments), the
Exocyst-Positive Organelle (EXPO) pathway, and a pathway
involving the plant vacuole. Each pathway, with its unique
mechanisms, contributes to the secretion of bioactive mole-
cules essential for intercellular communication and various
physiological processes. The EXPO pathway offers
a distinct route for secreting exosomes, particularly in plants.>”
Originating from the ER and Golgi, specialized compartments
bud off, aided by the exocyst complex and small GTPases (Rab
and Ral proteins). These EXPO compartments, enriched with
various biomolecules (proteins, lipids, and nucleic acids), travel
along the actin cytoskeleton to the plasma membrane. Fusion
with the membrane, facilitated by SNARE proteins, releases the
nanoparticles into the extracellular space. This unique pathway
is crucial for secreting cell wall components and bioactive
molecules within the exosomes, and enables intercellular

23,24,26

communication, influencing various physiological processes in
plants.??® The multivesicular body (MVB) pathway, a conserved
mechanism across eukaryotes, generates exosome-like nano-
particles through a series of steps within endosomes.**"
Initially, intraluminal vesicles bud inward from the endosomal
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Fig. 2 Fruit exosome biogenesis (1) vacuolar pathway; (2) MVB pathway; (3) EXPO pathway (reproduced with permission under Creative
Commons CC BY 4.0 license from ref. 36. Copyright @ 2024 The Authors).

membrane, a process orchestrated by the endosomal sorting
complex required for transport. This complex recognizes and
incorporates ubiquitinated cargo proteins into the forming
ILVs. Lipids, particularly phosphatidylinositol 3-phosphate
(PI3P), play a crucial role by recruiting endosomal sorting
complex required for transport (ESCRT) components to the
(ILV)-
containing endosomes mature into multivesicular bodies,
which can fuse with the plasma membrane, a process regulated
by Rab GTPases, to release ILVs as exosomes. These nano-

vesicles, rich in bioactive molecules, play crucial roles in
29,30,35

32-34

endosomal membrane. Intraluminal vesicle

intercellular communication and plant defence responses.

Additionally, the vacuolar pathway, another route for fruit
exosome biogenesis, involves the budding of vesicles from the
vacuolar membrane, a process potentially involving ESCRT
machinery and lipids (PI3P and PI(3,5)P2).>****>%” While less
understood than other pathways, it plays a crucial role in
protein storage, nutrient recycling, and plant defence (using
antimicrobial proteins). The fusion of vacuoles with the plasma
membrane is regulated by small GTPases (like Rab and Ral
proteins) and tethering/fusion factors (including the exocyst
complex and SNARE proteins), facilitating exosome release into
the extracellular space.”®**** While these pathways share some
similarities with the biogenesis of mammalian-derived exo-
somes, they also exhibit unique characteristics due to their
plant origin. However, further research is needed to fully
elucidate its regulatory mechanisms and biotechnological

148 | Sustainable Food Technol., 2025, 3, 145-160

potential. Differentiation between fruit-derived exosomes and
mammalian cell-derived exosomes is presented in Table 1.

3. Isolation and characterization fruit
exosomes

The isolation and characterization of fruit exosomes necessitate
rigorous and meticulous methodologies to fully elucidate and
harness their therapeutic capabilities. Involving a delicate
balance of separating these nanoscale vesicles from the fruit
matrix without compromising their structural integrity or bio-
logical activity. Various methods exist for isolating these exo-
somes, all of which rely on leveraging their distinct physical
characteristics.*** Differential ultracentrifugation remains
a cornerstone technique for exosome isolation. This method
exploits the principle of sedimentation, subjecting samples to
sequential centrifugation steps at escalating gravitational forces
() By targeting specific sedimentation coefficients, exosomes
are effectively pelleted and separated from a heterogeneous
mixture of larger vesicles and cellular debris.*””** Density
gradient centrifugation improves purity by separating exosomes
based on their buoyant density (1.13-1.18 g mL™") within
a sucrose or iodixanol gradient.** Tangential flow filtration
(TFF) is a scalable technique designed for processing large
volumes, utilizing membranes with defined pore sizes (typically
50-100 nm) to selectively retain exosomes while allowing
smaller molecules to pass through.*>** Ultrafiltration operates

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Table 1 Comparison of fruit-derived exosomes and mammalian cell-derived exosomes

Characteristics Fruit-derived exosomes Mammalian cell-derived exosomes Reference
Origin Fruits, plant origin Mammalian cells (e.g., 25 and 36
mesenchymal stem cells, dendritic
cells, etc.)
Size (nm) 30-800 nm 30-150 nm 36 and 38-40
Zeta potential (mV) —70 to approximately neutral —34.3to —6.3 18, 40 and 41
Cargo - Proteins - Proteins (highly abundant) 25, 36 and 42

Protein content

miRNA content

Lipid composition

Immunogenicity

Scalability

- Nucleic acids

- Secondary metabolites (unique to
plants)

Typically lower protein
concentration; proteins are mainly
cytosolic with few membrane
proteins present

Contains various miRNAs, but the
diversity and functional roles may
be limited compared to mammalian
exosomes

Lipid profiles are simpler, primarily
consisting of phospholipids and
some bioactive lipids; may lack
certain lipid species found in
mammalian exosomes

Lower risk of immunogenic
response due to lack of mammalian
proteins

Potentially easier and more cost-
effective to isolate from abundant

- Nucleic acids
- Lipids

Higher protein diversity, including
membrane proteins and signaling
molecules

Rich in diverse miRNAs that play
significant roles in intercellular
communication and regulation

Complex lipid composition,
including sphingolipids and
cholesterol, which are crucial for
membrane stability and function

Potential for immunogenic
response due to the presence of
foreign proteins

Can be challenging to isolate large
quantities from mammalian cells

18, 25, 40, 43 and 44

36, 40, 42 and 43

25, 36, 43 and 44

25, 36, 42 and 44

25, 36, 43 and 44

plant sources

Means of internalization Clathrin/caveolae-mediated

Phagocytosis and endocytosis 40, 42 and 44

endocytosis, macropinocytosis, and

phagocytosis

Common route of administration Oral administration

on a similar principle but employs centrifugal force to drive
samples through the membrane, making it particularly suitable
for smaller volumes.**** Precipitation-based methods,
frequently available as commercial kits, take advantage of the
altered solubility of exosomes in the presence of water-
excluding polymers like polyethylene glycol (PEG), resulting in
their precipitation.*** Immunoaffinity capture provides high
specificity by utilizing antibodies immobilized on beads or
surfaces to selectively bind exosomes that express specific
surface markers.***> Microfluidic isolation employs miniatur-
ized devices that integrate various separation mechanisms such
as filtration, affinity capture, and acoustic trapping for high-
throughput and automated isolation.’****” Acoustic fluid
handling manipulates exosomes based on their acoustic prop-
erties, using sound waves to focus and separate them.”® Mag-
netophoresis involves magnetic beads coated with antibodies
against exosomal markers, facilitating efficient capture and
release of exosomes through magnetic fields.” Deterministic
lateral displacement (DLD) exploits the size and deformability
of exosomes, separating them based on their trajectory in
microfluidic channels with asymmetrically arranged obsta-
cles.®”®" Lastly, field-flow fractionation separates particles in
a thin channel under external fields—such as flow or electric
fields—based on their differential migration.®>* Characterizing
exosomes involves a variety of techniques aimed at elucidating

© 2025 The Author(s). Published by the Royal Society of Chemistry

Intravenous administration 25, 36, 40 and 44

their biophysical and biochemical properties.®® One widely used
method is nanoparticle tracking analysis (NTA), which visual-
izes and monitors the Brownian motion of individual exosomes,
utilizing light scattering to determine their size distribution and
concentration.®”*® Dynamic light scattering (DLS) also employs
light scattering but focuses on measuring the fluctuations in
scattered intensity caused by Brownian motion, providing
insights into hydrodynamic size and polydispersity.*>* Electron
microscopy, including both transmission and scanning elec-
tron microscopy, offers high-resolution images that reveal the
morphology, size, and structural characteristics of exosomes.*
Atomic force microscopy (AFM) provides nanoscale topo-
graphical data by scanning a sharp tip across the exosome
surface, allowing for detailed examination of size, shape, and
surface features.®®”® Western blotting remains a fundamental
technique for detecting specific proteins within exosome
lysates, thereby confirming the presence of known exosomal
markers and target proteins.**”* Flow cytometry can analyze
individual exosomes for size, granularity, and expression of
surface markers using fluorescently labeled antibodies;
however, this method faces challenges due to the small size of
exosomes.*»”? Enzyme-linked immunosorbent assays (ELISA)
quantify specific proteins or other molecules in exosome
samples through antibody-based detection, offering high
sensitivity and specificity.**® Raman spectroscopy analyzes the
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inelastic scattering of light from molecules within exosomes to
provide information about their biochemical composition and
structure.” Mass spectrometry serves to identify and quantify
proteins, lipids, and metabolites in exosome samples, yielding
a comprehensive molecular profile.®*’*”> RNA sequencing
examines the RNA content within exosomes, revealing mRNA,
miRNA, and other RNA species that provide insights into their
functional roles and origins.®® Lipidomics focuses on charac-
terizing the lipid composition of exosomes to enhance under-
standing of their membrane structure and function.””® Lastly,
the Integrated Magnetic-Electrochemical Exosome (iMEX)
sensor is a rapid and sensitive approach for quantifying exo-
some surface markers, demonstrating its effectiveness in
detecting varying numbers of extracellular vesicles spiked into
human plasma.®® In the exosome isolation and profiling
process, the combination of nanotechnology and nano-
materials promotes it as a next-generation promising precision
medicine development platform.””-*

4. Exosomes and cancer

The tumor microenvironment (TME) consists of a complex
network of cellular and non-cellular components that facilitate
cancer progression and metastasis.*"* A defining feature of the
TME is the hypoxic condition, characterized by inadequate
blood supply and oxygen availability, which enables cancer cells
to activate survival pathways mediated by hypoxia-inducible
factors (HIFs).****” This adaptability allows malignant cells to
proliferate uncontrollably and divert essential resources for
growth.*”*" Consequently, cancer cells disrupt the homeostasis

View Article Online
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of surrounding normal tissues, creating a microenvironment
conducive to malignant transformation and metastasis.®*°
Hypoxia also stimulates the secretion of exosomes from tumor
cells, which are nanoscale vesicles that play crucial roles in
intercellular communication within the TME.***" Tumor-
derived exosomes (TEXs) facilitate angiogenesis by trans-
ferring pro-angiogenic factors and microRNAs to endothelial
cells, enhancing their proliferation and migration.*>*>** For
example, exosomes from hypoxic tumor cells contain high levels
of miR-210, promoting angiogenesis by targeting endothelial
cell function genes.”**® TEXs significantly influence immune
cell behavior, contributing to immune evasion by shifting the
immune response toward an immunosuppressive state.’®®
They can reprogram macrophages from an anti-tumorigenic M1
phenotype to a pro-tumorigenic M2 phenotype,”'* with exo-
somal miR-934 facilitating this shift and enhancing metas-
tasis."® Additionally, TEXs promote the differentiation of
monocytes into myeloid-derived suppressor cells (MDSCs),
further inhibiting T-cell responses through signaling molecules
like prostaglandin E2 (PGE2) and transforming growth factor
beta (TGF-B).*** Moreover, TEXs suppress T cell activity via cargo
such as TGF-B and programmed death-ligand 1 (PD-L1), which
inhibit T cell activation and promote regulatory T cell differ-
entiation.'” Dendritic cells can also be converted into tolero-
genic cells by TEXs, diminishing their ability to activate T cells
effectively.’® This interplay underscores how tumors evade
immune surveillance and promote growth. Exosomes are also
implicated in metastasis through processes like the epithelial-
mesenchymal transition (EMT), where epithelial cells acquire
migratory properties. TEXs transfer bioactive molecules that
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Fig. 3 Role of exosomes in cancer progression. (Reproduced with permission under Creative Commons CC BY 4.0 license from ref. 109
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facilitate the EMT and enhance metastatic potential.'® For
instance, exosomal microRNA-106b-5p has been linked to
colorectal cancer metastasis by influencing interactions with
M2 macrophages.’® Furthermore, exosomal surface proteins
such as tetraspanins and integrins play critical roles in organ-
specific metastasis by mediating interactions between circu-
lating tumor cells and target microenvironments.'*>'*® Exo-
somes also contribute to therapeutic resistance by transferring
drug resistance genes and proteins. For example, exosomes
from cisplatin-resistant lung cancer can transfer miRNA-100-5p,
altering mTOR signaling to enhance survival during chemo-
therapy.'”” In breast cancer, exosomes can sequester human
epidermal growth factor receptor 2 (HER2) targeted drugs or
reprogram gene expression in recipient cells to reduce treat-
ment susceptibility.’ In summary, exosomes act as both
facilitators of cancer progression and potential targets for
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innovative therapeutic strategies. Their multifaceted roles in
the TME highlight their significance in understanding cancer
biology and developing new treatments. In the TME, TEX-
mediated cancer promoting signature is described in Fig. 3.

5. Therapeutics application of fruit-
derived exosomes

Exosome-based cancer therapeutic application presents a more
advanced approach compared to traditional cell-based thera-
pies.”° Fruit-derived exosomes are gaining traction as potential
candidates for precision cancer therapies (Fig. 4)."***** This
section will explore various anti-cancer therapeutic approaches
utilizing these exosomes, examining their sources, mechanisms
of action, therapeutic payloads, targeted therapies, efficacy in
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Fig. 4 Anti-cancer activity of plant-derived EVs (reproduced with permission under Creative Commons CC BY 4.0 license from ref. 18 copyright
@ 2022 The Authors). TRAIL-tumor necrosis factor-related apoptosis-inducing ligand, PDVs-plant derived extracellular vesicles, DR5-death

receptor 5 is activated when it binds to TRAIL, which initiates apoptosis.
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specific cancer types, and relevant research. Lemon-derived
exosomes exhibit anti-cancer properties primarily through the
induction of apoptosis in cancer cells, activating the TRAIL
pathway to promote cell death in various cancer types.''*'**
These exosomes contain small RNAs, including microRNAs,
and show promise as natural anti-cancer agents against triple-
negative breast cancer by inhibiting cell proliferation, migra-
tion, and phosphatidylinositol 3-kinase/protein kinase B (PI3K/
AKT) and mitogen-activated protein kinase/extracellular signal-
regulated kinase (MAPK/ERK) signaling pathways.'*® They also
target various cancer cell lines, including SW480 (human colo-
rectal adenocarcinoma cell line), LAMA84 (human chronic
myeloid leukemia cell line) and A549 (human lung carcinoma
cell line) by downregulating anti-apoptotic proteins and upre-
gulating pro-apoptotic factors. Studies have shown that lemon-
derived exosomes inhibit proliferation in colorectal cancer cells
in vitro and suppress tumour growth in xenograft models of
chronic myeloid leukemia.*>*****¢ Strawberry-derived exosome-
like nanoparticles exhibit anti-cancer properties by preventing
oxidative stress-induced damage in human mesenchymal
stromal cells, modulating cellular differentiation, and
promoting apoptosis in tumor cells through the delivery of
bioactive compounds such as vitamin C, anthocyanins, and
small RNAs.*>'"” These exosomes may primarily target breast
cancer cells, where they exert protective effects against oxidative
stress and induce apoptosis, as indicated by research showing
that they significantly reduce oxidative stress levels in cancer
cell lines.*"”**° Grapefruit-derived exosomes exhibit anti-cancer
properties by inducing cell cycle arrest and apoptosis in cancer
cells through the modulation of signaling pathways such as
PI3K/AKT. These nanovesicles exhibit anti-tumor activity due to
their rich cargo, which includes polyphenols, flavonoids,
various miRNAs, and an enrichment of specific metabolites like
alpha hydroxy acids (glycolic and citric acids), the amino acids
(leucine and isoleucine), and the fatty acids (palmitic acid and
doconexent).**** They primarily target breast, lung and mela-
noma cells and impair the proliferation of cancer cells, inhib-
iting metastasis and promoting apoptosis, as demonstrated by

Table 2 Fruit-derived exosomes-applications in drug delivery
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significant anti-cancer effects in vitro and reduced tumor sizes
in animal models."**** Treatment with apple-derived exosomes
not only effectively suppressed tumor growth by increasing the
levels of miR-30a-5p, which in turn regulates cell cycle
progression, but also proved to be completely safe. This anti-
tumor effect was linked to the regulation of specific proteins
like E2F transcription factor 7 (E2F7) in gallbladder/esophageal
cancer and Glucose-Regulated Protein 78 (GRP78) in renal
carcinoma. Additionally, these exosomes demonstrated anti-
inflammatory properties by boosting the production of
miRNA-146a in M2 macrophages.’*"*** Bitter melon-derived
exosomes (BMEV) demonstrate both anti-tumor and anti-
inflammatory properties against oral squamous cell carci-
noma (OSCC). These exosomes trigger cell death through
a mechanism involving ROS production and JUN protein
upregulation, while surprisingly downregulating the inflam-
matory nucleotide-binding domain and leucine-rich repeat
protein 3 (NLRP3) pathway. This NLRP3 downregulation,
potentially mediated by BMEV associated RNAs, enhances the
sensitivity of OSCC cells to the chemotherapy drug 5-fluoro-
uracil (5-FU), suggesting a promising synergistic therapeutic
strategy.’*'*® Lemon exosome-based anti-cancer therapeutic
activity is very effective."®

Grape-derived exosomes show great promise as oral drug
delivery vehicles due to their biocompatibility, biodegradability,
and remarkable stability in challenging environments such as
the gastrointestinal tract. These nanovesicles, with an average
size of 205.1 nm, significantly boosted leucine-rich repeat-
containing G-protein-coupled receptor 5 (Lgr5) gene expres-
sion in rats, suggesting a potential role in promoting intestinal
stem cell activity and regeneration. Since Lgr5 is a marker of
intestinal stem cells, implicated in colon cancer development,
grape-derived exosomes may offer a novel therapeutic strategy
for targeting this disease."'*” Though still in their infancy,
fruit-derived exosomes offer a promising new avenue for cancer
precision therapies, potentially providing a biologically safer
and more effective treatment approach to combat this devas-
tating disease and improve patient outcomes Table 2.

Fruit exosome source Therapeutic carried Target Reference
Grape Fisetin MOLT-4 cell 128
Grapefruit Doxorubicin, heparin nanoparticles Glioma 129
HSP70, variants of BSA Colon cancer cells 130
Doxorubicin-(si)RNA co-delivery MDR LoVo colon cancer cells 131
HSP70 Glioma cells 44
miRNA17 Brain tumor 115
Doxorubicin Breast cancer 132
Apple, orange, pomegranate ath-miR159a Caco-2 cells 133
ath-miR162a-3p
ath-miR166b-3p
ath-miR396b-5p
Watermelon Therapeutic miRNA mimic Ovarian cancer cells 134
(hsa-miR146a-5p) (ID8, A2780, and OVCARS models)
Bitter melon 5-Fluorouracil Oral squamous cell carcinoma 124
Lemon Doxorubicin Ovarian cancer 126
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6. Toxicity of fruit-derived exosomes

Fruit-derived exosomes have exhibited a promising safety
profile, supporting their potential for clinical translation. The
inherent absence of zoonotic or human pathogens in fruit-
derived exosomes contributes to their favourable biocompati-
bility, as evidenced by in vitro and in vivo studies across various
administration routes.** Oral administration of fruit-derived
exosomes, even at relatively high doses (e.g., grapefruit-
derived exosomes at 10 mg kg~" in mice for 7 days), has not
been associated with adverse effects on systemic inflammatory
markers like serum interferon-gamma (IFN-y) levels, liver
function (liver enzymes), or hepatocellular injury (AST/ALT
levels).***® Similarly, other routes of administration, including
intraperitoneal®***** and intranasal,***** have not raised signifi-
cant safety concerns. Intravenous administration of fruit-
derived exosomes, particularly those derived from grapefruit,
and lemon,***** has generally been well-tolerated in preclinical
models. However, given the inherent diversity in composition
and biophysical properties of fruit-derived exosomes from
different fruit sources, comprehensive safety evaluations
remain indispensable before considering their intravenous use
in clinical settings.

7. Clinical trials

Exosomes are gaining notable recognition and global research
interest due to their promising therapeutic potential for various
diseases including cancer, to address significant clinical chal-
lenges precisely and effectively. Numerous pre-clinical trials
and laboratory investigations have explored the potential of
exosomes, especially those derived from various human cells
and plants (including various fruits, vegetables, and other plant
parts), as a therapeutic tool for cancer treatment.’*”'*®* Mean-
while, exosome-mediated drug delivery is emerging as a cutting-
edge approach in clinical trials, holding tremendous potential
for tackling cancer and other global health concerns.™® Clinical
trials are crucial for translational medicines in modern
oncology practices. In recent times, those have been investi-
gated in the clinical trial stage to examine their potential, effi-
cacy, side effects, and limitations further.® In the current
decade, scientists around the world are studying plant-derived
exosomes, particularly those from fruits, as candidates for
clinical trials due to their low toxicity, high biocompatibility,
and the effectiveness of their molecular cargos especially
phytochemicals.*®*** A recent clinical study (clinical trial ID:
NCTO01668849) investigated the anti-inflammatory properties of
grape-derived exosomes, administered in grape powder form, to
determine their effectiveness in reducing oral mucositis in head
and neck cancer patients undergoing chemo-radiation therapy,
including their impact on cytokine production, immune
responses to tumor exosomal antigens, and associated meta-
bolic and molecular markers (https:/clinicaltrials.gov/).
Moreover, exosomes show remarkable advancements in
medicine and cancer research, with substantial improvements
made in recent years. The clinical journey of exosomes is not
without obstacles. Plant-derived exosomes, including those

© 2025 The Author(s). Published by the Royal Society of Chemistry
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from fruits, hold therapeutic promise, but their clinical appli-
cation faces significant hurdles. Notably, the translation of
exosome-based clinical trials must conform to rigorous good
manufacturing practices (GMP), addressing the numerous
challenges that arise."*»'** As research continues to uncover the
benefits of exosome-based therapies, future research efforts
should prioritize conducting comprehensive clinical trials to
explore the therapeutic efficacy and drug delivery potency of
exosomes, with a specific focus on plant and fruit-derived
sources, which are currently underrepresented in clinical
investigations.

8. Future perspectives and challenges

Fruit-derived exosomes show great promise in targeted cancer
treatment because they are naturally compatible with the body,
unlikely to trigger an immune response, and capable of deliv-
ering various therapeutic molecules like miRNAs, proteins, and
bioactive molecules. Their therapeutic potential is evident in
their anti-tumor effects, due to their unique biomolecular
cargoes.'>">'* Fruit-derived exosomes offer a renewable and
abundant source for large-scale production, addressing a key
limitation associated with mammalian exosomes.'>'>'¢ A
major hurdle is the lack of standardized definitions, nomen-
clature, and practices for characterizing and classifying these
plant-derived vesicles.**'*” Establishing a robust framework
with rigorous physicochemical characterization and well-
defined biological pathways is crucial for advancing exosome
research. Moreover, fruit-derived exosomes with their inherent
heterogeneity,"*® further compounded by the limitations of
current isolation techniques, pose a significant hurdle."*'¥
Optimizing extraction protocols to enhance fruit-derived exo-
some yield while maintaining purity and structural integrity is
crucial for advancing preclinical and facilitating clinical trans-
lation. A deeper understanding of the molecular mechanisms
underlying the anti-tumor effects of fruit-derived exosomes is
also crucial.”** Identifying the specific miRNAs, proteins, and
small molecules responsible for these effects, as well as their
target pathways in cancer cells, will be essential for developing
more targeted and effective therapies. Exploring potential
synergistic interactions between different fruit-derived exoso-
mal components may also uncover novel therapeutic strate-
gies.1>149130 T facilitate clinical translation, extensive in vivo
studies are necessary to evaluate the safety, biodistribution, and
therapeutic efficacy of fruit-derived exosomes in relevant animal
models of cancer.">'** Developing strategies to enhance their
tumor-homing ability, such as surface modification with tar-
geting ligands, may improve their specificity and therapeutic
index. Additionally, investigating their potential as carriers for
existing chemotherapeutic agents or in combination with other
treatment modalities, such as immunotherapy, could lead to
more effective cancer treatment approaches.*®**%**> In
summary, while fruit-derived exosomes demonstrate significant
potential for precision cancer therapy, addressing challenges
related to standardization, yield optimization, mechanistic
understanding, and clinical translation is pivotal to fully
unlocking their therapeutic promise. Collaborative efforts
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among researchers, clinicians, and industry partners will be
crucial to drive progress in this field and ultimately improve
patient outcomes in cancer treatment.

9. Conclusion

Fruit-derived exosomes stand as a testament to the powerful
synergy between nature's bounty and cutting-edge medical
science. These nanoscale vesicles, derived from fruits, hold
immense promise for revolutionizing cancer treatment by
ushering in a new era of precision therapy. Their inherent
biocompatibility, low immunogenicity, and remarkable ability
to navigate biological barriers position them as exceptional
candidates for targeted drug delivery, offering a potent
weapon in the fight against cancer. While the field is still in its
nascent stages, the therapeutic potential of fruit-derived exo-
somes is undeniable. Early research has illustrated their
ability to effectively encapsulate and deliver a diverse array of
therapeutic agents, including chemotherapeutics, small
interfering RNAs, and microRNAs, directly to cancer cells with
remarkable precision. This targeted approach minimizes off-
target effects, reducing the often debilitating side effects
associated with conventional cancer treatments. However, like
any evolving field, challenges remain. Standardizing extrac-
tion and isolation methods is crucial to ensure consistent
purity, yield, and ultimately, therapeutic efficacy. The lack of
standardized protocols currently hinders the ability to
compare results across studies and establish a clear consensus
on the clinical potential of fruit-derived exosomes. Further-
more, a deeper understanding of fruit-derived exosome
biogenesis, cargo loading mechanisms, and their intricate
interactions with recipient cells is essential to fully unlock
their therapeutic potential. Despite these challenges, the
future of fruit exosome-based cancer therapy is ripe with
opportunities. Advancements in nanotechnology and molec-
ular engineering hold the key to further enhancing their tar-
geting capabilities, allowing for the development of even more
precise delivery systems tailored to specific cancer types and
molecular subtypes. This will let us breathe in a future where
cancer treatment is not only more effective but also signifi-
cantly less toxic, improving the quality of life for countless
individuals battling this devastating disease. The journey
towards realizing the full potential of these nanoscale vesicles
in precision cancer therapy requires a collaborative, interdis-
ciplinary approach. By uniting the expertise of plant biolo-
gists, nanotechnologists, pharmacologists, and oncologists,
we can overcome the current hurdles and pave the way for
a future where nature's own delivery vehicles revolutionize
cancer treatment. The seeds of progress have been sown, and
with continued dedication and innovation, we can cultivate
a future where exosomes blossom into a powerful weapon in
the fight against cancer.
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