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Interpretable attention-based transfer learning in
plasma catalysis: a study on the role of surface
charge†
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Low-temperature plasma catalysis holds promise for electrification of energy-intensive chemical

processes such as methane reforming and ammonia synthesis. However, fundamental understanding of

plasma–catalyst interactions, essential for catalyst design and screening for plasma catalysts, remains lar-

gely limited. Recent work has demonstrated the importance of first-principles studies, including density

functional theory (DFT), for elucidating the role of electro- and photo-effects such as electric field and

charge in plasma catalysis. The availability of increasing amounts of DFT data in thermal catalysis

presents a unique opportunity for plasma catalysis research to efficiently leverage this existing first-

principles knowledge of thermal catalysis towards investigating plasma–catalyst interactions. To this end,

this paper investigates interpretable transfer learning from thermal to plasma catalysis, with a focus on

the role of surface charge. Pre-trained attention-based graph neural networks (GNNs) from the Open

Catalysis Project, trained using millions of thermal catalysis DFT data points, are structurally adapted to

account for surface charge effects and fine-tuned using plasma catalysis DFT data of single metal atoms

on an Al2O3 support and adsorbates involved in plasma-catalytic ammonia synthesis. Not only does the

fine-tuned attention-based GNN model provide high test accuracy for predicting adsorption energies

and atomic forces in plasma catalysis, but it also exhibits adequate extrapolation for unseen single metal

atoms in the plasma catalysis data used for model fine-tuning. To distinguish the effects of surface

charge from other dissimilarities in DFT data of thermal and plasma catalysis, a dual-model framework is

presented that relies on two pre-trained GNNs, one of which is specifically tasked to capture surface

charge effects using an attention mechanism that provides interpretable insights into their role. Lastly, it

is demonstrated how the attention-based GNNs developed for single metal atoms can be efficiently

adapted for predicting adsorption energies and atomic forces for metal clusters in plasma catalysis. This

work highlights the vast potential of interpretable transfer learning from thermal catalysis to plasma

catalysis to mitigate excessive computational requirements of first-principles studies in plasma catalysis,

towards accelerating fundamental research in this domain.

Broader context
Low-temperature plasmas (LTPs) have received increasing attention for renewably electrified synthesis of chemicals, such as methane reforming, NOx

generation, and ammonia synthesis, amongst others. This is due to the unique ability of LTPs to facilitate chemical reactions under atmospheric pressure and
low temperatures. Additionally, LTPs are characterized by an abundance of high-energy electrons that can induce vibrationally-excited species, potentially
resulting in new reaction pathways and reduced energy consumption. As such, LTP processes have the potential to enable decentralized and on-demand
chemical production, as an alternative to large-scale and energy-intensive centralized chemical processes. The performance of LTP processes in terms of energy
efficiency and productivity can be further enhanced via integration with catalysts. The availability of increasing amounts of DFT data in thermal catalysis
presents a unique opportunity for plasma catalysis research to efficiently leverage this existing first-principles knowledge of thermal catalysis towards
investigating plasma–catalyst interactions. This work highlights the vast potential of interpretable transfer learning from thermal catalysis to plasma catalysis
to mitigate excessive computational requirements of first-principles studies in plasma catalysis, towards accelerating fundamental research in this domain.
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1 Introduction

In recent years, low-temperature plasmas (LTPs) have received
increasing attention for (renewably) electrified synthesis of
chemicals, such as methane reforming,1 NOx generation,2 and
ammonia synthesis,3 amongst others. This is due to the unique
ability of LTPs to facilitate chemical reactions under atmo-
spheric pressure and low temperatures.4,5 Additionally, LTPs
are characterized by an abundance of high-energy electrons
that can induce vibrationally-excited species,6 potentially
resulting in new reaction pathways and reduced energy con-
sumption. As such, LTP processes have the potential to enable
decentralized and on-demand chemical production, as an
alternative to large-scale and energy-intensive centralized
chemical processes.7

The performance of LTP processes in terms of energy
efficiency and productivity can be further enhanced via integra-
tion with catalysts.8–12 These improvements are postulated to
arise from the intricate, but poorly-understood, synergies
between the plasma and catalyst.13,14 Despite extensive experi-
mental efforts on investigating the role of factors such as
electric field,15 surface charges,16–18 surface reactions involving
excited species,8 atoms, and photons,19,20 amongst others,
there remain significant gaps in the fundamental understand-
ing of plasma–catalyst interactions, let alone designing effec-
tive catalysts tailored for plasma catalysis.21 On the other hand,
first-principles studies, particularly density functional theory
(DFT), have proven useful for the investigation of plasma–
catalyst interactions. Liu et al.22 used DFT to investigate the
role of Eley–Rideal (E–R), Langmuir–Hinshelwood (L–H), and
radical adsorption and dissolution processes in plasma cataly-
sis across nine different metals, identifying a viable pathway for
ammonia synthesis through the formation of NNH via radical
reactions. Mehta et al.8 studied vibrational excitation of N2 and
the resulting surface reactions with excited species via DFT,
uncovering distinct routes for plasma-catalytic ammonia synth-
esis. Bal et al.23 introduced DFT methods for probing charged
surfaces, which revealed an altered CO2 binding energy on g-
Al2O3 surfaces under the influence of surface charge. Lele
et al.24 investigated the effects of surface charge on plasma-
catalytic NH3 synthesis, showing that charged catalytic surfaces
can enhance NH3 production. Shao and Mesbah25 used an
integrated microkinetic-DFT model to investigate how the
electric field, along with other LTP process parameters such
as gas temperature, can influence plasma-catalytic ammonia
synthesis, providing new insights into trade-offs between the
NH3 production rate and energy consumption.

Despite these advances, the use of DFT for catalyst design
and screening remains an open problem in plasma catalysis.
The challenge is two-fold. First, there is a need for new theory,
and possibly computational methods, to effectively account for
the myriad of plasma-induced effects on surfaces via DFT.
Second, the inclusion of these effects in DFT calculations can
significantly increase their complexity, cost, and computational
requirements. On the other hand, DFT is increasingly used to
guide catalyst design and screening in thermal catalysis,26

which has led to an abundance of data generated from DFT
calculations. These efforts are further facilitated by the
advances in machine learning to learn computationally effi-
cient surrogates for DFT, towards accelerating the discovery of
thermal catalysts.27 Notably, DFT surrogates are trained on
millions of data points that encompass various metal surfaces
and adsorbates.28 These surrogates can then perform tasks
such as rapid prediction of system energy and atomic forces,
as well as fast geometry relaxation. By predicting atomic forces
and thus the relaxed system energy, DFT surrogates can signifi-
cantly speed up catalyst screening, enabling resource-efficient
evaluation of potential catalysts without the need for costly full
DFT calculations.

Yet, there are barely any similar efforts in the area of plasma
catalysis. One notable work is by Wan et al.29 in which graph
neural networks (GNNs) were used to study electric field-dipole
effects in ammonia synthesis using a Ru catalyst, a topic closely
related to plasma-catalytic ammonia synthesis. It was demon-
strated that a pre-trained GNN model for Ru catalyst could be
fine-tuned using a limited amount of DFT data for Fe catalysts
to efficiently transfer acquired knowledge from Ru to Fe, while
maintaining high accuracy in predicting adsorption energy.
Another significant effort in this direction is by Zhang et al.,30

wherein an attention-based GNN was developed to explore the
compositional space of Ni–Co–Fe–Pd–Pt for high-entropy elec-
trocatalysis. The proposed GNN model successfully predicted
adsorption Gibbs energies and atomic forces for OOH, O, and
OH at surface sites across various compositions. These predic-
tions in turn enabled identification of optimal compositions,
including non-equal atomic compositions (e.g., Ni0.13Co0.13-

Fe0.13Pd0.10Pt0.50 and Ni0.10Co0.10Fe0.10Pd0.30Pt0.40), using
volcano plots, which were subsequently validated through
experiments. This study effectively showcased the utility
of DFT surrogate models in accelerating catalyst design by
avoiding the costly exploration of vast catalyst composition
spaces.

Nonetheless, these works generally rely on training DFT
surrogates from scratch, disregarding existing knowledge and
data from thermal catalysis. Despite the intricacies of electro-
and photo-effects such as electric field and charge in plasma
catalysis, fundamental insights into atomic interactions and
bonding can be akin to those in thermal catalysis. Leveraging
existing DFT data for thermal catalysis can present a unique
opportunity for enabling fundamental plasma–surface studies
and accelerating catalyst design and screening in the plasma
catalysis domain. Central to this is transfer learning,31 where
knowledge from one task is systematically utilized to solve
problems in related tasks with a limited amount of data. A
recent study by Kolluru et al.32 illustrates the potential of
transfer learning in thermal catalysis using an attention-
based adaptor and pre-trained models derived from the Open
Catalyst 2020 (OC20) dataset,28 which was generated based on
extensive DFT calculations performed using the Vienna ab initio
simulation package (VASP).33,34 The findings of this work
revealed that not only does the transferred model excel in
learning in-domain tasks similar to the OC20 dataset, but it
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also exhibits a remarkable performance for out-of-domain
tasks. Meanwhile, transfer learning significantly mitigates the
intensive computational requirements when compared to train-
ing the DFT surrogate model entirely from scratch. Further-
more, recent work by Wang et al.35 demonstrates that transfer
learning can substantially reduce the number of required DFT
calculations in out-of-domain transfer learning from inorganic
to organic adsorbates in heterogeneous catalysis. Another use-
ful concept is the attention mechanism, which has shown
significant promise, in particular in natural language
processing,36 since it can provide interpretability by automati-
cally assigning weights to the importance of relationships
between a central word/node and its neighbors.37 Zhang
et al.30 demonstrated that the attention mechanism can reveal
how variations in energy and atomic forces are confined to the
third nearest atom of O in high-entropy electrocatalysis. This
can be explained by the destabilization of the second-nearest-
neighbor atoms of oxygen, as the binding strength of the first-
nearest-neighbor atoms is shared by the adsorbed oxygen
atoms. However, the utility of the attention mechanism in
thermal catalysis thus far generally lacks the incorporation of
rich physical information, such as the angles formed by three
atoms or the geometric configuration formed by multiple
atoms, as demonstrated, e.g., in SchNet38 and GemNet.39 Most
recently, Liao et al.40 introduced an attention-based GNN
EquiformerV2 tailored specifically for catalysis, a promising
development in this direction. This model currently shows the
best prediction accuracy for system/adsorption energy, atomic
forces and geometry relaxation, as can be seen in the Open
Catalyst Project Leaderboard.28

Despite the rich body of knowledge on thermal heteroge-
neous catalysis, this knowledge remains underutilized in
plasma catalysis due to a lack of effective tools for systematic
and interpretable knowledge transfer in this domain. This
paper addresses this gap by demonstrating the promise of
attention-based transfer learning for leveraging the extensive
DFT knowledge in thermal catalysis for first-principles plasma
catalysis studies. To this end, we consider plasma-catalytic
ammonia synthesis as the model system. We show how small
amounts of plasma catalysis DFT data can be used to efficiently
fine-tune existing pre-trained models of thermal catalysis to
obtain accurate predictions of adsorption energy and atomic
forces for single metal atoms and metal clusters. Moreover,
transfer learning allows the model to have a strong extrapola-
tion ability for unseen atoms in the plasma catalysis
dataset. Thus, the fine-tuned model has the potential to enable
rapid geometry relaxation, since it can be used to replace or
reduce DFT calculations, as also shown in thermal catalysis.35

The ability to develop models for predicting adsorption
energies and atomic forces in a resource-efficient way can in
turn open new avenues for catalyst design and screening for
plasma-catalytic systems, which remain grand open challenges
in this field.21,41 Furthermore, integrating predictions of these
quantities with microkinetic models serves as a critical step
towards establishing a foundational understanding of plasma–
catalyst interactions,21,41 which is a prerequisite for advancing

theoretical and practical insights into plasma-catalytic
processes.

We use two pre-trained GNNs, namely the EquiformerV2
model with the attention mechanism and the GemNet-dT
model, both of which are trained using the OC20 dataset from
the Open Catalyst Project.28 For model refinement, DFT calcu-
lations for NxHy species adsorbed onto single metal atoms
supported on Al2O3 are performed using CP2K42 to account
for plasma-induced charge effects, arguably one of the key
contributors to plasma–catalyst synergy, on adsorption ener-
gies and atomic forces of the atoms. Although we are not aware
of any experimental study combining single metal atom cata-
lysts and plasma, single metal atom catalysts have been experi-
mentally and theoretically studied for almost two decades,43

including on Al2O3 as a support. Nonetheless, the focus of this
work is to isolate and systematically study the effect of surface
charging across several common catalysts. Hence, we have
adopted the single metal atom model for transfer learning.
We demonstrate that by structurally adapting the pre-
trained EquiformerV2 model and freezing a subset of its learn-
able parameters during transfer learning, the fine-tuned
model can provide accurate predictions of adsorption energies
and atomic forces for unseen single metal atoms. This indicates
the ability of the fine-tuned model to effectively retain knowl-
edge from thermal catalysis since the unseen single metal
atoms were only a part of the OC20 dataset and not the
plasma catalysis DFT data used for fine-tuning the Equifor-
merV2 model. Moreover, we show that the pre-trained
EquiformerV2 model can be efficiently fine-tuned with only a
limited amount of plasma catalysis DFT data for Pt metal
clusters, along with the single-metal-atom data, to predict
adsorption energies and atomic forces for unseen Ru metal
clusters.

A standard practice in transfer learning is to use data
acquired for a new task to fine-tune pre-trained models by
adapting all their learnable parameters, typically without deli-
neating various discrepancies that may exist between the old
and new tasks.44 In this work, to enhance the interpretability of
the fine-tuned attention-based EquiformerV2 model with
respect to plasma-induced surface charge effects, we look to
delineate these effects from other dissimilarities between the
OC20 dataset and the DFT data generated for plasma catalysis,
namely the dissimilarities in atomic interactions and discre-
pancies between DFT calculations performed by VASP and
CP2K. To this end, we propose a dual-model framework for
interpretable transfer learning that combines the pre-trained
GemNet-DT model39 for thermal catalysis and the above-
described structurally-adapted pre-trained EquiformerV2
model, which is tasked to account for surface charge effects.
The surface charge effects are encoded into the fine-tuned
EquiformerV2 model via a loss function designed for this
purpose. The attention scores extracted from the fine-tuned
EquiformerV2 model in this dual-model framework exhibit
strong correlations to surface charge distribution, providing
useful insights into the important role of charge distribution on
adsorption processes in plasma catalysis.
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2 Methods
2.1 Density functional theory

To model the effect of plasma-induced surface charge on
catalytic surfaces, we used single-metal-atom and metal-
cluster models, as reported in ref. 23 and 24. The DFT calcula-
tions that describe surface charge effects on adsorption ener-
gies for single metal atoms and the corresponding free atom
atomic forces are performed using CP2K.24,42 Briefly, these
calculations make use of the Quickstep module of the CP2K
code. Fig. 1 shows a schematic of the DFT calculations, which
are performed for a g-Al2O3(110) surface (6 aluminum layers
with 2 � 2 anhydrous super cell), as derived from ref. 45. The
hydrous 110 surface is the most stable surface termination for
g-Al2O3. However, it has been shown that the surface charge
effect can be effectively modelled using an anhydrous surface.23

Hence, to reduce computational complexity, we employ an
anhydrous g-Al2O3(110) supercell in the DFT calculations per-
formed in this work. The Quickstep module uses the combined
Gaussian and plane wave method to calculate system energies.
The exchange and correlation is calculated using the Perdew–
Burke–Ernzerhof (PBE)46 functional supplemented by D3
dispersion correction.47 The DFT calculations use GTH pseu-
dopotentials with a polarized double-z (m-DZVP) basis set.
Considering the size of the system geometry, the calculations
are performed at G-point only. To account for the effects of
surface charge, a proton is introduced in the simulation cell by
defining an H atom type without a basis set, preventing
electron assignment. The proton is fixed at a Z-height of 40 Å,
while forcing the entire system to be charge neutral. Hence, this

proton introduces a negative charge on the surface. This
counter-ion or proton position is chosen to minimize the
effects of electric field generated by the charge-countercharge
system. The charge-countercharge interactions become negli-
gible if the countercharge is placed at a Z-height of more than
30 Å. However, to be on the conservative side and to further
isolate the effect of surface charge, we decided to place the
counter-ion 40 Å away from the surface. This countercharge
introduces a negative charge on the surface. The simulation cell
is treated non-periodically in the z-direction using Martyna–
Tuckerman Poisson solver.48,49 The convergence and accuracy
of the calculations are examined in relation to parameters such
as the location of counter-ion, choice of functional, and energy
cut-off; see ref. 24 for further details. We use a single
positive counter-ion in our calculations, resulting in a surface
charge density of 0.06 C m�2. This is considered to be within
the range of plasma-induced surface charge, as measured
experimentally50 and reported in modeling studies.51 We note
that this method can be easily adopted to account for different
surface charge densities in a plasma catalytic process.

To account for the surface charge effects on the adsorption
of different NxHy species on different catalysts, a set of single
metal atoms and metal clusters are first adsorbed on the g-
Al2O3 surface. Then, the adsorption energies of the different
adsorbates are calculated by:

Eads = Eslab+adsorbate � Eslab � Eadsorbate

in the presence and absence of the surface charge. g-Al2O3

offers 7 unique adsorption sites, including 2 or 3 coordinated O
atom sites and 3 or 4 coordinated Al atom sites. All these
adsorption sites are explored for the single metal atoms. For
metal clusters, they are first energy minimized without the
support and then adsorbed on the g-Al2O3 support. Although
more realistic, direct surface adsorption calculations on metal-
cluster models (metal clusters adsorbed on the g-Al2O3(110)
surface) are configuration dependent. That is, the size and
shape of the metal clusters can impact the extent of the surface
charge effect. Single-metal-atom models, on the other hand,
provide a more consistent way to compare the effect of surface
charge on different catalysts due to their relative configura-
tional independence.

We consider 11 single metal atoms, namely Ag, Au, Cu, Re,
Ru, Co, Ni, Pd, Fe, Pt and Rh, using the single metal atom
model, where the last three metals are only used for testing the
generalization performance of the fine-tuned model for the
single metal atoms. We consider the adsorption of seven
different adsorbates, namely N, N2, H, H2, NH, NH2, and
NH3, which are involved in NH3 synthesis. DFT calculations
are also performed for metal clusters of Ru and Pt on the g-
Al2O3 surface. To ensure that the sensitivity of the adsorbates to
surface structures is considered, we calculated the adsorption
energies for all adsorbates on the seven unique adsorption sites
offered by the g-Al2O3(110) support, as well as their co-
adsorption on the support and metal atom combined. Our
analysis showed that adsorption on the metal atom/cluster
was always favored for the adsorbates investigated in this work.

Fig. 1 Schematic of a typical DFT calculation with surface charge. A
counter-ion (shown by the + symbol) is placed away from and in the
surface normal direction of the g-Al2O3 surface to introduce a negative
charge on the surface (shown by the – symbol). ‘‘M’’ represents a single
metal atom, or a metal cluster, and ‘‘Ads’’ represents different adsorbed
NxHy species.
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Additional details about the DFT calculations performed in this
work can be found in ref. 23 and 24.

2.2 Data structure

For each pairing of the eleven single metal atoms with the
seven distinct adsorbates, the complete geometry relaxations
are treated as individual data points. That is, for example, given
the combination of H + Au + g-Al2O3, if achieving the final
relaxed structure involved creating 100 profiles during the
geometry relaxation, these 100 profiles would be counted as
100 separate data points. Since only CP2K is used in this work
to generate data, to account for the discrepancies stemming
from using VASP software to generate the OC20 dataset for
thermal catalysis28 and CP2K software, the above-described
DFT calculations are performed both in the presence and
absence of the surface charge. Consequently, a dataset of
5164 data points is compiled for Ag, Au, Cu, Re, Ru, Co, Ni,
and Pd, whereas the independent datasets for Fe, Rh, and Pt
include 472, 435, and 587 data points, respectively. The former
dataset is then divided into training, validation, and test sets in
the ratio of 70/20/10%. The data labels consist of the adsorp-
tion energy and atomic forces for each individual atom.

A similar data structure is also used for Pt and Ru metal
clusters on g-Al2O3, yielding datasets of 3965 and 3627 data
points for Pt and Ru clusters, respectively. The Pt cluster
dataset is further divided into training, validation, and test
sets using the same ratio as above to aid in model fine-tuning.

The Ru cluster dataset is only utilized for testing the general-
ization performance of the fine-tuned model for the metal
clusters.

2.3 Pre-trained models from thermal catalysis

In this work, we utilize two GNNs from the Open Catalyst
Project, i.e., pre-trained using the OC20 dataset,28 to enable
transfer learning from thermal to plasma catalysis. The two
models are an EquiformerV2 model using the attention mecha-
nism and a GemNet-dT model popular in thermal catalysis.
These architectures are depicted in Fig. 2. The EquiformerV2
model first converts atoms to their corresponding embeddings
according to their atomic number. The geometric information
among atoms, such as atom–atom distance, is encoded into the
embeddings that are vectors with the same dimensions as the
atom embeddings. These two embeddings are then summed up
and fed into an arbitrary number of Equiformer blocks. Within
each Equiformer block, new learnable atom embeddings are
defined to further learn the atom–atom edge geometric infor-
mation. Along with this geometric information, the fed embed-
ding of each atom is updated according to the embeddings of
its N closest neighbors within each Equiformer block. Here,
attention scores are learned that weigh the contribution of the
N surrounding atoms. Therefore, the attention scores provide a
degree of interpretability as they reveal the interactions
between atoms. EquiformerV2 also uses a multi-head attention
mechanism, where each head has its own attention score to

Fig. 2 Architectures of the two graph neural network models, pre-trained using the OC20 dataset for thermal catalysis.28 The left is the EquiformerV2
architecture with eight Equiformer blocks.40 The right is the GemNet-dT architecture39 with a multi-head attention adaptor for improved transfer
learning.32 The number of additional interaction blocks is set to one.
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capture different aspects of relationships between atoms; see
ref. 40 for further details on the attention scores of Equifor-
merV2, which are different from classical attention scores as in
ref. 36. The outputs of the final Equiformer block are fed into a
force and an energy block to predict the atomic force for each
atom in xyz directions and the structure adsorption energy. The
force block is a graph attention layer, which is also a structure
used in the Equiformer blocks. The energy block is a feedfor-
ward layer. Here, we choose the lightest pre-trained Equifor-
merV2 model with eight Equiformer blocks based on OC20,28,40

since it demonstrated a sufficiently good performance for the
transfer learning task at hand. This model considers N = 20
closest neighbors for each atom in each attention head, and
uses eight-head attention in each Equiformer and force block.
This EquiformerV2 model is used in all three transfer learning
tasks of this work, as detailed in the next section.

The construction of the initial part of the GemNet-dT model
is similar to that of EquiformerV2, with the geometric informa-
tion extracted and atoms converted into embeddings. Then,
graph interaction blocks update these embeddings according
to the geometric information. In the original GemNet-dT model
without an adaptor, each interaction block, as well as the initial
embedding are followed by a feedforward block. The outputs of
these feedforward blocks are added to predict the adsorption
energy and atomic forces. In this work, however, we use a
modified GemNet-dT model that utilizes a multi-head attention
adaptor to balance information from the intermediate graph-based
blocks for improved transfer learning.32 In the modified GemNet-
dT model, the feedforward layers in the interaction blocks are
removed and, instead, a weighted summation is performed in the
adaptor to make predictions. To further enhance transfer learning
ability, additional interaction blocks with feedforward layers are
introduced.32 The outputs of these interaction blocks are directly
added to the output from the multi-head attention adaptor, yield-
ing the adsorption energy and atomic force predictions. In the
modified GemNet-dT model, the parameters of the adaptor, the
additional interaction blocks and their feedforward layers must be
trained, whereas other parts of the model are based on the pre-
trained GemNet-dt model of OC20 with three interaction blocks.
We note that the modified GemNet-dT model is only used in the
dual-model framework of the task ‘‘interpretation of surface charge
effects’’ to capture discrepancies between the thermal catalysis and
plasma catalysis datasets other than the surface charge effects.§

2.4 Attention-based transfer learning tasks

In this work, we investigate three different tasks to demonstrate
the usefulness of transfer learning from thermal catalysis to

plasma catalysis. In the first task, we focus on assessing the
prediction accuracy and generalizability of fine-tuned models
for the case of single metal atoms. In the second task, we use
attention-based transfer learning to provide interpretable
insights into the effects of surface charge in plasma catalysis.
In the third task, we investigate transfer learning from single
atoms to metal clusters.

2.4.1 Task 1: transfer learning from thermal catalysis to
plasma catalysis for single metal atoms. In this transfer learn-
ing task, we use the pre-trained EquiformerV2 model intro-
duced in the Pre-trained models from thermal catalysis section,
due to its superior performance on the OC20 dataset. Several
adaptations to the original EquiformerV2 model architecture
are made for the transfer learning task at hand. An example of
the structurally adapted EquiformerV2 model is shown in
Fig. 3, where only the middle three Equiformer blocks B6–8
and all the proton embeddings are unfrozen during transfer
learning. In the geometric information, B1 to B8 and force
blocks of the adapted model, each atom is impacted by its 20
closest neighbors and the proton.

These adaptations are made out of several considerations.
First, proton is placed far away from all atoms, whereas the
impact of proton may be appreciable on all atoms. Therefore,
since the EquiformerV2 model only considers the nearest 20

§ Fine-tuning of all the pre-trained models is based on the same setting as in
OC20, but a different batch size of 4 and number of epochs 100 were used. We
used a batch size of 4, since for GNNs the batch size refers to the number of
graphs used during training. In this study, each graph consists of around
240 atoms and approximately 240 � 21 = 5040 edges, creating a substantial load
on the GPUs. We utilized four GPUs with 12 GB of memory, each capable of
processing only one graph at a time. We observed that increasing the batch size
would yield minimal improvement in the transfer learning results. Therefore, we
opted to use a batch size of 4 for computational efficiency.

Fig. 3 An example of the adapted EquiformerV2 model for transfer
learning to plasma catalysis. The layers up to and including the fifth
Equiformer block (B5) and the force and energy blocks are frozen. The
atom embeddings are frozen, including in the Equiformer blocks B6–B8.
However, the proton embeddings of all layers are unfrozen and are
updated during transfer learning, initialized from hydrogen embeddings
of the pre-trained model.
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atoms for each atom, the model is adapted to also account for
the effects of the proton. Furthermore, atom embeddings
remain constant during transfer learning. This is because the
updated embeddings may affect the attention blocks of the
EquiformerV2 model adversely, potentially hindering the extra-
polation capability on unseen atoms. Earlier layers of the pre-
trained model tend to capture structural knowledge, such as
edge between atoms and rotational equivalence of the catalyst
structure.32,40 Therefore, freezing these layers can also be
beneficial to the extrapolation capability of the fine-tuned
model. However, the number of initial layers to be frozen can
have a significant influence on the model performance. Thus,
we investigate the impact of freezing different numbers of
initial layers of the pre-trained model on the extrapolation
capability of the fine-tuned model. Additionally, freezing of
the output energy and force blocks is also tested since these
blocks are responsible for projecting the outputs from the eight
Equiformer block (B8) to the energy and force predictions. As
for learning the proton embeddings, they are initialized using
the hydrogen embeddings from the pre-trained EquiformerV2
model and their parameters are updated during transfer learn-
ing. In theory, hydrogen embeddings represent the closest
approximation to that of protons. Table 1 summarizes all the
adaptations of the pre-trained EquiformerV2 model used for
transfer learning from thermal to plasma catalysis. An ablation
study is performed to test the performance of these models.

2.4.2 Task 2: interpretable transfer learning to elucidate
the role of surface charge. There are several discrepancies
between the OC20 data used for learning the pre-trained
EquiformerV2 model and the plasma catalysis DFT data used
for fine-tuning the model. These include differences in DFT
calculations made by VASP and CP2K for generating thermal
and plasma catalysis data, respectively, the catalyst–adsorbate
configurations shifting from metal clusters plus adsorbates in
the OC20 dataset to single metal atoms plus adsorbate with
support in the plasma catalysis dataset, the overall atom count,
and the introduction of surface charge by protons. While using

the above-described fine-tuned EquiformerV2 models can
enable satisfactory transfer learning outcomes, including good
test and extrapolation scores, extracting meaningful insights
from the attention mechanism of the Equiformer blocks, such
as B6–B8 in Fig. 3, can be infeasible since they cannot delineate
the above discrepancies. This is because the attention scores,
which capture the impact of the 20 closest atoms and proton on
any atom, are updated based on the plasma catalysis DFT data,
making discerning the surface charge effects from other differ-
ences impossible.

To elucidate the role of surface charge, we propose a dual-
model architecture that isolates the effects of proton-induced
surface charges in the EquiformerV2 model. Meanwhile, to
ensure that all other discrepancies are effectively captured, we
employ the GemNet-dT + A architecture, as proposed in ref. 32,
which has demonstrated strong transfer learning capabilities
for out-of-domain tasks. As shown in Fig. 4, the proposed
architecture consists of two pre-trained models operating con-
currently: the GemNet-dT + A model that is fine-tuned using
single metal atom data of CP2K when proton is removed,
and the EquiformerV2 model fine-tuned with CP2K data with
the proton effects accounted for. For fine-tuning of the
GemNet-dT + A model using single metal atom data of CP2K,
proton is removed before a single metal atom structure is fed to
the model. This allows the fine-tuned GemNet-dT + A model to
learn the discrepancies between the pre-trained model using
the OC20 thermal catalysis data and the CP2K data generated in
this work. This is while a single metal atom structure with
proton is fed to the EquiformerV2 model, serving as a corrector
to predictions of the fine-tuned GemNet-dT + A model by
accounting for surface charge effects. This way the dual-
model architecture can delineate the role of surface charge
from other discrepancies between the thermal and plasma
catalysis data. The combined outputs of the two models yield
the predictions for adsorption energy and atomic forces. To
train the models, the following loss functions are devised. For
single metal atom structures with proton, the loss function

Table 1 Adaptations of the pre-trained EquiformerV2 model from the Open Catalyst Project28,40 used for transfer learning from thermal to plasma
catalysis. F means the weights do not start from those of the pre-trained model. T means the weights start from those of the pre-trained model. H means
the proton embeddings are unfrozen and start from the hydrogen embeddings of the pre-trained model. — means this part is unfrozen.�means this part
is frozen

Model abbreviation Pretrained Proton embedding Atom embedding Geometric Info.

Equiformer and output blocks

B1 B2 B3 B4 B5 B6 B7 B8 Energy & force

S F — — — — — — — — — — — —
H T H — — — — — — — — — — —
A T — � — — — — — — — — — —
HA T H � — — — — — — — — — —
L1 T H � � � — — — — — — — —
L3 T H � � � � � — — — — — —
L5 T H � � � � � � � — — — —
L7 T H � � � � � � � � � — —
L8 T H � � � � � � � � � � —
EF T H � — — — — — — — — — �
L1EF T H � � � — — — — — — — �
L3EF T H � � � � � — — — — — �
L5EF T H � � � � � � � — — — �
L7EF T H � � � � � � � � � — �
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Jplasma is defined as in eqn (1), whereas for structures without
proton, the loss function Jthermal takes the form of eqn (2), i.e.,

Jplasma ¼ a E � Êa � Êb

�� ��þ b
XA

j

Fj;x � F̂ j;x;a � F̂ j;x;b

�� ���

þ Fj;y � F̂ j;y;a � F̂ j;y;b

�� ��þ Fj;z � F̂ j;z;a � F̂ j;z;b

�� ���;

(1)

Jthermal ¼ a E � Êa

�� ��þ Êb

�� ��� �
þ b

XA

j

Fj;x � F̂ j;x;a

�� ��þ F̂ j;x;b

�� ���

þ Fj;y � F̂ j;y;a

�� ��þ F̂ j;y;b

�� ��þ Fj;z � F̂ j;z;a

�� ��þ F̂ j;z;b

�� ���:
(2)

Here, E denotes the actual adsorption energy, while Êa and Êb

represent the energy predictions from the GemNet-dT + A and
EquiformerV2 models, respectively. A stands for the total

number of free atoms in the structure, and F̂j,x,a, F̂j,x,b (similarly
for y and z directions) are the atomic force predictions from the
GemNet-dT + A and EquiformerV2 models, respectively. The
coefficients a and b trade off the loss contributions from the
energy and atomic force predictions, with values of a = 4 and b =
100 used in this work, as in ref. 28.

To fine-tune the GemNet-dT + A model, the initial atom
embeddings and the existing interaction blocks in the pre-
trained model are frozen. One additional interaction block is
added and the number of heads in the multi-head attention
adaptor is set as five, as in ref. 32. Since these newly added
layers are not pre-trained, they are initialized randomly. For the
EquiformerV2 model, we utilize the model architecture out-
lined in Fig. 3. However, we only allow fine-tuning of proton
embeddings and the 8th Equiformer block (B8),36,40 in the pre-
trained EquiformerV2 model. Additionally, the output layers
responsible for predicting energy and atomic forces remain

Fig. 4 The dual-model architecture that isolates the surface charge effects from other differences in thermal and plasma catalysis data. The
EquiformerV2 model is used for capturing the surface charge effects, where only the eight Equiformer block (B8) and proton embeddings are relaxed.
The GemNet-dT + A model is used to retain the thermal catalysis knowledge, wherein the additional interaction block, the multi-head attention adaptor,
and the energy and force feedforward block are unfrozen. The outputs of the two models are added to give the energy and force predictions. A single
metal atom structure for plasma catalysis is directly fed to the EquiformerV2 model, whereas proton is removed when the structure is fed to the GemNet-
dT + A model. Accordingly, EquiformerV2 is tasked to ‘‘correct’’ the predictions of GemNet-dT + A by capturing the surface charge effects. If a structure
does not have proton, it is fed to both models, while the EquiformerV2 model predicts an output correction of 0.
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unchanged during model fine-tuning. This is based on the
consideration that each Equiformer block within the pre-
trained EquiformerV2 model has its own atom embeddings.
Allowing all Equiformer blocks to adapt during model fine-
tuning could disperse the surface charge effects across various
blocks, rendering the predictions uninterpretable.

2.4.3 Task 3: transfer learning from single atoms to metal
clusters. In this task, we look to investigate if the pre-trained
models for single metal atoms can be effectively fine-tuned for
metal clusters. To this end, we use the single metal atom data
for all the above-mentioned metals and the metal cluster data
of Pt, leaving the Ru cluster data for testing the generalization
performance of the model. Note that we avoid any potential
bias caused due to excluding the single metal atom data for Pt
in model refinement; for example, as a result of missing the
connections between Pt and other metals, and the link between
single Pt and Pt cluster systems. In this task, we use the same
pre-trained EquiformerV2 model as in task 1. The choice of
which blocks of the pre-trained model to freeze is made based
on the best performing models of task 1 in terms of both test
accuracy and generalization performance. We investigated
three strategies for transfer learning, as summarized in
Table 2. The first strategy involves using the metal cluster data
for fine-tuning of the pre-trained model. The second strategy
further fine-tunes the transfer learning model of task 1 using
metal cluster data, whereas the third strategy uses the mixture
of single metal atom and metal cluster data to fine-tune the pre-
trained model. For all three strategies, we maintain a training-
validation-test ratio of 70/20/10%.

3 Results and discussion
3.1 Task1: transfer learning from thermal catalysis to plasma
catalysis for single metal atoms

To enable effective transfer learning towards extrapolation to
unseen single metal atoms, we first discuss how relevant
knowledge, such as atom–atom interactions, from thermal
catalysis is retained within the fine-tuned models. In transfer
learning, the initial layers of a model generally encapsulate
geometric information. For example, the initial layers in a pre-
trained GNN learn more basic representations of a catalyst
structure, such as edges between atoms.32 This is while the
final layers of a pre-trained GNN contain more abstract, high-
level information amenable to fine-tuning. Here, we investigate
which components of a pre-trained EquiformerV2 model
should remain unchanged to enable accurate predictions for
previously unseen metal atoms during transfer learning. Fig. 5

demonstrates the performance of several fine-tuned models, as
detailed in Table 1, in terms of their test accuracy and extra-
polation capability on unseen single metal atoms of Fe, Rh and
Pt. The analysis reveals that the majority of the fine-tuned
models in Table 1 exhibit comparable performance in the
adsorption energy and atomic forces on the test data, as
evidenced by their R2 scores close to 1. Model S, which is an
EquiformerV2 model architecture trained from scratch using
the same training dataset, and model L8, wherein only the
output blocks for energy and force are fine-tuned, show a
notably worse test accuracy than other models. The poor
performance of model S corroborates the successful transfer
of thermal catalysis knowledge from the pre-trained model to
the plasma catalysis domain. Moreover, the excessive rigidity of
a fine-tuned model by freezing too many layers as in L8 can
severely constrain transfer learning.

A comparison of models H and HA, which differ solely in
whether the atom embeddings are fixed, demonstrates that
relaxing the pre-trained atom embeddings significantly
diminishes the model’s extrapolation capability. This is evident
in predicting atomic forces for the unseen metals Fe, Rh and Pt
as shown in Fig. 5(c) and (d). Yet, both models exhibit relatively
poor extrapolation for Fe as in Fig. 5(b), likely due to its
minuscule atomic forces near the optimal structure. This
difficulty stems from the transfer learning process of the model
H, which also updates the embeddings for metals present in
the transfer learning data. This means the differences between
thermal catalysis and plasma catalysis impact the embeddings
of the seen metals in the model H, while leaving the embed-
dings for unseen metals unchanged. Using these embeddings
of unseen metals for extrapolation thus will lead to missing
information on these differences. On the other hand, compar-
ing the performance of models A and HA suggest that initializ-
ing the proton embedding using the pre-trained hydrogen
embedding may not have a notable impact on the model’s
generalization performance. Model A outperforms model HA in
terms of predicting the adsorption energy for Rh, while show-
ing an inferior performance in predicting the atomic force, as
can be seen in Fig. 5(c). This is reversed for the case of Pt,
where model A performs better in predicting the atomic
force and worse in predicting the adsorption energy
(Fig. 5(d)). The reason that initializing the proton embedding
from the hydrogen embedding does not yield superior predic-
tions can be attributed to the inherent flexibility of the pre-
trained EquiformerV2 model with fixed atom embeddings. As
the large number of weights of other layers are unfrozen, it
makes the starting point of the proton embedding unimpor-
tant. Given the chemical similarity between proton and

Table 2 Transfer learning from single atoms to metal clusters

Strategy Description

S1 (baseline) Use the pre-trained EquiformerV2 model and metal cluster data to directly perform transfer learning.
S2 Use the pre-trained EquiformerV2 model and single metal atom data to perform transfer learning. Then, the

updated model is further fine-tuned using the metal cluster data.
S3 Use the pre-trained EquiformerV2 model and the mixture of the single metal atom and metal cluster data to

fine-tune the model in one step.
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hydrogen, we opted to initiate the proton embedding based on
the hydrogen embedding in the rest of the fine-tuned models in
Table 1.

We now examine the impact of the number of frozen layers
in the pre-trained EquiformerV2. Fig. 5(b) shows that the fine-
tuned models with a greater degree of flexibility (i.e., a fewer
number of frozen layers) underperform in extrapolation in the
case of Fe. This underscores the important role of the initial
layers of the EquiformerV2 model shown in Fig. 5. In particular,
in the case of atomic force predictions for the unseen atoms,
freezing layers up to and including the seventh Equiformer
block (B7) yields the best performing models, as seen in
Fig. 5(b)–(d). This is while the extrapolation performance of
models L7 and L7EF is comparable, suggesting that freezing
the output energy and force blocks may not be critical. Note
that these output blocks are responsible for converting the
abstract output from the eighth Equiformer block (B8) to the
adsorption energy and atomic force predictions. Hence, with
the eighth Equiformer layer unfrozen, allowing the energy and
force blocks to be fine-tuned as in model L7, can enable a more
effective transfer learning to plasma catalysis.

We now compare the performance of the fine-tuned model
L7 to that of model S, i.e., an EquiformerV2 model architec-
ture fully trained using the same training dataset. Fig. 6
shows parity plots of the predicted adsorption energy and
atomic force for the unseen metals Fe, Rh and Pt against
their corresponding true values. Model L7 significantly out-
performs model S trained from scratch, in particular for
atomic force predictions, as depicted in Fig. 6(b), (d) and
(f). Notice that model S tends to either over predict the
atomic forces, as in Fig. 6(b) and (d), or yield numerous zero
predictions as in Fig. 6(f). These parity plots imply that via
careful fine-tuning of the EquiformerV2 model pre-trained
on thermal catalysis data adequate generalization perfor-
mance can be achieved for single metal atoms in the case
of plasma catalysis. Additionally, for a metal seen with a large
amount of thermal catalysis data during the EquiformerV2
pre-training, the fine-tuned model provides satisfactory gen-
eralization performance for these metals even if not seen
during transfer learning. We note that only 3614 plasma
catalysis datapoints were used for the fine-tuning model, as
compared to the millions of datapoints used to establish the

Fig. 5 Transfer learning from thermal to plasma catalysis for single metal atoms. Accuracy of the different fine-tuned models, detailed in Table 1, in
predicting the adsorption energy and atomic force is quantified by the R2 score. (a) The test accuracy of the fine-tuned models for all atoms in the test
dataset. (b) The predictive accuracy of the fine-tuned models for the unseen Fe atom. (c) The predictive accuracy of the fine-tuned models for the
unseen Rh atom. (d) The predictive accuracy of the fine-tuned models for the unseen Pt atom.
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pre-trained EquiformerV2 model. Therefore, transfer learn-
ing using a pre-trained model based on a large dataset and a

large array of atom types can provide valuable extrapolative
predictions for unseen catalysts in plasma catalysis with a

Fig. 6 Parity plots of the adsorption energy and atomic force predictions of models S and L7, as detailed in Table 1, for the unseen metal atoms of Fe, Rh
and Pt. (a) and (b) Adsorption energy against its corresponding predicted values for structures containing Fe, as well as the atomic forces experienced by
Fe versus predicted atomic forces. (c) and (d) Adsorption energy against its corresponding predicted values for structures containing Rh, as well as the
atomic forces experienced by Rh versus predicted atomic forces. (e) and (f) Adsorption energy against its corresponding predicted values for structures
containing Pt, as well as the atomic forces experienced by Pt versus predicted atomic forces.
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much smaller amount of new DFT data, thus accelerating the
catalyst discovery process.

3.2 Task 2: elucidating the role of surface charge

As detailed in the methods section, we use an attention-based,
dual-model framework that is designed to distinguish surface
charge effects on model predictions from other discrepancies
between the OC20 data used for pre-training the models and
the plasma catalysis DFT data used for model fine-tuning. By
unfreezing the eighth Equiformer block (B8) and the proton
embedding, the pre-trained EquiformerV2 model in Fig. 4
captures the surface charge effects via B8. Specifically, we focus
on the nitrogen adsorbate, which plays an important role in
plasma-catalytic synthesis of ammonia.14,52 The attention
scores for nitrogen reflect the influence of its 20 neighboring
atoms and proton, a row vector of dimension 1 � 21. The pre-
trained EquiformerV2 model leverages an eight-head attention
in each of its Equiformer blocks to capture different aspects of
atom–atom relationships,36 such as atom–atom interactions
induced by charges. Therefore, the attention scores of the eight
heads from B8 are concatenated, forming a row vector of

1 � 168. We then apply principal component analysis (PCA)
to this high-dimensional vector to project it onto a 3-
dimensional space. We do not apply methods like SHAP,53

since attention scores inherently represent the importance of
neighboring atoms and are intermediate values that can vary
across training instances. The PCA results shown in Fig. 7
reveal interpretable patterns for the single metal atoms. Nota-
bly, Au and Ag, which have a valence electron count of 1, can be
clustered as one group in the 3D principal component space.
Similarly, Cu and Ni form another cluster, likely due to their
sequential placement in the periodic table and their ability to
create 1+ and 2+ ions, unlike Ag and Au. The remaining
metals—Re, Ru, Co, and Pd—establish distinct groups, possi-
bly due to their different valence electron counts of 7, 8, 9, and
10, respectively.

We now investigate the relationship between the attention
scores and the surface charge distribution for the Al2O3–Ni–N
system. It is observed that some of the eight attention heads
give large weights to the attention scores of the single metal
atom and proton. This is expected as the single metal atom
bonds with the N adsorbate, and proton imposes the additional

Fig. 7 Principal component analysis is applied to project the 168th-dimensional attention scores of the eight blocks of the Equiformer model of Fig. 4
onto a 3-dimemsional space. This figure shows the projected attention scores onto the 3-dimensional space. The 2-dimensional contours of the
3-dimensional space can be found in figures SP1, SP2 and SP3.
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negative charge on the surface. Conceivably, both of these
atoms would play an important role on the adsorption energy
and forces of the system. However, a notable correlation is also
observed between some of the attention heads and the partial
charge of atoms. Fig. 8(a) demonstrates the importance of the
closest 19 atoms in the Al2O3 support to the N adsorbate, as
captured by the third attention head of the Equiformer block
B8 for the Al2O3–Ni–N system. An atom with a color closer to
purple has a larger attention score, demonstrating a more
significant contribution to the N adsorbate. The contributions
of Ni atoms and protons are not considered, as they both hold a
large amount of charge. Fig. 8(b) illustrates the Mulliken charge
distribution on the 19 atoms. Here, a deeper red color indicates
a stronger positive charge on aluminum, while a deeper blue
color indicates a stronger negative charge on oxygen. The
correlation between the attention scores and the absolute
Mulliken charges tends to be inverse. That is, an oxygen atom
with deeper blue color (i.e., more negatively charged) in
Fig. 8(b) shows a smaller attention score, as indicated by lighter
purple in Fig. 8(a). Alternatively, an aluminum atom with a
more positive charge (deeper red) in Fig. 8(b) has a lower
attention score, as shown in orange in Fig. 8(a). This can be
attributed to the excess negative charge on the surface that
modifies the reactivity of the surface atoms. The adsorption
energy of an adsorbate would be affected by the distribution of
the excess negative charge on the surface. Hence, the distribu-
tion of the excess surface charge introduced on the catalyst
surface, calculated in terms of Mulliken charges, is a strong
indicator of the effect of surface charge on adsorption energies.
Less absolute charge on Al and O atoms receiving higher

attention scores could mean that these atoms affect the dis-
tribution of additional charge on the surface more significantly
than other Al and O atoms, as their Mulliken charges differ
from other Al and O atoms highlighted in Fig. 8. The inverse
correlation between the attention score and the absolute sur-
face charge distribution is also validated through Spearman
correlation analysis,54 which measures the strength of associa-
tion based on the ranking of values. This analysis results in a
correlation coefficient of �0.68 and a p-value of 0.0021, indicat-
ing a strong correlation between the attention score and the
absolute surface charge distribution. Notably, the inputs to
the dual-model framework shown in Fig. 4 are solely struc-
tural (atom types, edges and distances between atoms), with-
out any explicit charge information. This highlights the
ability of the attention mechanism to infer underlying phy-
sical concepts. Similar analyses for the other single metal
atoms and adsorbates consistently show strong correlations
between the attention scores and the Mulliken charges, with
absolute values of Spearman correlation coefficients ranging
between 0.6 to 0.8 and p values always less than 0.01, further
demonstrating the model’s interpretability. Such interpreta-
ble attention-based models can highlight the key atoms in a
catalyst structure that have significant interactions with the
adsorbate, beyond the Mulliken net charge effects consid-
ered in this study. These insights can in turn inform further
targeted DFT studies on these surface atoms for catalyst
design and discovery. Furthermore, Mulliken net charge
effects could be isolated by treating them as additional
learning targets, similar to atomic forces. This could enhance
the interpretability of attention-based models, enabling a

Fig. 8 (a) Visual representation of scores of the third attention head of the Equiformer block B8 of the dual-model framework in Fig. 4 for the Al2O3–Ni–N
system. These scores weigh the influence of the closest 19 atoms in the Al2O3 support to the nitrogen adsorbate, while the attention scores for Ni and proton
are omitted. (b) Visualization of the Mulliken net charge calculated by CP2K for the same 19 atoms. Darker red signifies a larger positive charge on Al, whereas a
deeper blue denotes a larger negative charge on O. The color bar in (b) is a merged scale for both negative and positive charges, meaning no atom holds
exactly zero charge.
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deeper understanding of how surface charge would impact
the catalyst.

3.3 Task 3: transfer learning from single atoms to metal
clusters

The first transfer learning task focused on a system composed
of Al2O3, a single metal atom, and an adsorbate. In practice,
however, catalytic systems typically involve metal clusters on a
support. Due to the resource-intensive nature of DFT calcula-
tions for such systems, we look to investigate whether knowl-
edge of simpler single metal atom systems under the impact of
surface charge can be effectively transferred to complex metal
cluster systems. To this end, we consider two distinct strategies
S2 and S3, both of which use the single-metal-atom data, as
detailed in Table 2. This is while the baseline strategy S1 fine-
tunes the pre-trained model using the metal cluster data
directly. The transfer learning strategies S1, S2 and S3 are
applied to the model fine-tuning schemes L5, L5EF, L7 and
L7EF, as summarized in Table 1. Fig. 9 shows the performance
of the different fine-tuned models. In comparison with direct
transfer learning using the Pt cluster data (strategy S1), the
models fine-tuned using strategies S2 and S3 have a higher
generalization performance despite their slightly lower test
accuracy. The better generalization performance may be attrib-
uted to the initial model parameter updates for the single metal
atom systems, which necessitates subsequent adjustments
towards metal clusters during further fine-tuning, potentially
causing information loss. Conversely, strategy S3 fine-tunes
model parameters in a manner that benefits both the single
metal atom and metal cluster systems. For example, not only
does model L5-S3 almost match the test accuracy of model
L5-S1, but it also yields more accurate predictions for the
unseen Ru compared to model L5-S2. Similar trends are also
observed for the other models fine-tuned using the S3 strategy.

Additionally, it is seen that unfreezing more blocks of the pre-
trained EquiformerV2 model would result in higher test accura-
cies, but at the expense of reduced extrapolation performance;
for example, compare models L5-S3 and L7-S3, or L5EF-S3 and
L7EF-S3. Among the 12 fine-tuned models in Fig. 9, model L7-
S3 is considered to have the overall best performance, demon-
strating both high test accuracy and extrapolation performance.
This suggests that fine-tuning the pre-trained model using the
mixture of single metal and metal cluster data in one shot (S3)
can be a more effective transfer learning strategy than first
performing the transfer learning from thermal to plasma
catalysis using single metal atom and then fine-tuning the
resulting model using the metal cluster data (S2).

Fig. 9(b) suggests that model L7 has a superior extrapolation
performance for predicting adsorption energy, whereas model
L7EF is superior for predicting atomic forces. Fig. 10 shows the
parity plots for predictions made by these two models
when fine-tuned via the three transfer learning strategies of
Table 2 for metal clusters. The results indicate that strategies S2
and S3, which include single-atom data, outperform strategy S1
in extrapolating energy and force predictions, as seen with
model L7 in Fig. 10(a) and (b). While strategy S3 excels in
predicting atomic forces (Fig. 10(d)) under model L7EF with
even lower MAE for force predictions, it does not consistently
provide the best energy predictions (Fig. 10(c)), highlighting the
trade-off between predicting system energy and atomic forces
in extrapolation tasks. While incorporating single-atom data
clearly enhances transfer learning for metal clusters, the opti-
mal strategy may depend on whether the focus is on energy or
force predictions. We note that the particularly large deviation
for strongly negative adsorption energies in the case of Ru
clusters (Fig. 10(a) and (c)) can be attributed to the limited
amount of training data with adsorption energies below �10 eV
for Pt clusters, as shown in Fig. SP4 (ESI†). As such, the

Fig. 9 Transfer learning from single atoms to metal clusters. Accuracy of the fine-tuned models of Table 2 in predicting the adsorption energy and
atomic forces, as quantified in terms of mean absolute error (MAE). (a) Test accuracy of the fine-tuned models for the Pt cluster test data. (b) Predictive
accuracy of the fine-tuned models for the unseen Ru cluster.
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extrapolation to Ru clusters becomes more challenging, leading
to underfitting in this energy range due to insufficient data.

4 Conclusions and future work

This paper investigated how the extensive knowledge from
thermal catalysis could be transferred to plasma catalysis in a
systematic and interpretable manner, specifically addressing
plasma–catalyst interactions involving surface charges. We
employed a model pre-trained on the OC20 dataset, consisting
of millions of DFT calculations for thermal catalysis. After fine-
tuning the pre-trained model using limited plasma catalysis
DFT data, the fine-tuned model exhibited accurate predictions
of adsorption energies and atomic forces, as well as extrapola-
tion capacity for unseen metals in the plasma catalysis data.
This observation suggests that essential chemical kinetic infor-
mation from thermal catalysis is preserved during transfer
learning to plasma catalysis. Moreover, by leveraging the atten-
tion mechanism within the pre-trained model, we examined
how attention scores could reveal the underlying physical

phenomena in the data, namely the surface charge effects.
We observed a strong correlation between the attention scores
and surface charge distributions calculated using DFT, despite
the model never encountering charge distribution data during
the transfer learning task. This underscores the high interpret-
ability of the attention mechanism. Additionally, we observed
that metals with similar chemical properties clustered closely
in the reduced-dimensional space. The attention scores high-
lighted the main surface atoms crucial for the adsorbate,
suggesting that the attention mechanism could inform catalyst
design for plasma catalysis by grouping metals and pinpointing
pivotal surface atoms for manipulation. Lastly, we examined
how pre-trained models for simpler single-metal-atom systems
could be transferred to more complex metal cluster systems.

Our future work will focus on studying a broader range of
plasma–catalyst interactions to further evaluate the effective-
ness of transfer learning approaches for developing more
comprehensive plasma–catalyst interaction models. Larger
and more diverse plasma catalysis datasets will likely improve
the quality of transfer learning. Additionally, we will incorpo-
rate Mulliken net charge as an extra prediction target to explore

Fig. 10 Parity plots of adsorption energy and atomic force predictions for unseen Ru metal clusters. (a) Predicted vs. actual adsorption energy for model
L7 fine-tuned with transfer learning strategies S1, S2, and S3. (b) Predicted vs. actual atomic force for model L7 fine-tuned with S1, S2, and S3. (c) Predicted
vs. actual adsorption energy for model L7EF fine-tuned with S1, S2, and S3. (d) Predicted vs. actual atomic force for model L7EF fine-tuned with
S1, S2, and S3.

EES Catalysis Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

9 
Fe

br
ua

ry
 2

02
5.

 D
ow

nl
oa

de
d 

on
 1

/2
7/

20
26

 1
0:

00
:3

9 
A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d 

L
ic

en
ce

.
View Article Online

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d4ey00256c


© 2025 The Author(s). Published by the Royal Society of Chemistry EES Catal., 2025, 3, 488–504 |  503

whether it enhances the GNN’s learned representations.
Furthermore, we will integrate predictions of atomic forces
and adsorption energies with microkinetic models to enable
holistic investigations of plasma–catalyst synergies and reac-
tion mechanisms in plasma–catalytic systems, towards experi-
mental validation of the presented approach.
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