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Wastewater surveillance has proven to be a widely useful means for tracking the dynamics of COVID-19,

particularly as the emphasis on clinical testing and reporting of case data continues to decline. Here we

present wastewater monitoring data from a multi-year sampling campaign at 11 wastewater collection

facilities in Ohio. We found strong correlations between flow-adjusted wastewater concentrations of the

virus (as represented through quantification of N2 gene fragments) and reported cases and used

sequencing to confirm the sequential arrival of several variants of concern (VOCs) between winter 2020

and spring 2022. We observed that the three main VOCs in our dataset, alpha, delta, and omicron, showed

differing temporal dynamics like length of time from first detection to dominating the wastewater signal.

We also found credible variation in the relationship between wastewater concentration and clinical cases

during different periods within our time series (delineated based on the dominant VOC), indicating the

possibility of differential fecal shedding by the three variants.

Introduction

Wastewater monitoring for severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) RNA has become a globally
adopted means of tracking both quantitative trends and
taxonomic diversity of the virus since the inception of the
COVID-19 pandemic. Sampling of wastewater to detect and
quantify SARS-CoV-2, has been successfully conducted from
samples with a wide variety of input populations, from
individual buildings like college dormitories1–3 to wastewater
treatment plants serving hundreds of thousands of people,4–6

to bodies of water receiving treated or untreated effluent.7,8

Furthermore, it is now well-established that wastewater
trends are closely associated with case counts and other
disease surveillance indicators,6,9–11 despite large variations
in sample collection and processing methodologies,
sewershed size, matrix composition, and more. This
robustness supports the utility of wastewater measurements
as a reliable indicator of community disease regardless of the
level of testing and reporting occurring in a community.

The state of Ohio was an early adopter of wastewater
surveillance, forming the Ohio Coronavirus Wastewater
Monitoring Network (OCWMN) in May 2020 as tasked by the
governor.12 This partnership of the state health department,
academic labs, non-governmental institutions, municipal sewer
districts, the Ohio Environmental Protection Agency (EPA), and
the US EPA Office of Research and Development led to twice
weekly sampling at over 70 sites throughout the state, capturing
more than half of Ohio's population. Multiple analyses of the
resulting datasets have indicated flow-adjusted SARS-CoV-2 N2
gene marker concentrations are strongly correlated between
wastewater data and case counts.9,13 Results continue to be
conveyed to the public through a dashboard available on the
Ohio Department of Health's website, which displays a map of
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Water impact

Wastewater surveillance has been established as a powerful tool to track the infection dynamics of COVID-19. In southwest Ohio sewersheds, the early
SARS-CoV-2 variants, alpha, delta and omicron, showed varied temporal dynamics and relationships with clinical cases, likely due to differential fecal
shedding rates exhibited by the variants.
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sampling sites along with daily N2 gene copy loads and an
indicator of current wastewater trends at each of them.
Sampling has continued through at least winter 2024, with
additional viral targets (respiratory syncytial virus, influenza A
and B) now included https://data.ohio.gov/wps/portal/gov/data/
view/covid-19-reporting).

At many study sites globally, initial wastewater surveillance
efforts focused on detection and quantification of viral RNA
were quickly followed by sequencing endeavors, which recover
genetic mutations present in wastewater to characterize the
diversity of circulating SARS-CoV-2 viruses. As the virus quickly
evolved to new, potentially more transmissible or virulent
variants, the US Centers for Disease Control and Prevention
(CDC) and the World Health Organization (WHO) identified
some of these as variants of concern (VOCs). In Ohio,
wastewater sample sequencing was initiated in April 2021 and
allele frequencies at genomic loci associated with VOCs were
reported to the Ohio Department of Health on a regular basis.
The utility of wastewater sequencing has also become well-
established: multiple studies have shown good correspondence
between wastewater sequencing and clinical sequencing
data14,15 and demonstrated that sequencing holds promise as
an early detection tool for new variants.5,16,17 Additionally,
coupling knowledge of the concentration of viral signal with the
phylogenetic makeup may allow researchers to better
understand how different variants spread and evolve over time.
As the frequency and reliability of clinical testing and reporting
continues to decrease for COVID-19, wastewater monitoring
continues to offer consistent data for public health.

In support of the OCWMN, we processed and analyzed
samples from October 2020 through March 2022 at 11
sampling sites in Southwestern Ohio. This set of samples
captured the initial winter wave as well as the subsequent
waves of the alpha, delta, and omicron variants. We report
trends in raw and flow-adjusted wastewater measurements
and model the relationship between wastewater
measurements and reported cases, both quantitatively and
from sequencing data, during the different phases of the
pandemic (when distinct variants of concern were
predominant). We hypothesized that COVID-19 cases can be
explained by the interaction of the SARS-CoV-2 loads in
wastewater (generated by ddPCR) and phase of the pandemic
(which variant is predominant as determined from
sequencing data). As wastewater surveillance continues to be
implemented for monitoring both SARS-CoV-2 and other
emerging pathogens, this work demonstrates how
retrospective analysis can be used to refine our
understanding of the relationship between wastewater data
and disease prevalence.

Methods
Sample collection

24 h composite wastewater samples were collected from 11
wastewater treatment plants (WWTPs), water reclamation
facilities (WRFs), and water pollution control plants (WPCs)

in Southwestern Ohio (Fig. 1, Table 1, labeled sewershed (SS)
1–11).

On the day of completion of the 24 h composite sampling,
1 L of flow-weighted composited sample was transferred on
ice to the US EPA AWBERC facility in autoclaved
polypropylene screw-cap bottles. Upon receipt to the
laboratory, bottles were disinfected with 70% ethyl alcohol
and stored at 4 °C until processing.

Sample concentration

The composite samples were homogenized by inverting; then
aliquoted into two 225 mL subsamples. Each of these
replicates was amended with 10× RNase-free phosphate-
buffered saline (PBS; ThermoFisher Scientific, Waltham MA)
to a 1× PBS concentration. Each bottle was also spiked with

Fig. 1 Map of wastewater treatment plant sampling locations.

Table 1 Sewershed characteristics

Facility
code

Sewershed
type

Average flow
rate (mgd)

Population
served

Industrial
flow (%)

SS1 Separate 45 226 729 18.8
SS2 Separate 9.1 75 509 2.6
SS3 Separate 8 65 000 0.375
SS4 Combined 31 200 666 4.8
SS5 Combined 10.5 36 000 9.5
SS6 Combined 115 566 136 7.8
SS7 Combined 13 125 247 38.4
SS8 Combined 2 20 366 0
SS9 Combined 9.57 88 710 6.9
SS10 Separate 3 83 058 0
SS11 Separate 15.5 113 629 3.7
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approximately 107 viral particles of Betacoronovirus-1 strain
OC43 (ATCC, Manassas, VA) as an exogenous internal
processing control. Samples were concentrated as described
previously.13 Briefly, each subsample was centrifuged at 3000
× g for 15 minutes to collect the pelleted material for nucleic
acid extraction. The supernatant was then filtered through a
0.45 μm mixed cellulose ester membrane filter. Material
collected on the membrane filter was also subject to
extraction. Both pellet and filter fractions were stored at −20
°C until extraction.

Nucleic acid extraction and RTddPCR

To isolate RNA from the concentrated wastewater samples,
cold TRIzol Reagent (1.5 mL, ThermoFisher Scientific) was
added to sample pellets or membrane filters in 5 mL
PowerWater DNA bead tubes (Qiagen). Samples were vortexed
to homogenize via bead-beating, and then 0.3 mL chloroform
was added. The samples were allowed to partition. Then,
RNAse-free glycogen (ThermoFisher Scientific) was added to
the aqueous phase and RNA was subsequently precipitated
using isopropanol (Fisher Scientific, Waltham MA). Samples
were washed with 75% ethanol then allowed to dry before
RNA was resuspended in 125 μL DEPC-treated water with 0.1.
mM EDTA (ThermoFisher). Filter and pellet RNA extracts
were stored separately at −80 °C. Quantities of SARS-CoV-2
N2 gene fragments were determined using the QX200 Droplet
Digital PCR System (BioRad), as previously described.13 Each
ddPCR plate included negative ddPCR controls, composed of
nuclease-free water, and positive ddPCR controls using
commercially available SARS-CoV-2 genomic RNA (ATCC,
Manassas, VA). The ddPCR mutation assays were run with
the QX200 Droplet Digital PCR System (BioRad) and the One-
Step RT-ddPCR Advanced Kit for Probes (BioRad). RT-ddPCR
was also used to detect two mutations of the spike gene that
are characteristic of the alpha variant. For the N501Y assay,
the ddPCR mutation assay: dMDS731762551 (BioRad) was
used as instructed by the manufacturer. Thermal cycling
conditions were 50 °C for 1 h, then 95 °C for 10 min,
followed by 50 cycles of 94 °C for 30 s and 55 °C for 1 min.
The enzyme was deactivated at 98 °C for 10 minutes and
reactions were held at 4 °C until transfer to the QX200 reader.
The 69/70del assay was also run with the QX200 Droplet
Digital PCR System and the One-Step RT-ddPCR Advanced
Kit for Probes. For this assay, the primers and probes
previously described18 were implemented. Thermal cycling
conditions for this assay consisted of 50 °C for 1 h, 95 °C for
10 min, followed by 50 cycles of 94 °C for 30 s and 62 °C for
1 min. The enzyme was deactivated at 98 °C for 10 minutes
followed by a 4 °C hold.

Library preparation

RNA obtained from the filter fraction was used for sequencing.
RNA extracts from the filter fractions were DNase-treated and
reverse-transcribed into cDNA using the SuperScript IV Reverse
Transcriptase (ThermoFisher Scientific) according to the

manufacturer's instructions. When possible (i.e. sufficient
yield), extracts were processed both as is and at a 1 : 5 dilution
to mitigate impacts of potential inhibition. The SARS-CoV-2
genome was amplified, and amplicons indexed using the IDT
xGEN SARS-CoV-2 Amplicon Panel (formerly Swift Biosciences
SNAPv2 kit) using the “low viral load input” recommendations
for thermocycler programs. Where specified, the xGEN SARS-
CoV-2 Sgene (spike) panel was used which consists of all the
same reagents and steps, but the primer mix contains only the
primers spanning the spike gene region.

Some samples did not move forward to sequencing either
because: (1) there was no amplification of SARS-CoV-2 RNA
using the N2 assay, (2) the number of N2-positive droplets
from ddPCR for the same extract was fewer than 10, or (3)
the final concentration of the library (evaluated using KAPA
PCR) was less than 0.5 nM.

Sequencing

Each of the libraries was diluted to a concentration of 0.5 nM
using 10 mM Tris-HCl, pH 8.5 so that equimolar volumes
could be combined in the final library pool. Once libraries
were combined, the pool was diluted and denatured
according to the Illumina NextSeq Denature and Dilute
protocol.19 The final library, along with 10% PhiX (Illumina)
was added to an Illumina NextSeq 300 cycle mid-output or
high-output cartridge and sequenced on a NextSeq550.

Bioinformatics

Completed NextSeq runs were demultiplexed on local run
manager and data from the four lanes were concatenated
using a bash script. We then used fastp to filter sequences
based on quality and make contigs, using the default quality
thresholds of phred quality ≥15 and a maximum of 40%
unqualified bases. Resulting contigs were mapped to the
Wuhan SARS-CoV-2 genome (NC_045512) using bwa-mem in
Samtools with the default parameters. Primer sequences were
removed using the trim command in iVar.20 Finally, we used
LoFreq to make variant calls, including both SNVs and
indels.21

We also used Freyja,17 which solves a depth-weighted least
absolute deviation regression problem based on SNV
frequency across relevant genome sites, to estimate the
lineage breakdown in our samples. Freyja uses samtools
mpileup and iVar for making SNV calls. We set a minimum
depth of 10× for the positions considered. Although the
lineage definitions in the Freyja tool include mutations
across the entire SARS-CoV-2 genome, we used this tool on
both samples where the whole genome was covered and
those where only the spike gene was sequenced.

Statistical methods

Evaluation of process control OC43. OC43 was spiked into
samples as a process control to monitor performance of
sample processing and analysis. The recovery efficiency of
the spiked OC43 was assessed from approximately 76% of all
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the samples using a Bayesian intercept model that estimates
the overall recovery mean (ESI† 1). The mean OC43 recovery
efficiency across all sewersheds was 47.4% (95% Bayesian
credible interval (BCI): 44.3–50.7%). A comparison of
observed recovery data with simulated draws from the
Bayesian intercept model showed that the observed values
were within the range of the model's 95% BCI. In addition, a
Q–Q plot of the residuals indicated that they are normally
distributed. The consistent performance of the OC43 process
control across all wastewater samples demonstrates that the
laboratory methods are reliable.

SARS-CoV-2 wastewater fecal load. The amount of SARS-
CoV-2 shed per g (Sw) was determined using

Sw ¼ Cw Fw

M fNi
(1)

where Cw is the N2 gene concentration (copies per L), Fw is
the wastewater flow (L per day), Mf is the mass of feces
excreted by a person (g per day), and Ni is the number of
SARS-CoV-2 infected individuals.22

Bayesian models. Mixed effect models relating observed
N2 concentrations to observed sewershed cases normalized
to a population of 100 000 individuals were generated using
R-Statistics (version 4.4.1), rstan (2.36.6), brms (2.21.0),
bayesplot (1.11.1), and cross-validation comparisons were
performed using loo (2.8.0). The following models were
generated:

Model 1 – random intercept to account for WWTP site
clustering with a flow-adjusted N2 fixed effect predictor:

yij = β0 + β1xij + b0j + εij (2)

Model 2 – random intercept to account for WWTP site
clustering as well as random slopes of flow-adjusted N2 to
account for heterogeneity at different WWTP locations.

yij = β0 + β1xij + b0j + b1jxij + εij (3)

Model 3 – random intercept to account for WWTP site
clustering as well as random slopes of flow-adjusted N2 with
an interaction term to allow the slopes to vary by VOC
categories (alpha, delta and omicron) using pre-VOC as a
reference.

yij = β0 + β1xij + β2zij + β3(xij·zij) + b0j + b1xij + εij (4)

Where
yij is the i-th observation of the response variable (i.e., log10
of the COVID-19 cases per 100 000 individuals) for the j-th
group, where group is sewershed location
β0 is the fixed intercept or the overall mean effect across all
sewersheds
β1 is the fixed slope for the predictor xij (i.e., log_n2_flowadj),
representing its effect on the response variable
β2 is the fixed slope for the predictor zij (i.e., the SARS-CoV-2
VOC), representing its effect on the response variable

β3 is the fixed slope for the xij·zij, representing the
interactions of log_n2_flowadj and SARS-CoV-2 VOC on the
response variable
b0j is the random intercept for the j-th sewershed,
representing specific differences from the overall intercept
b1j is the random slope for the predictor xij (i.e.,
log_n2_flowadj) in the j-th sewershed
εij is the residual error (i.e., unexplained variability) for the
i-th observation of the response in the j-th sewershed.

Details of the models and results are in the ESI† 1.

Results & discussion
Wastewater N2 concentrations and reported cases

We tracked wastewater N2 gene fragment concentrations at
eleven sampling sites in southwest Ohio (Fig. 1 and 2).
Consistent with general trends across the United States, we
found there to be a large increase in cases during the winter
of 2020–2021, and subsequent waves of differing sizes
associated with the introductions of the alpha, delta, and
omicron variants (Fig. 2A and B). We generally found close
correlations between the raw N2 concentrations (copies per
L) and a 7 day rolling average (3 days before, 3 days after) of
reported cases (Pearson's R ranging from 0.4 to 0.83, with
one outlier that was likely due to a rain event, Fig. 2B).
However, there were nuances in the relationship between N2
concentrations and case counts over different phases of the
pandemic, which are further described below.

Many studies have explored whether adjusting SARS-CoV-2
viral gene copies to account for changes in wastewater
strength (i.e., due to varying levels of dilution) might help
wastewater measurements better reflect actual trends in
community infection conditions. Adjustment methods tested
include quantification of endogenous markers like Carjivirus
(CrAssphage) or pepper mild mottle virus to represent fecal
loading in the sample13,23 and using physical or chemical
parameters like total suspended solids, conductivity, and
biological oxygen demand.24,25 Evaluating whether such
adjustments improve the robustness of wastewater
measurements as a public health indicator is generally based
on whether these adjustments increase the correlation
between wastewater signal and reported cases. Unfortunately,
there is not a strong consensus in findings, but multiple
studies have reported that the use of flow is as good as or
better than other proposed metrics9,13,25 at improving the
correlation. Our study too found that using total daily flow to
adjust the wastewater concentrations (resulting in a value
reflecting N2 copies per day at the sampling site, as opposed
to the original measurement N2 copies per L in the
individual sample) increased the correlation between N2 and
case counts at every single site (Pearson's R ranging from
0.62 to 0.87) (Fig. 2C and D).

Variants of concern in wastewater samples

We sequenced samples from January 2021 onward since this
corresponded with the arrival of the alpha variant to the
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United States. It was clear that the alpha, delta, and omicron
variants appeared and dominated in succession at all
locations. Some of the less abundant VOCs in the United
States, like gamma, epsilon, iota, and mu, were also detected,
though not at every sampling site (Fig. 3). While each of the
three VOC waves we tracked roughly co-occurred at all
sampling sites, the week of first appearance differed between
sites.

In addition to sequencing, we examined the spring 2021
alpha variant wave in greater detail using ddPCR mutation
assays for the N501Y and Δ H69/70 deletion, both of which
were considered defining of the alpha variant (Fig. S1†).
Others have successfully used targeted approaches to identify
incoming VOCs, including a nationwide reporting system in
Uruguay4 and a retrospective analysis of municipal
wastewater.14 The use of ddPCR assays allows for rapid data
analysis within a shorter timeframe as opposed to high-
throughput sequencing, which is more laborious. Therefore,
we assessed the performance of the ddPCR assays compared
to the results from our sequenced libraries. In October and
November 2020, 100% of the SARS-CoV-2 RNA sequences
detected were non-alpha, and no sequences associated with
the ΔH69/70 deletion were detected using the ddPCR assay.

Alpha sequences were first detected in wastewater on January
28, 2021, in SS9 and were present in all sewersheds by March
18, 2021 (Table S1†). Between March and May 2021, the
proportion of sequences associated with ΔH69/70 increased
to nearly 90% at all sampling sites (Fig. S3†), indicating alpha
was likely the dominant variant in the sampling areas by
mid-late April. This timeline was also reflected in the
sequencing data.

At our sampling locations, alpha took an average of 7.8
weeks to comprise greater than 95% of sequences, longer
than delta (which took 4 weeks on average) and Omicron
(average 3.6 weeks; Table S1†). A previous study conducted in
Catalonia found that the alpha variant became dominant in
wastewater in an average of 11 weeks from its first
detection.26 Clinical genomic surveillance demonstrated that
the delta variant had a greater logistic growth rate and
effective reproduction number than alpha,27 leading to a
more rapid rise to dominance, but with geographic variation
in transmission advantage. This may explain why the variants
rise to dominance at different rates. Trends in wastewater
detection do not always correspond temporally with clinical
detection; for example, a mutation profile associated with the
delta variant was detected in wastewater in Bangladesh as

Fig. 2 (A) N2 gene fragment copies per day at each sampling site between November 2020 and March 2022. Y-axis scale differs for each sampling
site and is not shown here due to size; larger versions with axis labels are available in Fig. S1† (N2 copies per L) and Fig. S2† (N2 copies per day)
and (B) daily COVID-19 cases per thousand (Y-axis range is 0 to 3.62 for all sampling sites; larger version available in Fig. S1 and S2†) in each of the
contributing sewersheds. Sites are ordered by size of contributing population, from largest (SS6) to smallest (SS8); refer to Fig. 1 for site codes.
Symbols show first detection of alpha (circle), delta (triangle), and omicron (square) variants of concern in the wastewater sequencing data from
this study. (C) Pearson's correlation between unadjusted N2 load (copies per L) and case counts. (D) Pearson's correlation between flow-adjusted
N2 load (copies per day) and case counts.
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early as October 2020,28 whereas its first clinical sequence
was not reported until spring of 2021, when it was first
identified as a VOC in India.

Other mutations

In addition to tracking the dynamics of VOCs based on their
defining mutations (which are not always subject to a full
consensus), wastewater sequencing data allows for the
detection of all mutations and can reveal additional
dynamics occurring in the population represented. For
example, we found that the delta VOC completely dominated
at all locations (>95%) between approximately July and
December of 2021 (Fig. 3). This assessment, using the open-
source tool Freyja, is based on WHO designations for the set
of Spike gene mutations used to define each VOC.17 However,
we found 8760 additional mutations that reached a frequency
of at least 10% at a minimum depth of 30×; 273 of these
reached a frequency of at least 95%. Some of these mutations
were detectable in our samples prior to the emergence of any
VOC (i.e., prior to January 2021), indicating that variants were
circulating even in the fall, but none came to dominance
until the arrival of alpha. Other mutations occurred at
approximately the same times as various VOCs, despite not
being considered defining mutations of those VOCs by the
WHO. For example, genomes classified as belonging to the
delta variant is defined by a specific set of mutations,
including G24410A (Fig. 4A). The mutations C22227T,

C24208T, and C25339T were detected in the summer and fall
of 2021 (corresponding with the delta wave) but did not
achieve and maintain 100% alternative allele frequency in
the way that delta-defining mutations did (Fig. 4B). We
examined their global incidence using data available from
genomes uploaded to NextStrain and found that each of
these mutations was only found in genomes in the delta
clade (Fig. 4A and C–E). However, while these mutations did
co-occur temporally at our sampling sites (Fig. 4B), they did
not co-occur with one another in any genomes within
NextStrain's clinical genome dataset (Fig. 4C–E).

There did appear to be some geographic specificity as
well; for example, a mutation at genome site 25339 was
observed in samples from the Cincinnati area during spring
2021 (March through June) but did not appear at in other
samples until after July. This mutation has only been
associated with the delta clade and reported globally at
frequencies greater than 1% only after June 2021, so its
appearance earlier in the spring at certain sampling sites is a
demonstration of mutations spreading in the population that
are largely undetected in clinical studies.

Fecal load

Sampling design continues to be an open topic of study for
wastewater surveillance studies, particularly whether to
sample at the WWTP level, capturing a large population, or
focus on sub-sewersheds. In our study, the size of the

Fig. 3 N2 concentrations (copies per L) at each of the sampling sites, and proportion of total sequences in a sample assigned to each VOC
(represented by size of dot), as assigned by Freyja. Gaps in timeline indicate either absence of VOC or lack of sequencing data for that time point.
Sites are ordered by size of contributing population, from largest (SS6) to smallest (SS8); refer to Fig. 1 for site codes.
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population within the sewershed was not associated with a
stronger or weaker correlation between N2 load and reported
case counts (Pearson's R < 0.2). Other studies have reported
the SARS-CoV-2 viral shedding rate per gram of feces based
on the known sewershed population and a previously
estimated value of feces per person, 128 g.29 Applying eqn
(1), we found an average fecal load of approximately 8.67
log10 copies per g feces over all samples. This was similar to
a study in Arizona conducted over a comparable time period,
which found fecal loads falling within the range of 7.53–9.29
log10 gene copies per g feces.30 However, much like this
study, we found that there were sampling site-specific
differences that would require further investigation to
understand (Fig. S4 and S5†). Specifically, SS1’s 95% credible
interval was different from all the other sewersheds (ESI† 1).
An underestimate of the population or an underreporting of
case counts could be a possible explanation.

The calculation for estimating fecal load does not account
for two important features of fecal shedding: (1) that not all
infected individuals shed the virus in their feces, and (2) that
individuals who do shed virus emit different amounts per
gram of feces and do so for variable lengths of time. A
clinical study where N2 was quantified from the dry weight

feces of positive individuals found up to 6 log10 copies per
mg, i.e. 9 log10 copies per g feces shed by individuals.31

Shedding persisted for some up to 30 days after symptom
onset, with a very wide range of shedding concentrations and
temporal trajectories. On a larger scale, the uncertainty and
variation in population transience, combined vs. separated
sewers, rainfall, loss of signal, and many other factors could
impact this value.32 Prasek et al.30 found community-specific
differences in shedding rates and suggested demographics
like age and ethnicity may influence these.

Different phases of the pandemic

The ability of reported cases to represent actual SARS-CoV-2
prevalence depends on the extent of testing availability and
occurrence whereas wastewater surveillance is, in theory,
agnostic to such variation. However, because different
variants have emerged and dominated throughout the
course of the pandemic, there is also the question of
whether fecal shedding rates remain consistent. Clinical
studies have characterized differences in nasopharyngeal
shedding between the omicron and delta variants, with
delta-infected patients generally having greater infectious

Fig. 4 (A) Tree of SARS-CoV-2 genomes from NextStrain with delta clade colored red. Only genomes uploaded before April 2022 are included. (B)
Frequency of delta VOC (blue shading) as well as three “non-defining” mutations associated with subclades. Frequency of delta is represented by the
allele frequency of G24410A, considered a defining mutation for the VOC. Frequencies for the mutations C22227T, C24208T, and C25339T across the
time series are shown in blue, orange, and green respectively. (C–E) Presence of the above mutations in genomes on the NextStrain tree.
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loads and differential patterns of shedding.33 In a
wastewater context, Prasek et al.30 observed an increase in
estimated shedding rate following the emergence of the
delta variant. In our Bayesian analysis, alpha phase showed
the highest fecal load, followed by delta, then pre-VOC, and
finally omicron (see ESI† 1). There are at least two possible
explanations for this observation: 1) it is an artifact of lower
testing rates, which would affect the denominator in eqn
(1) and (2) alpha variant presented a higher fecal shedding
rate compared to other variants. Radu et al.34 observed that
the arrival of the alpha variant in Vienna, Austria,
corresponded with an increase in wastewater SARS-CoV-2
concentrations despite a decline in clinical case counts,
implying increased fecal shedding of the virus in alpha.
Several other studies have also shown that wastewater
samples from the time period associated with the omicron
variant indicated lower fecal shedding rates.25,30 When
interpreting wastewater surveillance data to estimate SARS-
CoV-2 variant shedding it is important to consider if
reported cases represent actual SARS-CoV-2 prevalence.

We applied three Bayesian linear mixed-effects models to
our time series data to evaluate how well the N2 load could
predict reported COVID-19 cases across the WWTP sites while
accounting for site-specific differences. Model 1 incorporates
N2 load and WWTP site as fixed and random effects,
respectively. Models 2 and 3 both incorporate N2 load and
WWTP site as random effects, accounting for slope and site-
specific differences. Model 3, however, allows N2 load to
interact with the phase of the pandemic (i.e. which VOC was
dominant) to reveal the influence of VOC on slope
differences for each site. Leave-one-out information cross
validation analysis indicated that model 3 outperformed
model 1 and model 2 (Table 2, see ESI† 1) because it
accounted for WWTP clustering and the heterogeneity of N2
slopes for the VOC categories (i.e., preVOC, alpha, delta,
omicon). Posterior predictive analysis comparing the
observed COVID-19 cases with the model 3's 95% prediction
credible intervals indicated good model fit (Fig. 5). Plots of
the posterior distributions demonstrated that the intercepts
for SS1 and SS4 were credibly lower than the grand mean

Table 2 Performance metrics of the models. See Methods for description of models. SE = standard error

Models
Expected log predictive
density (SE)

Effective number of
parameters (SE)

Leave-one-out information
criterion (SE)

Expected log predictive density
differences (SE)

1 −263.4 (26.4) 14.1 (1.1) 526.9 (52.7) −139.6 (15.6)
2 −250.3 (26.5) 23.1 (2.5) 500.6 (53.0) −126.4 (15.1)
3 −123.9 (26.4) 28.4 (3.0) 247.5 (52.9) 0.0 (0.0)

Fig. 5 Top performing Bayesian model 3, which accounts for sewershed and SARS-CoV-2 variant heterogeneity in the relationship between daily
N2 loads in wastewater and COVID-19 cases per 100000 individuals. (left side) Intercept MCMC intervals and (right side) slope MCMC intervals,
where the inner and outer error bars represent the 50 and 95% credible intervals.
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across all WWTP sites, while the slope of SS1 was credibly
higher than the overall average slope (Fig. 5). By contrast, SS5
and SS8 had higher intercepts than the grand mean across
all WWTP sites, while the slope of SS8 was credibly lower
than the overall average slope. The intercepts and slopes of
the other WWTPs, while not credibly different from the
overall averages using 95% credibility threshold, still
exhibited a similar pattern. The reciprocal relationship
between the intercepts and slopes suggests that populations
with more severe outbreaks tend to stabilize or decrease
more rapidly, whereas those with less severe outbreaks are
more likely to increase more quickly over time. This could be
due to a number of factors, such as differences in virus
fitness and transmissibility, in fecal shedding, in host
immunity, distinct demographics contributing to the
sewersheds, differential case reporting at different sampling
sites, and more.

We found that the model 3 better predicted case counts
than the other models where phase was not included as a
factor. By including random effects for both the phase-
specific slopes and the WWTP locations, model 3 captured
how baseline infection levels differ between locations and
how the effect of different SARS-CoV-2 variants on COVID-19
infections varies depending on the location. Model 3
demonstrated credible variation across different WWTP
locations, both in baseline COVID-19 cases and strength of
the association between phase-specific effects and COVID-19
cases.

Conclusion

We analyzed quantitative N2 concentrations and qualitative
sequencing data for SARS-CoV-2 in wastewater from 11
sampling sites in Southwestern Ohio. Over the course of our
time series, we were able to detect the emergence of the three
main VOCs, alpha, delta, and omicron, in addition to the
presence of other less abundant VOCs. We found that flow-
adjusted N2 concentrations correlated strongly with reported
COVID-19 cases, but that the relationship between N2 load
and number of cases varied during distinctive phases of the
pandemic. This finding supports the concept that the
different variants of SARS-CoV-2 have diverse levels and
lengths of fecal shedding. Multi-level modeling underscores
the importance of accounting for sampling site-specific
heterogeneity to understand the trajectory of COVID-19
infections monitored in sewersheds.
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