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alyses of trace elements in snow
from an open-pit bitumen mining and upgrading
region
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Dust containing potentially toxic trace elements (TEs) from open pit mining, smelting of metallic ores,

aggregate extraction, and road dust is a major concern worldwide. The potential ecological significance

of TEs in these dusts, however, depends not only upon their concentrations, but also their physical and

chemical forms. Here, dusty snow from the Athabasca River (AR) which bisects an open-pit bitumen

mining and upgrading area in Canada was collected to perform size-resolved analysis of selected TEs.

Conservative, lithophile (Al, Th, Y), bitumen-enriched (Mo, Ni, V), and chalcophile (As, Cd, Pb, Sb, Tl)

elements were overwhelmingly found in the particulate fraction (>0.45 mm), with concentrations

increasing toward industry. The mineralogical composition of this fraction was similar to dusts from

natural and anthropogenic sources in the area. In the “filterable” fraction (<0.45 mm), Al, Mo, and V in

snow were elevated near industry. Within the filterable fraction, TEs occur predominantly in the “truly

dissolved” fraction (<300 Da): these are assumed to be ionic species and small molecules, and represent

potentially bioavailable species. However, the concentrations of TEs in this fraction were extremely low:

for perspective, Cd and Pb are similar to values reported for ancient Arctic ice. Within the filterable

fraction at midstream sites, up to 30% of Ni and 37% of Y were associated with organic colloids (z1 kDa)

which may be from bitumen and soil-borne sources, respectively. Except for V, TE concentrations in the

filterable fraction of snow were below the average values for the AR and the global average for

uncontaminated river water. Consequently, the threat to aquatic life in the river by TEs in snowmelt may

be limited.
Environmental signicance

Industrial activities such as open pit mining are thought to affect the environment due to the presence of trace elements (TEs) in the dusts they emit. Beyond
determining TE concentrations, it could be useful to also assess their association to colloids and ionic species. We studied the total, particulate, “lterable”, and
“truly dissolved” concentrations of TEs in the particulate matter occurring in snow deposited along a boreal river which bisects the Athabasca Bituminous Sands
(ABS) region in Canada. The 11 TEs studied were predominantly found in the particulate fraction. The “lterable” fraction was dominated by ionic and small
species (below 300 Da). However, the concentrations of TEs in this fraction were extremely low, suggesting limited bioaccessibility to aquatic organisms.
1. Introduction

Atmospheric dust is increasing considerably from industrial
development, changing land-use activity and climate change-
induced drought.1–3 Anthropogenic dust from wind erosion of
land-disturbed areas accounts for approximately 30 to 70% of
the total global dust ux.2 Signicant portions of these dusts are
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from open pit mining of coal,4,5 iron and base metal mining and
smelting,2,5–7 aggregate extraction,5,8 and road dust.6,9 Natural
sources include wind erosion of soils, especially deserts in arid
and semi-arid regions,2,10 sea salt spray,10,11 volcanic emis-
sions,10,11 and wildres.3,10

Mechanical processes generate coarse dust particles with
most of their mass present in the 2.5 to 10 mm diameter size
range.12,13 Fine particles (<2.5 mm) on the other hand, are
generated by combustion processes at high temperatures.10,13

Fine particles and nanoparticles (1–100 nm) tend to be more
toxic than the larger ones due to their smaller size and larger
surface area,4,11 posing environmental risks to living organ-
isms.10,14 The chemical composition of these dusts also plays
a critical role given that they may contain potentially toxic
Environ. Sci.: Processes Impacts, 2025, 27, 3403–3419 | 3403
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contaminants such as Cd, Pb, and other trace elements
(TEs).2,5,10,14

In the northern hemisphere, up to one-third of the land is
covered with snow for a minimum of three months per year.15,16

When wet deposition occurs, light absorbing dust particles can
darken snow and ice packs12,17 reducing albedo, accelerating
snowmelt and reducing snow cover.1,17 Snowmelt water is
a critical source of freshwater, accounting for 50 to 80% of total
runoff.16 In spring, the concentrations and bioaccessibility of
TEs in rivers and lakes receiving snowmelt can uctuate
markedly, presenting challenges for the protection of aquatic
organisms17,18 particularly during the spawning season.

Previous research has examined the size distribution of
particles containing TEs in order to better understand their
bioaccessibility and their potential bioavailability to living
organisms.18 These studies include surface waters of large
boreal rivers,19–26 permafrost peatlands,27 rainfall and snowmelt
runoff,28 and snow.24 Other studies focused on the analytical
challenges posed by available methodologies for size-resolved
analysis of TEs such as asymmetric ow eld-ow fraction-
ation (AF4) coupled to inductively coupled plasma mass spec-
trometry (ICP-MS).29–31

In the Athabasca Bituminous Sands (ABS) region of northern
Alberta, Canada, open pit bitumen mining and upgrading
generate considerable amounts of dust.32–35 Research conducted
in the area include studies of total, particulate (>0.45 mm), and
dissolved (<0.45 mm) TEs concentration in surface
waters,19,20,36,37 moss,38–40 peat bog porewaters,41 peat cores,42,43

lichens,44,45 berries,46,47 and snow.19,37,48–52 More precisely, our
previous studies in river waters and snow focused on the
spatial20,36,50 or spatiotemporal variation of TEs,20,49 the reactivity
of TEs in dust deposited on snow,48,49 the size-resolved analysis
of Pb in river waters and snow from peat bogs19 and the distri-
bution of TEs among colloidal and ionic forms in river
waters.20,25 These publications highlighted the abundance and
predominance of TEs in the particulate form, low concentra-
tions of elements of concern in the dissolved fraction (below
water quality guidelines), and limited solubility of the dusts
containing TEs.

Snowmelt, rainfall, peatland runoff as well as groundwater
and inputs from tributary rivers all contribute water to the lower
Athabasca River (AR), which bisects the ABS region.53,54 Given
that the AR drains into Lake Athabasca by forming the Peace-
Athabasca-Delta (PAD), a UNESCO world heritage site,55 it is
vital to understand how the size and speciation of TEs in dust
deposited within the ABS region may affect their bioavailability
in the river and its delta. Snow deposited here during the winter
months provides a convenient opportunity to address these
questions.

The aim of this research was to determine the signicance of
dust for TEs in snow. Specically, to determine the concentra-
tions of TEs that: (i) are potentially bioavailable (i.e. ionic
species and molecules smaller than 300 Da), (ii) occur as
colloidal materials within the fraction smaller than 0.45 mm (i.e.
“lterable” fraction), and (iii) are present in particulate form
(i.e. larger than 0.45 mm). For consistency, and to help guide the
reader, “dissolved” refers to the <0.45 mm fraction of a water
3404 | Environ. Sci.: Processes Impacts, 2025, 27, 3403–3419
sample, and “lterable” to the same size fraction in snow; “truly
dissolved” refers to the fraction smaller than 300 Da in both
sample types. The species in this size range are also assumed to
be directly bioavailable to living organisms, as they are capable
of passing through cell membranes.56

The elements of interest are conservative lithophile elements
(Al, Th, Y)57 which are indicators of mineral dusts, elements
enriched in bitumen (Mo, Ni, V),57,58 and chalcophile TEs (As,
Cd, Pb, Sb, Tl)57 which are of greatest concern. Given that
snowmelt provides direct access of TEs to surface waters, the
results are also discussed within the context of water quality
guideline values for the protection of aquatic life.

2. Materials and methods
2.1 Study area, sample collection, and sample processing

Bulk snow samples representing complete snow proles were
collected between February 24 and March 5, 2016 from 20 sites
along the Athabasca River (AR), 5 of its tributaries, and at
a reference site, Utikuma (UTK) located 264 km SE of the ABS
region (Fig. 1). Sites were classied as upstream, midstream,
and downstream with respect to their distance to the mid-point
between the two central bitumen upgraders (Table S1, SI) as
presented in previous studies.38,51

Sampling was conducted using ultra-clean procedures,
including acid-cleaned consumables (bottles, syringes and
lters) as described elsewhere.50 Details of the collection and
photographs of the study area and some of the samples are
provided in Section S1 and Fig. S1 respectively. Prior to pro-
cessing, the bulk samples were thawed overnight in a class-1000
clean room, located in the metal-free, ultraclean SWAMP labo-
ratory (https://swamp.ualberta.ca/). Once the samples had
melted, they were placed inside a metal-free class-100 air
clean cabinet. Four fractions were obtained from the melted
snow: (i) total (unltered, acidied); (ii) lterable (ltered,
acidied); (iii) colloidal and truly-dissolved (ltered, unac-
idied) and (iv) particulate (collected on lter membranes).
Potential loss of TEs due to adsorption of dust particles to the
polyethylene (PE) plastic bags was assessed as described in
Section S2. The percentage of these losses is summarized in
Table S3.

For total TE concentrations, a 2 mL aliquot was digested in
3 mL of concentrated HNO3 (sub-boiled twice) using high-
pressure microwave-assisted digestion (Ultraclave MLS, Mile-
stone).38,50 The use of HNO3 alone may be insufficient to achieve
complete sample decomposition, as TEs contained within
refractory mineral phases (e.g. quartz, monazite, rutile, titanite,
and zircon) are unlikely to be released (see recoveries in Table
S2). On the other hand, the addition of other reagents such as
HBF4 to dissolve refractory minerals could contribute to higher
blank concentrations59 and inadequate detection limits for
some TEs. Even though the term “quasi-total concentration” is
more accurate in this context, “total concentration” is employed
here given that this procedure provides good recoveries for most
of the TEs of environmental concern.59 Four certied reference
materials (NIST 1643f “Trace Elements in Water”, SPS-SW2
“Elements in Surface Water”, NIST 2709a “San Joaquin Soil”,
This journal is © The Royal Society of Chemistry 2025
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Fig. 1 Sampling locations along the Athabasca River (SAR) near the east and west banks, its tributaries, and at the reference site (UTK),
winter 2016.
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and IAEA-Soil 7; see Table S2), laboratory blanks, and replicates
selected randomly were also digested. As noted earlier, the
digestion method employed resulted in lower recoveries of
some elements (Table S2). For the lterable TE concentrations,
approximately 120 mL of sample was ltered through acid-
cleaned 0.45 mm polytetrauoroethylene (PTFE) lter
membranes. Half of this volume was collected inside a poly-
propylene (PP) bottle and acidied with HNO3 to reach a nal
concentration of 2%, whereas the other half was collected
inside a uorinated ethylene propylene (FEP) bottle and main-
tained unacidied.
2.2 Determination of TEs

Selected TEs such as indicators of dust (Al, Th, and Y), those
enriched in bitumen (Mo, Ni, V) as well as chalcophile elements
(As, Cd, Pb, Sb, and Tl) were determined using an ICP-MS (iCAP
RQ, Thermo Fisher Scientic). The limits of detection (LOD),
quantication (LOQ), method detection limit (MDL; for total
concentrations), as well as the precision (RSD), accuracy (%)
and recoveries (%) of the certied reference materials are listed
in Table S2. As mentioned in Section 2.1, the digestion method
used in this study resulted in low recoveries of some elements.
Therefore, the concentration of some TEs may have been
underestimated.

To determine the TE concentrations in the particulate frac-
tion (>0.45 mm), the dissolved fraction was subtracted from the
totals.50
This journal is © The Royal Society of Chemistry 2025
2.3 Size-resolved analysis of TEs in the lterable fraction of
snow

The samples that were ltered (<0.45 mm) and kept unacidied
were analyzed within 24–48 hours aer being processed using
asymmetrical ow eld-ow fractionation (AF4) equipped with
an auto injector (AF2000 MF and PN5300, respectively, Postnova
Analytics), coupled to a UV-visible absorbance detector (G4212
DAD, Agilent Technologies), and ICP-MS. The UV detector
measured the absorbance at a wavelength of 254 nm (A254),
which served as a proxy for organic matter (OM) concentrations.

Analytical conditions and settings are described in previous
publications,19,25,60 however a summary is presented in Section
S3 and the QA/QC parameters in Table S4. Of the 11 TEs pre-
sented here, Sb and Tl were not analyzed because integrable
peaks were either absent or small and similar to levels in the
blanks as reported in previous study about TEs in the surface
waters of the AR.25

Four subfractions can be obtained from the lterable snow
using this method, each of them associated with a specic
retention time (tr) and corresponding molecular mass (Mp): (1)
unretained materials and part of the primarily ionic and small
molecular species eluted in the void peak (tr z 445 s, Mpz 300
Da), (2) OM-associated species, co-eluting with organic matter
(tr z 550 s, Mp z 1 kDa), (3) small inorganic species eluted
before the crossow pump was turned off, with minimal overlap
with the organic matter peak (tr z 900 s,Mp z 15 kDa), and (4)
Environ. Sci.: Processes Impacts, 2025, 27, 3403–3419 | 3405
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large inorganic species eluted aer the crossow was shut off (tr
> 1800 s, Mp > 20.7 kDa).20,25

2.4 Scanning electron microscopy (SEM) and X-ray
diffraction (XRD)

Prior to these analyses, dust particles (>0.45 mm) from selected
locations (Firebag River, SAR-1.5, SAR-5, SAR-10, Muskeg River,
SAR-15, SAR-15.5, SAR-16, Steepbank River, SAR-18, SAR-19,
SAR-20, SAR-21, Clearwater River, SAR-UP2, and UTK; see
Fig. 1) were examined. The housing of the lters containing
dust particles was cut and opened to remove the lter
membranes.19,48

The major element composition, morphology, and size of
the particulate fraction were determined using an SEM equip-
ped with an energy dispersive X-ray spectroscopy (EDS) system
as described in our previous studies.48 To identify the miner-
alogical composition of these particles, XRD analyses were
performed directly on the lters using a Rigaku Ultima IV X-ray
diffractometer in the Earth and Atmospheric Sciences XRD
laboratory, at the University of Alberta (https://
cms.eas.ualberta.ca/xrd/). Filter blanks were also analyzed to
assess the contribution from the PTFE membrane to the
diffraction pattern.

2.5 Statistical analysis

The soware used for statistical analysis were R 4.2.0 and
MATLAB. Linear regressions were conducted using the lm
function to explore the relationship between selected conser-
vative lithophile elements (Al and Th), elements enriched in
bitumen, and potentially toxic TEs. Besides, Spearman corre-
lations were calculated at a p-value of 0.05 for particulate and
dissolved TE concentrations, and visualized using the corrplot
package. An ANOVA test was also performed in order to deter-
mine statistical differences of dissolved TE concentrations up,
mid, and downstream the ABS region and UTK, the reference
site. Finally, statistical fractogram deconvolution of the AF4-UV-
ICPMS data was employed to decompose the overlapping peaks
into each fraction using MATLAB 2021a.61,62

3. Results and discussion
3.1 Distribution of total, particulate, and lterable TEs in
snow

3.1.1 General trends. All TEs were predominantly found in
the particulate fraction (Fig. 2, 3, Tables 1, S5 and S7). These
results are similar to previous studies in the ABS region37,50,52

with the exception of Pb and Tl, and Ni and Sb, which were
previously reported to be more abundant in the lterable frac-
tion.37,52 It is also evident that TEs were more abundant in sites
located midstream of the industrial area (from Muskeg R. to
SAR-18) than at upstream (SAR-18.5 to SAR-UP2) and down-
stream locations (Firebag River to McK River). These spatial
trends have already been observed and are well documented not
only in snow37,48,50–52 but also in vegetation growing in the
area.38,46,63 Trace elements were also more abundant at sites
located within the ABS region than at UTK, the reference site,
3406 | Environ. Sci.: Processes Impacts, 2025, 27, 3403–3419
except for Sb (Fig. 2 and 3). The pH of the snow samples was
slightly acidic to slightly basic, with average values of 6.9 ± 0.6
(upstream), 7.3 ± 0.5 (midstream), and 6.6 ± 0.7 (downstream)
(Table S1), similar to snow samples collect in 2017, except at
SAR-5 and McK River.48

3.1.2 Conservative lithophile elements
3.1.2.1 Snow. The concentrations of total and particulate Al,

Th, and Y increased 5 to 6× from downstream to midstream of
industry, and 3 to 4× from upstream to midstream (Fig. 2). The
lterable fraction of these elements represents less than 1% of
the total (Table 1). The concentrations of lterable Al increased
approximately 8× from downstream to midstream. In addition,
lterable Al, Th, and Y increased 3 to 4× from upstream to
midstream (Fig. 2). The concentrations of Al, Th, and Y in the
lterable fraction at upstream and midstream locations in the
ABS region were either similar or higher (2 to 5×) than at the
reference site, UTK (Fig. 2 and Table S6). However, signicant
differences in the concentrations of lterable Al between the
ABS area and UTK were only observed at midstream locations
(Table S6).

3.1.2.2 Snow vs. river water. The lterable concentrations of
Al, Th, and Y in snow were 3, 4, and 14× respectively lower than
their average dissolved concentrations in the main stem of the
AR in autumn of 2014 (ref. 36) (Fig. 2, black dotted line). In
addition, the concentrations in snow samples were 5× (Th), 6×
(Al), and 9× (Y) lower than the global average dissolved
concentrations in river waters (Fig. 2, green dotted line).64 For
perspective, Al in the dissolved fraction of the AR (<0.45 mm) was
2× lower than the global average in river waters (<0.2 or 0.45
mm)36,64 (Fig. 2).

3.1.3 Elements enriched in bitumen
3.1.3.1 Snow. The concentrations of total and particulate

Mo, Ni, and V increased 17 to 26× from downstream to
midstream of industry, and 9 to 14× from upstream to
midstream (Fig. 2). The lterable fraction of these elements
represented less than 9% of the total (Table 1). Filterable Mo
and V concentrations increased between 2 to 7× toward the
centre of industrial activities (Fig. 2). Moreover, the lterable Ni,
Mo, and V concentrations were 2 to 32× greater upstream and
midstream than at UTK. These differences in concentrations
were only signicant for lterable V at midstream locations
(Fig. 2 and Table S6).

3.1.3.2 Snow vs. river water. Filterable concentrations of Ni
and Mo in snow were 3 and 8× respectively lower than their
respective concentrations in the dissolved fraction of the AR.36

Similarly, the concentrations of Ni, V and Mo in lterable snow
were 3×, 4×, and 5× lower than their concentrations in
uncontaminated river waters64 (Fig. 2). Again, for context V in
the AR was 3× lower than the global average in river waters36,64

(Fig. 2).
3.1.4 Chalcophile elements
3.1.4.1 Snow. The total and particulate concentrations of As,

Cd, Pb, Sb, and Tl increased 3 to 6× from downstream to
midstream, and 3 to 4× from upstream to midstream (Fig. 3).
The lterable fraction varied from 1 to 17% of the total (Table 1)
and demonstrated the following spatial patterns: (i) no increase
toward the centre of industrial operations (Pb and Tl), (ii)
This journal is © The Royal Society of Chemistry 2025
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Fig. 2 Average concentrations of total, particulate and filterable (<0.45 mm) Al, Th, Y (conservative lithophile elements), Mo, Ni, and V (elements
enriched in bitumen) in snow from upstream,midstream, and downstream locations (with respect to the industry), and at the reference site (UTK),
winter 2016. The horizontal black line represents the dissolved TE concentrations in the AR main stem in autumn of 2014 (ref. 36) whereas the
green line represents the global average (GA) dissolved (<0.2 or 0.45 mm) concentrations of TEs in river water.64 Notes: the map on the right side
shows the snow sampling locations in the ABS region along the Athabasca River (SAR) and its tributaries. The location of UTK is provided in Fig. S1
and Table S1 (SI). The red star represents the midpoint between bitumen upgraders. Error bars represent one standard deviation. LOD = limit of
detection, MDL = method detection limit, nd = not determined. Th and Mo concentrations at UTK are based on one location instead of the
average of two.
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amodest increase either from downstream to midstream (Sb) or
in both directions (As), or (iii) no clear trend (Cd) (Fig. 3). Of this
group of elements, lterable Cd and Pb showed signicantly
lower concentrations within the ABS region (at the 3 location
types for the former, and at upstream and midstream for the
latter) than at UTK. By contrast, lterable As and Tl concen-
trations were signicantly greater (up to 5×) at midstream
locations compared to UTK (Fig. 3 and Table S6).

3.1.4.2 Snow vs. river water. The average dissolved concen-
trations of these TEs in snow were 4 (Cd, Pb, Sb, Tl) to 12× (As)
lower than their respective concentrations in the AR36 (Fig. 3).
Similarly, the lterable concentrations of Sb and As in snow
from the ABS region were 6 to 19× respectively lower than in
uncontaminated river waters.64,65 In addition, the dissolved
concentrations of these ve potentially toxic chalcophile
This journal is © The Royal Society of Chemistry 2025
elements were 2 to 6× lower in the AR than in river waters
worldwide36,64 (Fig. 3).

3.2 Characterization of TEs in the particulate fraction of
snow and their potential sources

3.2.1 Mineral characterization and identication using
SEM and XRD. Scanning electron microscope analyses per-
formed on PTFE lters (see Section 2.4), revealed the presence
of particles with irregular shape and microaggregates, ranging
from less than 10 to 200 mm (Appendix A, selected images) as
reported in our previous studies.48,49 The elemental composition
obtained from the EDS spectra indicated the presence of Si, Al,
Ca and Fe, followed by S, Mg, K, Ti, Na, and traces of REEs (La,
Ce, Nd) and Zr (Appendix A). The XRD analyses of the same
samples indicated the presence of insoluble silicates (quartz;
Environ. Sci.: Processes Impacts, 2025, 27, 3403–3419 | 3407
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Fig. 3 Average concentrations of total, particulate and filterable (<0.45 mm) As, Cd, Pb, Sb, and Tl (chalcophile elements) in snow from upstream,
midstream, and downstream locations (with respect to the industry), and at the reference site (UTK), winter 2016. The horizontal black line
represents the dissolved TE concentrations in the AR main stem in autumn of 2014 (ref. 36) whereas the green line represents the global average
(GA) dissolved (<0.2 or 0.45 mm) concentrations of TEs* in river water.64 Notes: the map on the right side shows the snow sampling locations in
the ABS region along the Athabasca River (SAR) and its tributaries. The location of UTK is provided in Fig. S1 and Table S1 (SI). The red star
represents the midpoint between bitumen upgraders. Error bars represent one standard deviation. LOD = limit of detection, MDL = method
detection limit, nd = not determined. As and Sb concentrations at UTK are based on one location instead of the average of two. *For Tl, the
estimated mean natural concentration in river waters was used.65

Environmental Science: Processes & Impacts Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

4 
O

ct
ob

er
 2

02
5.

 D
ow

nl
oa

de
d 

on
 1

/2
6/

20
26

 7
:4

3:
44

 P
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
clay, feldspar, and mica-like phases), carbonates (calcite, dolo-
mite, and ankerite), and Ti oxides (anatase and rutile)
(Appendix B). Midstream and upstream locations showed more
mineral diversity in terms of clays (kaolinite, dickite, nacrite,
muscovite), micas (i.e. biotite minerals, but only midstream),
feldspars (albite and microcline, only upstream), and other
silicates such as enstatite (Appendix B). No mineral phases were
identied at UTK, the reference site, simply because the mass of
particles on the lter were not sufficient to perform this type of
analysis (Appendix B). However, dust particles at UTK are
usually smaller (<30 mm) and less abundant than at the ABS
region, and are composed of quartz, feldspars, and clay
minerals.39,40,48 Taking these results together, the composition
of the particulate fraction in the AR snow is similar to the
3408 | Environ. Sci.: Processes Impacts, 2025, 27, 3403–3419
mineral fraction of the ABS66–69 but also to other dust sources
such as limestone and aggregate used in the construction of
local roads.44,51,70

3.2.2 Source assessment using TE ratios, correlations, and
linear regressions in the particulate fraction. Several authors
have stated that it is still challenging to separate natural from
anthropogenic atmospheric sources of TEs in the ABS
region.34,71–74 Three methods summarized in Fig. 4, S3, S4 and
Table S8 were used in order to understand the geochemical
behaviour and possible sources of TEs in the particulate frac-
tion of the snow from the AR and its tributaries.

3.2.2.1 Trace element correlations. Aluminum, Th and Y are
considered as indicators of mineral dusts.19,38,51 Aluminum is
commonly used as an indicator of the abundance of clay
This journal is © The Royal Society of Chemistry 2025
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Table 1 Average percentages and concentrations of TEs in the particulate, filterable, and “truly dissolved” fractions of snow from the AR main
stem and its tributaries in winter 2016

Geochemical group TE

Total

“Truly dissolved”
(<300 Da)

Particulate fraction
(>0.45 mm)

Filterable fraction
(<0.45 mm)

% ng L−1 % ng L−1 % ng L−1

Conservative lithophile Al 99.8 3.5 � 3.6a 0.2 5.2 � 5.2a 80.0 4.5 � 4.7a

Th 99.6 780 � 894 0.4 1.2 � 0.4 86.5 1.0 � 0.2
Y 99.2 2050 � 2260 0.8 4.8 � 2.0 61.8 3.0 � 1.5

Enriched in bitumen Mo 90.9 2460 � 5860 9.1 86 � 109 97.7 86 � 109
Ni 93.3 16 � 40a 6.7 260 � 91 78.2 203 � 83
V 98.4 38 � 105a 1.6 200 � 232 95.5 194 � 231

Chalcophile As 91.0 972 � 1110 9.0 32 � 13 93.5 30 � 13
Cd 83.0 33 � 34 17 3.3 � 2.2 97.2 3.3 � 3.2
Pb 99.0 1750 � 1920 1.0 4.9 � 2.5 96.7 4.7 � 2.4
Sb 86.6 124 � 108 13.4 13 � 5.5 NA NA
Tl 96.8 45 � 43 3.2 0.9 � 0.3 NA NA

a In mg L−1. The lterable and “truly dissolved” percentages were calculated based on the data provided in Table S7. NA = not analyzed.

Fig. 4 (A) Pb/Th ratios in the particulate fraction of snow from UTK (reference site) and upstream, midstream, and downstream locations (with
respect to the industry) in winter 2016. The dashed lines represent the Pb/Th ratios in the Upper Continental Crust (UCC),79 in the bulk ABS,
mineral and bitumen fractions,58 and in tailings (see Table S7). The yellow area represents the range of Pb/Th ratios in petcoke (see Table S7). (B)
Linear regression between Pb and Th concentrations in the particulate fraction of snow from the Athabasca River (SAR) and its tributaries. Notes:
sites in green, red, and blue represent upstream, midstream, and downstream locations, respectively. The Pb/Th at UTK was calculated based on
concentrations from UTK-1 (see Table S5).
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minerals,38,75 whereas the latter pair are enriched in heavy
minerals and froth treatment tailings.76–78 Trace elements in the
particulate fraction showed positive correlations (r > 0.8) with
the conservative lithophile elements, except Sb and Mo (r < 0.8)
(Fig. S4). These strong correlations would suggest that TEs in
this fraction (>0.45 mm) have a common mineral source
including heavy minerals and clays.

3.2.2.2 Trace element ratios. Trace element ratios have been
previously reported in the ABS region not only in snow49–51 but
also in moss39 and peat bog porewaters.41 Focus here is placed
on Pb and Tl in the particulate fraction of snow given that these
elements are very toxic, they are enriched in bitumen, and have
This journal is © The Royal Society of Chemistry 2025
already been extensively discussed in previous publications.49,50

Lead and Tl were normalized to Al and Th and compared to
their respective ratios at UTK (the reference site), the Upper
Continental Crust (UCC),79 the bulk ABS and its mineral and
bitumen fractions,58 as well as to diverse geomaterials found in
the study area (Section S4, Fig. S3 and Table S8).

Lead/Th ratios at the ABS region were approximately 2×
lower than at UTK. The Pb/Th ratios at UTK were similar to
those reported in peat cores collected from the same site,42

which in turn were similar to Pb/Th reported in the cleanest
peat cores ever found, dating from pre-industrial times.80

Unfortunately, Tl was below the LOD at UTK. However, within
Environ. Sci.: Processes Impacts, 2025, 27, 3403–3419 | 3409
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the ABS location types, Pb/Th and Tl/Th were similar upstream,
midstream, and downstream of industrial operations (Fig. 4, S3
and Table S8). In addition, Pb/Th ratios in the ABS region were
double their equivalent ratios in the UCC. In contrast, Tl/Th
ratios were similar to the UCC.79 Many possible sources of
dust, ranging from dry tailings to road dust maybe be respon-
sible for these TEs in the particulate fraction (Table S8). For
example, Pb/Th and Tl/Th in tailings were similar to the ratios
in other industrial materials in the area such as petcoke, tail-
ings, and bulk ABS (Fig. 4 and S3). Thus, these element ratios
cannot be used to ascribe them to a specic dust source, but
they are comparable to many of the possible dust sources in the
area. A previous study conducted in the same area, suggested
that Pb in lichens collected near industry had an overlapping
signature with bulk ABS and tailings.81

Regarding the other chalcophile element ratios, they were
greater in the ABS region than at UTK given that the concen-
trations of As, Cd, and Tl in the latter were below the LODs or
MDLs (see Table S5). In addition, As/Th and Sb/Th in the
industrial area were below the ratios for the UCC79 while the
opposite was observed for Cd/Th and Cd/Al (Table S8).The As/Al
and As/Th ratios in the ABS region were very similar to their
respective ratios in road construction material (Table S8).
Previous studies have linked As to three types of sources (road
dust, raw oil sand dust. and road salt)51 while Sb may be asso-
ciated with fuel combustion, residential wood burning, and
waste combustion.82 Antimony can also be associated with truck
brake pads.83,84

3.2.2.3 Linear regressions. The increase in the concentra-
tions of particulate Pb and Tl toward industry was proportional
not only to the increase of Th (Fig. 4B and S3B) but also to that
of Al (Table S9), which is in agreement to what was found in the
acid-soluble fraction of snow.49 Arsenic and Sb behaved simi-
larly to Pb and Tl (Table S9). These results indicate that the
abundance of these elements in snow of the ABS region reect
the abundance of mineral matter in the samples.

The low R2 values (0.10 to 0.28) of elements enriched in
bitumen vs. Al and Th (Table S9) may be explained by specic
sites or “hotspots” at midstream (SAR-15, SAR-16 and SAR-17)
and downstream locations (SAR-18.5 and SAR-19) that have
concentrations that do not follow the spatial trends observed for
the other elements (Table S7). Snow collected at some of these
sites contained small black particles most likely to be petcoke
which is stockpiled in large amounts around the mines35,49 and
is known for elevated concentrations of V and Ni.85 The poor
correlation between Mo, Ni, and V with Al and Th, may reect
the sporadic occurrence of petcoke particles in snow samples.
3.3 Trace elements in colloidal and <300 Da fractions

3.3.1 General trends. In the ABS region, TEs in the lter-
able fraction of snow were mainly in the <300 Da fraction (Fig. 5
and Table S7). However, there are some exceptional elements
and sites. For example, at midstream locations, 37.2% of Y and
30.4% of Ni in this fraction on average were mainly associated
with OM. Downstream, the OM fraction ranged from <LOD to
47.5% of the lterable Th, Y, and Ni (Fig. 5 and Table S7). A
3410 | Environ. Sci.: Processes Impacts, 2025, 27, 3403–3419
study conducted in snow from Western Siberia (from the
vicinity of Barnaul city to the Ob estuary) reported that OM
colloids can originate from thermokarst lakes that freeze solid
during winter. These colloids may consist of organic aerosols,
humic-like substances, black carbon, and mineral dust coated
with organic matter. Freeze-thaw cycles can also contribute by
producing large colloidal particles and releasing low molecular
weight organic compounds.24

At UTK, the reference site, most TEs were also predominantly
found in the <300 Da fraction. The exceptional elements found
also in other fractions were Th and Pb (OM: 40.7 and 16%
respectively), Mo (small inorganic, 41.4%), and As (large inor-
ganic, 29.6%) (Table S7).

According to a previous study, the higher abundance of
certain elements in colloidal form in snow is linked to various
mechanisms of colloid formation, transformation, and trans-
port in the atmosphere, processes that remain poorly under-
stood. The study points to possible pathways such as the
fragmentation of y ash particles, condensation of volatile
compounds from industrial emissions, and the dissolution or
dispersion of soil minerals like clays. During winter, the sources
of dissolved elements and the atmospheric processes acting on
aerosols may determine the chemical composition of snow
water colloids.24

The ABS surface-mineable area spans roughly 4800 km2 and
is bordered by boreal forest, with numerous lakes and wetlands.
In addition, the lower Athabasca River contains many islands,
secondary channels, wetlands, and oodplain lakes.55 Addi-
tional features include agricultural land, several urban centers,
and wastewater treatment plants.86 Together, these observa-
tions underscore the potential inuence and diversity of both
natural and anthropogenic sources to the composition of the
lterable fraction of the snow. Hypotheses about specic sour-
ces will be discussed by class of elements.

3.3.2 Conservative lithophile elements. Between 62 to 87%
of the lterable Y, Al, and Th in snow occur in the <300 Da
fraction (Fig. 5, Tables 1 and S7). In the case of Al, the second
most abundant fractions at downstream and midstream loca-
tions were the small and large inorganic forms respectively
(Fig. 5 and Table S7). However, two sites were exceptional (SAR-
UP2 and SAR-5) and had considerable amounts of Al associated
with OM (Table S7).

At downstream locations, approximately 21% of Th was
associated with OM (Fig. 5 and Table S7). Similarly, and as
mentioned above, Y was mainly associated with OM, except at
sites SAR-10, SAR-18.5 and SAR-19 where the large inorganic
form contributed to 18 to 40% of the lterable fraction in snow
(Fig. 5 and Table S7). The forests of uplands and wetlands, and
their soils and sediments, represent important reservoirs of OM
in the ABS region. Therefore, the decomposition of plant matter
and the formation of metal- and mineral–organic complexes,
may help account for the occurrence of organically-bound Y.
Yttrium exhibits notable behaviour, in that it occurs in
a number of distinct forms in the lterable fraction of the snow,
including ionic species and small molecules as well as organic
and inorganic colloids. This diversity suggests that number of
natural and anthropogenic sources may be contributing to the
This journal is © The Royal Society of Chemistry 2025

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5em00334b


Fig. 5 Percentages of filterable (A) Al, Th and Y (conservative lithophile elements), (B) Mo, Ni, and V (elements enriched in bitumen, and (C) As, Cd,
and Pb (chalcophile elements) in the “truly dissolved” (<300 Da), OM-associated (z1 kDa), small inorganic (z15 kDa), and large inorganic (>20.7
kDa) forms, in snow from upstream, midstream, and downstream locations (with respect to the industry), winter 2016.

Paper Environmental Science: Processes & Impacts

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

4 
O

ct
ob

er
 2

02
5.

 D
ow

nl
oa

de
d 

on
 1

/2
6/

20
26

 7
:4

3:
44

 P
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
atmospheric deposition of this element. The lack of large
changes in the OM-associated fraction of Y at sites from
upstream to downstream suggests that there may be an ubiq-
uitous source of naturally occurring Y in this form (Table S7).
This journal is © The Royal Society of Chemistry 2025
3.3.3 Elements enriched in bitumen. Between 78 to 98% of
the lterable Ni, V, and Mo in snow were found in the <300 Da
fraction (Tables 1, S7 and Fig. 5). Up to 51.8% and 35.8% of Ni
midstream and downstream of industry respectively had an
Environ. Sci.: Processes Impacts, 2025, 27, 3403–3419 | 3411
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important contribution from organic forms which do not occur
at upstream locations (Fig. 5 and Table S7). Even though V and
Ni in bitumen are in the form of porphyrin complexes,87 and are
both enriched in petcoke,85 Ni is more volatile.88 We hypothesize
that the more volatile Ni porphyrins were more readily released
during upgrading and some have ended up in the snow.
Another possible explanation could be bacterial and algae
activity in snow,89,90 given that Ni is an essential TE to both
organisms.

3.3.4 Chalcophile elements. Between 94 to 97% of the
lterable As, Cd, and Pb in snow were found in the <300 Da
fraction (Tables 1, S7 and Fig. 5). As indicated in Section 2.3, Sb
and Tl were generally below the LOD using AF4-UV-ICPMS. A
small fraction of Pb (up to 17%, SAR-18.5) and a larger fraction
of As (up to 43%, SAR-UP2) were associated with large, inorganic
colloids mainly at upstream sites (Table S7): this fraction
consists predominantly of oxyhydroxides of Al and Fe. It is well
known that Pb and As in soils, sediments and natural waters are
oen associated with colloidal ferric hydroxide
(FeOOHs).22,25,26,91
3.4 Broader signicance for the protection of the aquatic life
of the AR watershed

3.4.1 Importance of the partitioning of TEs into particulate
and ltered forms of snow. There is ongoing concern about the
water quality of the lower AR watershed, which directly affects
the PAD,55,92 not only from the human health perspective but
also in terms of aquatic organisms.37,72,93–98 It is well known that
snowmelt plays a vital role in the AR ow,54,99,100 however the
literature regarding the potential impact of snowmelt to the
river is not conclusive.37,51,52,98,101,102 Water quality guidelines for
the protection of aquatic life in Alberta and in Canada20 are very
conservative, and generally consider total concentrations, pH,
and hardness,103,104 although some values are based on di-
ssolved concentrations (e.g. Al;101 Mn and Zn100). By contrast, the
European Union and the United States water quality standards
respectively for Cd and Pb105 and As, Cd, and Pb,106 are based on
dissolved concentrations. A previous publication reported that
the total concentrations of Cd, Cu, Pb, Hg, Ni, Ag, and Zn in
melted snow and/or water from the AR and the dissolved
concentration of Cd in snow collected in the ABS region
exceeded Canada's or Alberta's guidelines.37

Here, it is clear that the particulate fraction of TEs in snow is
the dominant one, similar to what was observed in the AR not
only in autumn36,74 but also in spring.20 It was reported that the
particulate fraction of the AR has limited bioaccessibility.74,107 It
is also expected that TEs in the particulate fraction of snow have
limited availability.

When snowmelt occurs, the waters of the AR experience a pH
depression, resulting in a short-term acidication of its
waters20,98 which in turn could increase TE concentrations.108,109

To date, only one publication has reported that of 12 TEs
analyzed during acidication episodes in the AR and its
tributaries, only Al and Cu may pose a risk to rainbow trout.98 It
has been suggested that the high alkalinity of the river and its
3412 | Environ. Sci.: Processes Impacts, 2025, 27, 3403–3419
buffer capacity, could attenuate the acidication process during
early spring48,86 limiting the availability of TEs.

Regarding the potential bioavailability of TEs, our study
shows that in the lterable fraction of snow, between 62 (Y) to
98% (Mo) of the TEs studied were in the <300 Da form (Table 1
and S7). Extremely low concentrations were found in this snow
fraction, with averages of 30± 12, 3.3± 3.2, and 4.7± 2.4 ng L−1

for As, Cd, and Pb respectively (Table 1). To put some of these
values into perspective, Pb and Cd concentrations from melted
and unltered snow from the Devon Island ice core (Nunavut,
Canada) -which represents snow accumulation from the mid-
Holocene-were 5.1 ± 1.4 ng L−1 (ref. 110) and 2.4 ± 0.5 ng L−1

(ref. 111) respectively. Thus, by any measure the concentrations
in snow of elements such as Cd and Pb which are mainly found
in the <300 Da and potentially bioavailable fraction, are
exceedingly small. In the cases of Sb and Tl, they are too small to
be determined, even in a metal-free, ultraclean laboratory.

3.4.2 Bioaccessibility and bioavailability of TEs. Exposure
of TEs to aquatic organisms such as sh occurs via aqueous
uptake of water-borne compounds through respiration and/or
through ingestion of food and sediment.112,113 The former
pathway considers the conventionally dened “dissolved” frac-
tion, which serves as an indicator of the amount of TEs that
could induce a toxic or benecial effect in a given organism.18 In
contrast, the latter is represented by the particulate material.
Based on our ndings, it seems as though the low concentra-
tions of TEs found in the <300 Da fraction of snow (Table 1)
upon release to the river as meltwater would have a negligible
impact on the health of aquatic organisms. However, bi-
oaccumulation and biomagnication process should also be
considered as these increase the concentrations of TEs over
time within specic target organs and within the trophic
chain.112,114

Although some leaching experiments under extreme acidic
conditions (pH < 1) have been conducted in snow in order to
determine the reactivity of TEs in dust particles,48–50 no studies
have assessed their gastric bioaccessibility. In vitro digestion
experiments simulating the composition of the gastric uids in
sh113 could serve as a proxy to better determine the impacts of
particulate TEs in snow that enter the AR and contribute to its
sediment supply.

4. Conclusions

A number of studies conducted in the ABS region have now
shown that the concentrations of TEs increase toward the centre
of the industrial zone, following the general pattern of dust
deposition.37,51,52 Based upon our own work,48–50 we have further
scrutinized the relationships between dusts and the TEs they
contain. In snow collected in 2016, TEs of environmental
interest, including the chalcophile elements, occur predomi-
nantly in the particulate fraction, and exhibited strong corre-
lations with Al and Th: this indicates that mineral particles are
the dominant carriers. Elemental ratios further suggested
contributions from both natural and anthropogenic sources in
the area. Here, we show that, within the lterable fraction, TEs
were primarily found in the <300 Da fraction: this fraction
This journal is © The Royal Society of Chemistry 2025
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represents ionic and small molecules which can cross cell
membranes and are readily assimilated by organisms. However,
the concentrations of TEs in this fraction are extremely low: for
example, Y, Th, Cd, and Pb were all below 10 ng L−1. The use of
AF4-ICPMS to obtain size-resolved analyses has provided valu-
able new insights regarding the chemical forms of TEs found in
snow. Having this instrumentation in a metal-free, ultraclean
lab facility provides a very important cautionary tale: TEs may
occur predominantly in the form of ionic species and small
molecules, and yet have limited ecological signicance, if they
occur at the very low concentrations reported here.

Because TEs in snow from the ABS region are mainly in the
form of dusts made up of relatively large, mineral particles, and
hosted in stable mineral phases, their release to natural waters
is expected to be limited. The extent to which snow in the ABS
region contributes to TE loads in the AR depends on two factors:
the hydrological signicance of snowmelt in the ABS region
versus the rest of the AR watershed, and the concentrations of
the elements in the snowpack. Hydrological considerations are
beyond the scope of our work, but clearly, the concentrations of
Mo and Ni (elements enriched in bitumen) and As, Cd, Pb, Sb
and Tl (chalcophile elements) in snow of the ABS region are low
compared to the dissolved fraction of the AR. Thus, snowmelt in
the ABS region would be expected to dilute the concentrations
of these elements in the river, not increase them.

In summary, our ndings clearly show that mining and
upgrading activities have certainly increased TE concentrations
in snow toward industry, the environmental signicance of
these elements may be limited, given their association with
comparatively large particles of insoluble minerals. While ionic
species and simple molecules may dominate the lterable
fraction of the snow, their concentrations are extremely low.
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