Toxic effects and metabolic response mechanisms of amino-modified polystyrene nanoplastics and arsenic on Microcystis aeruginosa

Abstract

Plastic contamination poses an increasing threat to our environment, particularly with the accumulation of nanoplastics (NPs, <1 µm) in aquatic systems. Amino-modified polystyrene nanoplastics (PSNPs-NH₂), due to their high reactivity and biocompatibility, may exert toxic effects on aquatic organisms like cyanobacteria. Microcystis aeruginosa (M. aeruginosa), a common cyanobacterium widely distributed in aquatic ecosystems, plays a crucial role as a primary producer and is sensitive to NPs and arsenic (As) contamination. This work examined the effects of PSNPs-NH₂ alone (PS), As alone (As), and co-exposure (AP) on Microcystis aeruginosa using exposure experiments, three-dimensional excitation-emission matrix (3D-EEM) fluorescence spectroscopy, and metabolomics. Results indicated that amino-modified polystyrene nanoplastics significantly inhibited M. aeruginosa growth, with chlorophyll a content reduced by 12.28%-12.96% at high doses amino-modified polystyrene nanoplastics increased intracellular O₂·⁻ levels by 5.10% - 15.75%, while Arsenic significantly elevated H₂O₂ levels by 2454.92%, which decreased by 74.61% - 87.76% under AP. Arsenic and AP increased intracellular and extracellular microcystin. Metabolomic analysis indicated that amino-modified polystyrene nanoplastics upregulated amino sugar metabolism to enhance extracellular polymeric substances (EPS) secretion, while AP activated fatty acid degradation to cope with stress. In summary, the research reveals the multi-level toxic impacts of PSNPs-NH₂ and arsenic, alone and co-exposure on Microcystis aeruginosa, providing scientific underpinnings for evaluating the potential threats of nanoplastics and metal (loid) co-exposure to aquatic ecosystems.

Supplementary files

Article information

Article type
Paper
Submitted
27 Nov 2024
Accepted
11 May 2025
First published
12 May 2025

Environ. Sci.: Nano, 2025, Accepted Manuscript

Toxic effects and metabolic response mechanisms of amino-modified polystyrene nanoplastics and arsenic on Microcystis aeruginosa

X. Shi, Q. Wang, W. Liu, R. Shi, Y. Ge and J. Liu, Environ. Sci.: Nano, 2025, Accepted Manuscript , DOI: 10.1039/D4EN01106F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements