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Environmental significance

Overcoming the challenge of quantifying aged
microplastic by qNMR spectroscopy

Julia Schmidt, ©** Marte Haave © ¢ and Wei Wang @ 2°

Quantitative nuclear magnetic resonance (QNMR) spectroscopy holds strong potential for environmental
microplastic analysis, contingent on addressing the challenge of quantifying aged synthetic microplastics.
This study evaluated the application of gNMR for quantifying polystyrene (PS), polyvinyl chloride (PVC),
and polyethylene terephthalate (PET), aged under UV exposure and elevated temperatures for 24 days.
gNMR was combined with scanning electron microscopy (SEM) and Fourier-transform infrared (FTIR)
spectroscopy to assess morphological, chemical, and molecular-level changes. SEM revealed surface
degradation in PS and PVC, with minimal changes in PET, while FTIR showed increased carbonyl indices
(Cl), indicating oxidation. gNMR analysis demonstrated consistent microplastic signals between aged and
pristine materials, with relative quantification errors from 1% to 18%. Calibration curves showed strong
linearity (R? > 0.97), with limits of detection (LOD) between 0.87-2.79 pg mL™! and limits of
quantification (LOQ) between 2.89-9.29 ng mL™*. Additionally, degradation products in PS and PVC
were quantified, providing a detailed assessment of chemical changes during aging, while PET exhibited
no significant degradation. These results demonstrate that gNMR enables sensitive, reliable quantification
of aged microplastics. Integration of gNMR, SEM, and FTIR offers complementary insights into
microplastic aging and supports the development of robust methods for environmental microplastic
monitoring.

Accurate quantification of microplastics, particularly in their aged and environmentally degraded forms, remains a major analytical barrier in understanding
their fate and impact. This study demonstrates the application of quantitative nuclear magnetic resonance (QNMR) spectroscopy, supported by SEM and FTIR,
as a robust and sensitive approach for characterizing and quantifying aged synthetic microplastics, including PS, PVC, and PET. By establishing reliable
calibration and detection limits for these weathered particles, the work advances analytical capabilities for mass-based microplastic assessment. This meth-
odological development contributes to improving the traceability and risk assessment of weathered microplastics, supporting more effective environmental

monitoring and regulation.

Introduction

Microplastic (MP; 1 um to 5 mm)** and nanoplastic (NP; <1
pm)°** pollution has become a global concern due to their

porosity, and chemical alterations within the MP matrix.">"**
Oxidative degradation introduced oxygen-containing functional
groups such as carboxylic acids, aldehydes, ketones, and
hydroxyls,>**¢ which increase the polarity and, consequently,
the hydrophilicity of MPs while reducing their hydrophobicity.>”

widespread occurrence and the potential risks they pose to
ecosystems and human health.”*"® MPs primarily originate
from the environmental degradation of larger plastic debris,
driven by ultraviolet (UV) radiation, temperature fluctuations,
mechanical stress, and oxidative conditions.’*** Despite the
addition of plasticizers, antioxidants, and stabilizers during
production to enhance the durability of plastics in their inten-
ded applications,'*'#?** aging leads to fragmentation into MPs
and NPs. These degradation processes cause surface cracking,
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As a result, aged MPs more readily absorb environmental
pollutants including hydrophobic organic compounds, antibi-
otics, and metal ions.>>*® These alterations have been linked to
toxicological effects, including cancer, reproductive disorders
and cardiovascular disease.”**> Photochemical degradation,
especially from UV exposure, is a major driver of these changes,
inducing polymer chain scission, free radical generation, and
oxidation.'*™*® Prolonged exposure intensifies these effects,
altering particle morphology and molecular weight distribu-
tion.** Fourier-transform infrared (FTIR) spectroscopy is
commonly used to characterize these changes, identifying shifts
in functional groups and enabling weathering indices like the
carbonyl index (CI) to assess degradation extent.>****> However,
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FTIR and scanning electron microscopy (SEM) mainly provide
surface-level information and lack molecular-level resolution.
To investigate deeper structural and compositional changes,
nuclear magnetic resonance (NMR) spectroscopy, particularly
proton (*H) and quantitative NMR (qNMR), offers a promising
analytical alternative. NMR has been applied to a wide range of
MPs, including low-density polyethylene (LDPE), polystyrene
(PS), polyethylene terephthalate (PET), acrylonitrile-butadiene-
styrene (ABS), polyamide (PA), polyvinyl chloride (PVC), poly-
urethane (PU), polylactic acid (PLA), polybutadiene (PB), poly-
isoprene (PI), polymethyl methacrylate (PMMA), and
polyacrylonitrile (PAN).***” Both pure MPs and mixtures have
been investigated, demonstrating the capability of NMR to
analyse overlapping proton signals in complex matrices.***
Techniques such as 2D 'H diffusion-ordered spectroscopy,®
low-field "H NMR,** and "*C multi-cross-polarization® have also
shown promise.

Although '"H NMR has been applied to assess accelerated
aged MPs,> the use of qQNMR to quantify aged MPs, particularly
in environmentally relevant samples, remains underexplored.
This study aims to fill this gap by evaluating the effectiveness of
gNMR in quantifying MPs aged through UV exposure and
elevated temperature. Additionally, the study investigated the
limit of detection (LOD) and limit of quantification (LOQ) for
these aged MPs, assessing the sensitivity and applicability of
gNMR. By combining gqNMR with SEM and FTIR, this study
explores whether qNMR can reliably identify and quantify
morphologically and chemically altered MPs. This study takes
a critical step toward evaluating the feasibility and limitations
of QNMR spectroscopy for analysing complex, aged environ-
mental MPs, forming the basis for cost-effective monitoring of
both new and weathered MPs (Schmidt et al, in prep).

Experimental

Materials

PS beads (900 um), PET powder (300 um) from GoodFellow
Cambridge Ltd, England, and PVC powder (<50 pm) from
Werth-Metall, Germany, were used as model MPs. Deuterated
solvents, including tetrahydrofuran (THF-dg, =99.5 atom% D;
residual proton signals at 3.58 ppm and 1.73 ppm) purchased
from VWR International, LLC, deuterated chloroform (CDCls,
99.8 atom% D; residual proton signal at 7.26 ppm), and
deuterated trifluoroacetic acid (TFA-d, >99.5 atom% D; residual
proton signal at 11.50 ppm), both from Sigma-Aldrich®, were
used in this study. Dimethyl sulfone (DMSO,), purchased from
Sigma-Aldrich®, TraceCERT®, with its residual proton signal at
3.00 ppm, was used as the internal standard.

Sample preparation

Accelerated aging the of MPs. For the artificial aging process,
1-2 g each of MP sample (PS, PVC and PET) were evenly
distributed on separate glass Petri dishes and placed in a labo-
ratory oven maintained at a constant temperature of 50 °C to
accelerate the aging process. Additionally, a UV lamp (ENF-
280C/FE from Spectroline®) emitting shortwave light at
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254 nm with an intensity of 450 uW cm > at a distance of 15 cm
was positioned directly on top of the Petri dishes. A 24-day aging
process combining UV exposure and elevated temperature was
applied to the MPs using a laboratory oven. To ensure an even
aging, each Petri dish was carefully shaken every 24 hours.
Samples were taken every second day and named according to
the number of days aging, such as 0d, 6 d, 12 d, 18 d, and 24 d.

Analysis by SEM, FTIR and carbonyl index. For the SEM
images, samples from 0 d, 12 d, and 24 d were transferred and
fixed onto individual SEM aluminium stubs using carbon
adhesive tape. The samples were then coated with a thin layer of
gold and palladium under vacuum conditions. All SEM images
were captured using the ZEISS SUPRA 55VP field emission
under high vacuum conditions, with a 5 kV beam voltage (EHT)
and a working distance (WD) ranging from 5.3 to 6.2 mm.
Images were taken at two different magnifications to capture
the surface morphology comprehensively.

For the FTIR, replicate spectra and images of samples from
pristine MPs as well as aged samples were collected on each
sampling day as previously described. Measurements were
performed using a Nicolet iS50 spectrometer (Thermo Fisher
Scientific) equipped with a diamond ATR and an MCT/A
detector, across the wavenumber range of 400 to 4000 cm ™' at
a resolution of 4 cm™'. The samples were loaded onto the dia-
mond ATR platform and secured with pressure. Prior to initial
sampling, a background spectrum was collected. The diamond
sample platform was cleaned with methanol between each MP
sample measurement. Each MP sample underwent 32 scans.
The spectra were then processed using OMNIC software
(version 9.8.286) from Thermo Fisher Scientific. From the ob-
tained spectra, the CI, which is a measure of the degradation of
MPs,** was calculated by determining the ratio of the integrated
peak height of the carbonyl peaks to the integrated peak height
of a stable reference peak for each spectrum.

Analysis by qNMR. For the qNMR analysis, PS and PVC were
dissolved in THF-dg, while PET was dissolved in a mixture of
CDCl; and TFA-d (4 : 1), all at room temperature, with a nominal
concentration of 1 mg mL™'. The MP concentrations were
analysed using DMSO, with a known concentration as an
internal standard. For the NMR analysis, 600 pL of each sample
solution was transferred into 5 mm NMR tubes (Bruker BioSpin,
4" NMR tubes) for subsequent analysis. qQNMR analysis was
performed on all MP samples from 0 d, 12 d, and 24 d. To
evaluate LOD and LOQ of the 24-day aged MPs, a calibration
curve with six measuring points was utilized. Concentrations
ranged from 0.5 to 10 ug mL™" for PS and PVC in THF-dg, and
from 0.2 to 5 pg mL™" for PET in CDCI;/TFA-d (4:1). These
concentration ranges were derived from the signal-to-noise
(SNR)-based LOD and LOQ results for PS and PVC, as well as
the relative response factor (RRF) approach for PET, which
utilized LOD and LOQ data for PLA, as reported in our previous
study.*®

A Bruker Ascend 600 MHz spectrometer equipped with
a QCI-P CryoProbe™ and an AVANCE NEO console, was used to
conduct all NMR measurements at room temperature (298 K).
The qNMR experimental parameters were consistent across all
MP samples, with the pulse width and receiver gain

This journal is © The Royal Society of Chemistry 2025
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automatically optimized for each individual sample. Specifi-
cally, the spectral width was set to 29.76 ppm, 8 scans were
acquired, the spectral size was 262 144 points, the acquisition
time was 3.67 s, and a 60 s delay was used for each
measurement.

The 'H NMR spectra were visualized by importing the data
into the NMR software program MestReNova (v14.2.0), while the
gNMR spectra used for quantification were imported into
Bruker's TopSpin NMR software (version 4.3.0). Manual phase
and baseline correction were applied to all gNMR data, along
with a line broadening of 0.1 Hz. A consistent ppm range was
manually integrated across all samples for each MP type. To
minimize potential measurement or integration errors, the
internal standard method was used for quantitative analysis of
the MPs,** with DMSO, serving as the internal standard in all
samples, as previously published. The number of contributing
nuclei was accounted for in the calculation of analyte concen-
trations. Full methodological details, including signal assign-
ment and integration strategy, are described in our previous
publication.*® To support the assignment of degradation prod-
ucts, 2D NMR experiments (COSY, HSQC, and HMBC) were
conducted on selected aged MP samples; experimental details
and spectra are provided in the SI.

Calculations and statistical analysis

Statistical analyses and visualizations of CI data across the
aging period were conducted using RStudio (version 4.3.0). A
Langmuir adsorption model was applied to PS data, whereas
linear regression models were used for PVC and PET. Addi-
tionally, LOD and LOQ for each MP after 24 days of aging were
calculated based on the slope of the calibration curve (¢) and
the standard deviation of the response (S), as described in eqn
(1). The calibration curve was plotted as nominal concentration
against the normalized integral. Model fit was evaluated using
the coefficient of determination (R?) values, with R* > 0.99
considered linear. A significance level of p < 0.05 was applied,
and F-statistic tests were performed. Plots included 95% confi-
dence intervals as upper and lower bounds.

(3x0) (10 x o)

LOD = S &Y

and LOQ =

Furthermore, the relative error, representing the deviation
between nominal (Chomina) and measured (Cieasurea) MP
concentrations, was calculated as described in eqn (2), with 0%
indicating a perfect match.

| Cnominal - Cmeasured |

Relative error [%] = x 100 (2)

Cnominal

Prevention of contamination and quality control

To reduce the potential for airborne MP contamination, glass-
ware and other non-plastic equipment were thoroughly cleaned
using distilled water and acetone. Prior to utilization, all glass
flasks were dried at 60 °C for 24 hours in a closed and clean
heating cabinet and subsequently sealed upon cooling. NMR

This journal is © The Royal Society of Chemistry 2025
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tubes were dried at 60 °C for 30 minutes in a closet laboratory
oven that had been cleaned with filtered 95% ethanol before
use. Additional precautions were implemented, including the
use of pure cotton lab coats to prevent contamination from
clothing fibers and regular changes of nitrile gloves to prevent
cross-contamination of MPs. Blanks were obtained by acquiring
both 'H NMR and gNMR spectra of pure THF-dg and CDCl/
TFA-d (4:1) in the absence of any MP.

Results and discussion
SEM and FTIR signals change with MP aging

SEM images of pristine and aged MPs (PS, PVC, and PET) at two
different magnifications (Fig. 1A-F, 2A-F and 3A-F) depict the
morphological changes associated with the accelerated aging.
The images show a progressive colour change during the aging,
with samples transitioning from white (0 d) to yellow (12 d and
24 d), accompanied by increasing colour intensity. This color
change indicates surface morphology changes in the MPs,
mainly due to the degradation of unsaturated chromophoric
groups upon UV irradiation.”® Morphological changes were
observed across all MPs during aging. The surface of pristine PS
already exhibited visible microcracks and pores. Upon aging,
these features became more defined and slightly enlarged,
indicating progressive but subtle surface degradation. Notably,
the overall surface texture appeared smoother in the aged
samples, which may reflect partial melting or surface reflow
effects included by the aging process. Previous studies observed
microcracks, yellowing, and surface wrinkling after exposure to
UV light (354 nm, 30 mW cm ™ ?), in some cases combined with
elevated temperatures (50 °C), for exposures ranging from 96
hours to 30 days.’*® These results support the progressive,
albeit moderate, morphological changes observed in the aged
PS from this study.

In contrast, the spherical fine and coarse PVC grains, which
form spherical agglomerates,*»* remained mostly intact during
aging. Minimal surface structural changes may result from the
shedding of the PVC skin, exposing the inner grains to further
aging. Additionally, thermal degradation studies at 50 °C and
100 °C, conducted over an exposure period of 120 to 360 days,
revealed that the surface of PVC appeared to have melted.”
These changes could lead to embrittlement and disintegration
during the degradation process.** Moreover, minimal morpho-
logical changes between pristine and aged samples of irregu-
larly shaped and large PET fragments were observed; however,
the surface of the aged PET appeared smoother. This lack of
significant changes in PET could be attributed to its greater
resistance to UV-induced degradation.**

FTIR analysis of PS, PVC and PET throughout the aging
revealed distinct signs of their chemical transformations. In the
case of pristine PS, the absorption bands corresponding to the
hydroxyl (-OH) stretching vibrations in the range of 3600-
3200 cm ™" and the carbonyl (-C=0) stretching at 1737.55 cm ™
were initially observed to be relatively weak (Fig. 1G).*> However,
with prolonged aging, FTIR showed a gradual increase in
transmittance indicating the formation of functional groups on
the PS surfaces. The CI of each sampling day was calculated

Environ. Sci.. Processes Impacts, 2025, 27, 2821-2834 | 2823
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Fig. 1 SEM images of PS aged for (A and D) O days, (B and E) 12 days and (C and F) 24 days at two different magnifications, with corresponding
photographs of the samples in Petri dishes displaying the colour change; (G) FTIR spectra of PS at five aging points; and (H) the Cl plotted against
time for all aging points, with error bars indicating the standard deviation of replicate measurements.

using the integrated peak heights of the carbonyl peak at
1735.55 c¢cm ' (using a baseline from 1899.54 cm ' to
1639.19 cm™ ') and the stable reference peak at 2852.20 cm™*
(using a baseline from 2867.63 cm ™" to 2819.42 cm ™) (Fig. 1G),
and plotted against time, revealing a curved progression
(Fig. 1H). To capture this nonlinear trend, a Langmuir adsorp-
tion model was applied to the CI data, yielding a pseudo-R*
value of 0.4967 (¢f. the SI). After day 6, the CI measured by FTIR
levels off, indicating a stabilization in the FTIR response and
suggesting minimal progression of aging-related chemical
changes beyond this point.

Similarly, in pristine PVC, the absorption bands associated
with hydroxyl (-OH) stretching vibrations in the 3600-
3200 cm " region and carbonyl (-C=O) stretching at

2824 | Environ. Sci.: Processes Impacts, 2025, 27, 2821-2834

1725.98 cm ™" were initially weak (Fig. 2G).* The CI was deter-
mined at five measurement points using the integrated peak
heights of the carbonyl peak at 1725.98 cm™ " (using a baseline
from 1874.47 cm ™" to 1535.42 cm™ ') and the stable reference
peak at 1430.92 cm ™" (using a baseline from 1486.85 cm™" to
1396.21 cm ') (Fig. 2G). The FTIR revealed a steady increase in
CI with aging, implying a rise in surface functional groups for
PVC. Moreover, the emergence of carbonyl and hydroxyl groups
indicates that the aged PVC underwent oxidation reactions.*
These chemical changes led to the formation of new functional
groups, resulting in altered hydrophilicity of the MP.**** The CI,
plotted against time (Fig. 2H), shows a consistent and propor-
tional increase, reflecting the progressive formation of carbonyl
groups in PVC during the aging. The steady rise demonstrates

This journal is © The Royal Society of Chemistry 2025
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Fig.2 SEM images of PVC aged for (A and D), O days, (B and E) 12 days and (C and F) 24 days at two different magnifications, with corresponding
photographs of the samples in Petri dishes displaying the colour change; (G) FTIR spectra of PVC at five aging points; and (H) the ClI plotted
against time for the five aging points, with error bars indicating the standard deviation of replicate measurements.

that PVC oxidation follows a continuous and accumulating
process, typical of photo-oxidative degradation, with surface
modifications becoming more pronounced over time due to
prolonged exposure to environmental stressors.”> The linear
regression with R* of 0.9921 (¢f the SI) further confirms this
degradation trend, suggesting that the CI can track the aging
state of PVC under both laboratory and environmental
conditions.

In contrast, the absorption bands corresponding to the
carbonyl (-C=0) stretching at 1717.41 cm ™" and the hydroxyl (-
OH) stretching in the 3600-3200 cm ' region,® remained
relatively stable in PET (Fig. 3G). The CI showed minimal
changes with aging, calculated at five measuring points using
the integrated peak height of the carbonyl group at

This journal is © The Royal Society of Chemistry 2025

1714.41 cm™"' (using a baseline from 1816.62 cm™' to

1621.84 cm™ ') and the integrated peak height of the stable
reference peak at 1241.93 cm ' (using a baseline from
1324.86 cm ™' to 1182.15 cm ') (Fig. 3G). The CI was plotted
against time (Fig. 3H), and a linear regression was used to fit the
data, showing a steady but limited increase over time with an R
value of 0.9651 (¢f. the SI). Since PET degradation is primarily
driven by hydrolysis, which requires moisture, alcohol, and
elevated temperatures to break ester bonds in the MP back-
bone,*”*® the minimal changes observed in the CI indicate that
significant degradation did not occur under the conditions
used. These findings highlight that PET typically requires more
extreme conditions, such as prolonged exposure or higher
temperatures for significant degradation.®* Overall, compared

Environ. Sci.: Processes Impacts, 2025, 27, 2821-2834 | 2825
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Fig.3 SEMimages of PET aged for (A and D) O days, (B and E) 12 days and (C and F) 24 days at two different magnifications, with corresponding
photographs of the samples in Petri dishes displaying the colour change; (G) FTIR spectra of PVC at five aging points; and (H) the CI plotted
against time for the five aging points, with error bars indicating the standard deviation of replicate measurements.

to PS, PVC exhibited a substantially greater increase in CI,
approximately 69-fold, indicating more significant surface
aging under UV radiation. When compared to PET, the increase
in CI for PVC was nearly 100-fold greater.

Effectiveness of qNMR in quantifying aged MPs

The qNMR analysis was conducted to assess whether qNMR
could correctly quantify the nominal concentrations of pristine
as well as aged MPs (PS, PVC and PET). Proton signals of each
MP were identified and assigned at distinct chemical shifts
(Fig. 4). PS showed a proton signal in the range of 7.2 to
6.2 ppm, corresponding to the protons of the aromatic ring
(Ha,Hyp,), PVC revealed a proton signal in the range of 4.73 to
4.28 ppm, corresponding to a CH group (H,),***** and PET
showed proton signals at 8.12 ppm and 4.79 ppm,

2826 | Environ. Sci.: Processes Impacts, 2025, 27, 2821-2834

corresponding to the protons of the aromatic ring (H,) and two
CH, groups (H,), respectively.®® The full assigned 'H NMR
spectra of each MP can be found in Fig. S1-S3 in the SI.

A comparison of the proton signals from pristine and aged
PS, PVC, and PET revealed no changes in the spectral shape of
the specific proton signals previously assigned (Fig. 4). These
specific proton signals were used for the quantitative analysis,
and their consistency across both pristine and aged samples
indicates that the aging process did not significantly affect their
NMR spectra. This confirms that these key proton signals can be
reliably detected and used to quantify the MPs by NMR spec-
troscopy, regardless of aging. Furthermore, the quantitative
analysis demonstrated that the measured concentrations of
both pristine and aged MPs closely matched the nominal
values, with relative errors, calculated using eqn (2), ranging

This journal is © The Royal Society of Chemistry 2025
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Fig. 4 H NMR spectrum and structural formula of (A) PS and (B) PVC in THF-dg and (C) PET in CDCls/TFA-d (4 : 1) after O days, 12 days and 24

days of aging.

Table1 Quantification of MP concentrations for PS and PVC in THF-dg, and PET in CDCls/TFA-d (4 : 1), after O days, 12 days and 24 days of aging,
with a nominal concentration of 1 mg mL~1. Measured concentrations (Crneasureq), determined using the internal standard method with DMSO,,

along with the relative error (RE) are given for each MP

PS pPVC PET

Hava Ha Ha Hp

Crmeasured [mg l’l’lL71] E [OA)] Cmeasured [mg mLil] E [0/0] Cmeasured [mg mL71] E [0/0] Cmeasured [mg mLil] E [%]
0 d aged 0.99 1 1.08 8 1.00 0 1.05 5
12 d aged 1.18 18 1.15 15 0.99 1 1.04 4
24 daged 0.97 3 0.93 7 1.10 20 1.13 13

from 1% to 18% (Table 1). These small deviations further vali-
date the reliability and consistency of gNMR for MP quantifi-
cation throughout the aging process. Although not formally
validated for precision or reproducibility in this study, the
consistent agreement between nominal and measured
concentrations across aging stages, together with prior valida-
tion on pristine MPs*® and polymer mixtures,* suggests that the
gNMR approach is robust and reliable for quantifying aged
MPs.

Calibration data for PS, PVC, and PET after 24 days of aging
demonstrated strong linearity within their respective concen-
tration ranges (Fig. 5). To support this, representative "H NMR
spectra of the lowest and highest calibration points for each MP
are included in Fig. S4 in the SI, illustrating the integration
quality at the LOQ levels. For PS-H,,H}, and PVC-H,, calibration
curves yielded R* values of 0.9976 and 0.9932, respectively. PET
showed slightly lower but acceptable linearity, with R* values of
0.9752 and 0.9794 for the H, and H,, proton signals, respec-
tively. All LOD and LOQ values discussed below, both from the
present study and prior literature, are based on JNMR meth-
odologies, using either SNR criteria or internal standard
approaches, unless otherwise stated. LOD and LOQ for PS were

determined to be 1.10 pg mL " and 3.67 ug mL ™", respectively

This journal is © The Royal Society of Chemistry 2025

(Table 2). These results are consistent with, and in some cases,
more sensitive than those reported in previous studies on
pristine MPs. For example, SNR-based LOD and LOQ values for
PS have been reported at 2 pg mL " and >10 pg mL ™", respec-
tively, while internal standard-based LOQ was approximately 4
pg mL ™% The LOQ determined in this study is comparable to
previously reported values, yet indicates that aged PS may be
detected and quantified with marginally higher sensitivity than
pristine PS. In contrast, another study reported substantially
higher values for PS, with an LOD of 12 pg mL ™" and an LOQ of
77 ug mL~',* highlighting the enhanced performance of the
current method.

PVC exhibited higher LOD and LOQ values than PS, with 1.87
pg mL~" and 6.22 pg mL~?, respectively (Table 2). These values
are also consistent with, or lower than, those previously re-
ported for pristine PVC. Earlier studies noted an SNR-based
LOD and of 1 pg mL™" and an LOQ exceeding 10 ug mL™ ",
along with an internal standard-based LOQ of 8 pg mL™ '
These findings suggest that the quantification of aged PVC
using qNMR remains comparable to, or even slightly more
sensitive than, measurements of pristine PVC. Notably,
previous studies reported considerably higher values with an
LOD of 84 ug mL™' and an LOQ of 281 pug mL™',* further

Environ. Sci.. Processes Impacts, 2025, 27, 2821-2834 | 2827
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Fig.5 Calibration graph of 24-day aged (A) PS-H,,Hy, and (B) PVC-H, in THF-dg at a calibration range of 0.5-20 pg mL~* and (C) PET-H, and (D)
PET-H,, in CDCls/TFA-d (4 : 1) at a calibration range of 0.2-5 ng mL™% Included is a confidence interval (0.95) and the coefficient of determi-

nation (R?) for each MP.

emphasizing the improved analytical performance achieved
here.

For PET, the lowest LOD was observed for the H, signal at
0.87 pug mL ™", while the highest LOQ was found for the Hj
signal at 9.29 pg mL ™' (Table 2). These results fall within the
range of previous reports** but show notable variability across
literature. For example, a previous study reported LOD and LOQ
values of 21 pg mL™" and 81 pg mL™", respectively,* and later
refined these values to 1 pg mL™" and 4 pug mL™'.* The PET
values reported in this study are consistent with, or slightly

2828 | Environ. Sci.. Processes Impacts, 2025, 27, 2821-2834

higher than, the most sensitive prior assessments, demon-
strating the robustness of the qNMR approach, even for aged
and potentially degraded MP matrices.

Degradation products and environmental implications

Examining the full "H NMR spectra of artificially aged MPs, we
observed additional small signals indicative of minor degrada-
tion products (Fig. 6), supported by 2D NMR analysis (Fig. S5
and S6 in the SI). In aged PS, notable spectral changes were
observed at 8.01 ppm and 7.89 ppm (Fig. 6A), appearing as

This journal is © The Royal Society of Chemistry 2025
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Table 2 Calibration data of PS, PVC and PET after a 24-day aging
process. Shown are the proton signals used, solvents, calibration
ranges, coefficients of determination (R), limits of detection (LOD) and
limits of quantification (LOQ) for each microplastic

Microplastic PS PVC PET

Proton signal H,,H;, H, H, Hy,

Solvent THF-dg THF-dgy CDCly/TFA-d
(4:1)

Calibration range [ug mL™'] 0.5t020 0.5t020 0.2to5 0.2to5

Linearity R? 0.9976 0.9932 0.9752 0.9794

LOD [ug mL™}] 1.10 1.87 0.87 2.79

LOQ [ug mL™Y] 3.67 6.22 2.89 9.29

sharp, well-defined signals indicative of structural modifica-
tions associated with oxidative degradation, likely correspond-
ing to the formation of oxidized monomers.?** The signal at
8.01 ppm was likely attributable to benzylaldehyde, formed
through oxidation or the formation of conjugated degradation
products from the PS benzene ring. Similarly, the signal at
7.89 ppm likely corresponds to methyl benzoate, situated close
to newly formed phenolic or carbonyl groups. These shifts are
consistent with chemical modifications of the aromatic rings,
such as the introduction of carbonyl (C=0) or hydroxyl (-OH)
groups, resulting from photooxidative processes. Such trans-
formations cause deshielding effects on the aromatic protons,
shifting their resonances downfield compared to those of pris-
tine PS.”*"* These findings partially align with those of
a previous study that detected both aromatic and aliphatic
oxidized signals under more intense conditions (UV 750 W m 2,
40 °C, 30 days) using "H NMR and TD-GC/MS.* The absence of
aliphatic oxidation signals (2.3 to 5.0 ppm) in this study likely
reflects the lower UV intensity and shorter exposure duration,
highlighting the strong influence of aging conditions on the

View Article Online
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formation of a range of oxidized monomers, including unsat-
urated structures, aldehydes, ketones, and carboxylic acids.”™”*
Specifically, the signals at 10.82 ppm and 9.68 ppm correspond
to aldehydic protons (-CHO groups), indicative of the formation
of oxidation products, while the peak at 7.89 ppm is associated
with vinylic protons from conjugated double bonds, a hallmark
of dehydrochlorination and chain scission processes. The
signal at 5.32 ppm likely corresponds to residual unsaturated
structures formed during these degradation mechanisms,
further confirming the oxidative transformations in PVC.” In
contrast, aged PET showed minimal degradation in this study,
with no degradation products detected (Fig. 6C). However,
previous studies have shown that aged PET can exhibit small
signals in the range of 0 to 4 ppm,* with intensity variations
attributed to photo-induced modifications of its macromolec-
ular structure.*

Additionally, the concentrations of the degradation products
of both PS and PVC were quantified using the internal standard
method, allowing for an assessment of chemical changes
during aging. The results revealed a decrease in the concen-
trations of both degradation products from day 12 to day 24 of
accelerated aging (Table 3). This trend suggests that, beyond the
initial formation of oxidized structures, secondary degradation
processes, such as chain scission or further oxidation, become
more prominent with prolonged aging.”””® These secondary

Table 3 Quantification of degradation products of PS and PVC in
THF-dg after 12 and 24 days of aging. Measured concentrations [ug
mL~Y were determined by the internal standard method with DMSO,
as internal standard

Measured
concentration [pg mL ']

MP degradation

types of degradation products detected. These findings suggest products Signal [ppm] 12daged  24d aged
that radlcal-md.uce(.i 0x1dat10r.1 at Fhe. aliphatic bac1.<b0ne also  pg 8.01 0.20 016
occurred, contributing to chain scission, although its spectral 7.89 0.18 0.14
signatures were limited under the applied aging conditions. For ~PVC 10.82 8.85 8.26
PVC, well-resolved signals were observed between 5.0 and 9.68 1.90 1.73
11.0 ppm (Fig. 6B), consistent with the degradation processes ;'gg (1)':2 (1)'52
such as dehydrochlorination and oxidation, which lead to the ' ' ’

A B c
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Fig. 6 Stackplots of 'H NMR spectra of 0 day, 12 day and 24 day aged (A) PS and (B) PVC in THF-dg, and (C) PET in CDCls/TFA-d (4 : 1). Arrows
indicate signals attributed to degradation products formed during accelerated aging.
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processes not only diminish the concentration of initially
formed degradation products but also accelerate the breakdown
of the MP matrix over time. Such findings highlight the dynamic
nature of MP aging, where primary degradation products may
undergo additional transformations, contributing to the
ongoing degradation and potential embrittlement of the
MP.?*%*¢ The presence of degradation products in environmental
samples can overlap with MP signals, especially in the
lower ppm range (<3 ppm), complicating MP quantification.*>”
Careful sample preparation, including extraction and purifica-
tion, is crucial to minimize spectral overlap with organic
compounds, though this process is time-consuming and must
be optimized to ensure accurate MP detection.*>”*”® Addition-
ally, the choice of internal standards may also pose difficulties,
as some, like DMSO,, could interfere with signals from
unknown environmental compounds. In contrast, hexamethyl
disiloxane (HMDSO), with a proton signal at 0.25 ppm *’ could
be more suitable due to its minimal overlap potential.

Combining gqNMR with FTIR and SEM for comprehensive
analysis

The aging of MPs due to UV exposure and elevated temperatures
significantly alters their chemical structure and physical prop-
erties, as shown by surface morphological changes (e.g,
SEM)***>*” and chemical modifications (e.g., FTIR).®>¢*%7
These alterations present a challenge for both the detection and
quantification of aged MPs and underscore the need for a multi-
analytical approach to achieve a more comprehensive under-
standing. Importantly, MP degradation often occurs predomi-
nantly at the surface, while the bulk material remains less
affected; thus, relying solely on FTIR may lead to an over-
estimation of the overall degradation degree. Therefore, the
study demonstrated that by combining NMR spectroscopy with
SEM and FTIR a comprehensive demonstration of MP aging can
be achieved where complementary perspectives can be offered:
SEM provides visual insights into surface degradation, FTIR
identifies chemical changes and oxidation levels (e.g., via the
CI), and NMR enables molecular-level monitoring and quanti-
fication of MPs.*

"H NMR spectroscopy is particularly useful for monitoring
MP degradation, as aging can manifest in the spectra as new
peaks, altered chemical shifts, peak broadening, and reduced
signal intensity.>**® While no substantial peak shifts or broad-
ening were observed in this study, as detailed in the previous
section, distinct low-intensity signals corresponding to oxidized
aromatic and unsaturated degradation byproducts were
observed in aged PS and PVC samples, highlighting qNMR's
unique capability to resolve molecular-level transformations
that are not accessible through FTIR or SEM. The degradation-
related changes depend on MP type, aging duration, and envi-
ronmental conditions, factors that influence solubility and
signal intensity, especially for environmentally realistic
samples.”***> To ensure high-quality spectral data, qNMR was
conducted at high MP concentrations, providing a detailed
assessment of aged samples. Notably, the characteristic signals
of aged MPs remained well-resolved, supporting the suitability

2830 | Environ. Sci.: Processes Impacts, 2025, 27, 2821-2834
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of NMR for quantification and suggesting that even at low MP
concentrations,* effective analysis could still be performed.
These findings indicate that, unlike FTIR, which may struggle to
match aged MP spectra to reference libraries due to chemical
changes, qNMR maintains its quantitative capacity despite MP
aging.**®** Thus, NMR spectroscopy offers a valuable tool for
assessing aged MPs, particularly in cases where FTIR sensitivity
or library compatibility is limited.

Importantly, combining qNMR with FTIR and CI analysis not
only strengthens structural and compositional assessments of
MP aging but also highlights the value of integrating molecular
spectroscopy techniques. Studies have shown that FTIR and
solid-state '*C NMR, for example, can yield differing results
regarding oxidation markers like carboxyl content, under-
scoring the benefit of using multiple techniques in parallel.®

While this study demonstrates the complementarity of
gNMR with FTIR and SEM, it was conducted under controlled
laboratory conditions to determine whether aged MPs remain
quantifiable at the molecular level. Identifying stable MP
signals and emerging degradation products is essential
groundwork for applying this integrated approach to real-world
samples, where matrix interference and spectral overlap will
present additional challenges. Prior studies on pristine MP
mixtures support qNMR's potential,* and ongoing work now
extends this to complex environmental matrices.

Conclusion

This study used NMR spectroscopy for MP quantification, with
SEM and FTIR validating aging-related changes. Accelerated
aging induced significant morphological and chemical changes
in PS and PVC, with minimal alterations in PET. SEM showed
surface degradation in PS and PVC, while FTIR confirmed
oxidative degradation, reflected by increased carbonyl content
in PS and PVC, and slight changes in PET.

Despite aging-induced changes, qNMR enabled reliable
microplastic quantification, with relative errors between 1% to
18%. Key proton signals remained stable, allowing consistent
integration across aging states. External calibration confirmed
strong linearity (R*> > 0.975), and low LOQ values (3.67-9.29 ug
mL~") were achieved even after 24 days of aging, lower than
those in previous pristine microplastic studies, highlighting
gNMR's sensitivity and robustness. Minor "H NMR signals in
aged PS and PVC (aromatic and aldehyde regions) indicated
degradation byproducts, supporting qNMR's potential in early-
stage degradation detection. These results underscore the
strength of a multi-analytical approach, with qNMR proving
a reliable, sensitive complement to SEM and FTIR for charac-
terizing aged microplastics.
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