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ace electronic landscape of
solution-processed CuIn(S,Se)2 thin-films as
a function of the Cu/In ratio

Ye Ma,a Alice Sheppard,ab Jacques D. Kenyon, c Jude Laverock, a

Nada Benhaddou,c Valentina Corsetti,a Jake W. Bowers c and David J. Fermin *a

This study explores the influence of the Cu/In ratio, ranging from 0.80 to 1.10, on the surface composition,

electronic landscape, and photovoltaic (PV) performance of solution-processed CuIn(S,Se)2 (CISSe) thin

films. X-ray fluorescence (XRF) confirmed that the Cu/In ratio in the CISSe films closely matches that of

the precursor solution, while X-ray diffraction (XRD) indicated a consistent Se/(Se + S) ratio of 0.55

across all samples. In contrast, X-ray photoelectron spectroscopy (XPS) revealed that the surface Cu/In

ratio is approximately 30% lower than the bulk value. CISSe devices fabricated in a standard substrate

configuration (SLG/Mo/CISSe/CdS/i-ZnO/Al : ZnO) exhibited the highest power conversion efficiency

(PCE) of 9.1% at a Cu/In ratio of 0.95. As the Cu content increased, PCE dropped sharply, accompanied

by a reduction in band tailing (decrease in bulk disorder). For the first time, energy-filtered

photoemission electron microscopy was used to reveal a direct correlation between PV performance

and the evolution of the surface electronic landscape. The highest PCE corresponded to CISSe

absorbers with a mean work function (WF) of 4.9 eV. Increasing the Cu/In ratio beyond 0.95 led to

a significant decrease in mean WF. Notably, at a Cu/In ratio of 1.10, nanometer-sized domains with WF

values as low as 3.9 eV emerged. These features are discussed in the context of the complex interplay

between bulk and surface disorder and their impact on PV performance.
Broader context

Solution-processing of inorganic thin-lm absorbers offers a scalable and cost-effective route for fabricating photovoltaic devices. This method is particularly
well-suited for substrates with diverse functionalities, including exibility, transparency, and complex surface geometries. These approaches involve casting
molecular precursors onto a substrate, followed by reactive annealing to form the semiconductor layer. The structure and optoelectronic properties of the
compound semiconductors are sensitive to the composition, coordination chemistry, and rheological behavior of the precursor solution. CuIn(S,Se)2 has
garnered signicant attention due to the promising power conversion efficiencies achieved in solution-processed devices. Here, we investigate how the Cu/In
ratio in the precursor solution inuences the structure, morphology, and photovoltaic performance of CuIn(S,Se)2 devices. Our ndings show that device
performance markedly declines when the bulk Cu/In ratio exceeds 1.0, despite no signicant changes in lm structure or morphology. For the rst time, we
demonstrate—using energy-ltered photoemission electron microscopy—that this performance drop is linked to nanometer-sized Cu2−xSe surface islands
exhibiting work-function values as low as 3.9 eV, which are formed even when the surface Cu/In ratio is 0.8. Our study highlights the intricate nature of the
surface electronic landscape in compound semiconductors and its critical impact on photovoltaic performance.
Introduction

Chalcopyrite Cu(In,Ga)(S,Se)2 (CIGSSe) and CuIn(S,Se)2 (CISSe)
based thin-lm solar cells are some of the most promising thin-
lm photovoltaics (PVs) due to their high absorption
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coefficients, tunable and direct bandgap, and long-term
stability.1 A state-of-the-art energy conversion efficiency of
23.64% has been achieved for a CIGSSe solar cell deposited
using co-evaporation.2 In an effort towards decreasing
manufacturing costs, solution-based processing methods have
been considered as an alternative to vacuum deposition.3–5

Solution-processed CISSe solar cells have surpassed 14% power
conversion efficiency by conditioning the substrate surface and
physical properties of the solvent in the precursor solution,6,7

which is close to the record efficiency obtained by physical
vapor deposition methods (15.0%).8 As expected for chalco-
genides, the bandgap of CISSe can be adjusted in the range of
1.04–1.53 eV by tuning the S and Se ratio,9 and some studies
EES Sol., 2025, 1, 1093–1101 | 1093
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suggest that sulfur-containing CISSe can reduce defect densi-
ties, thus improving carrier lifetime and device stability.10,11

High efficiency solution-processed CISSe devices are typi-
cally linked to sub-stoichiometric Cu/In ratio of 0.90–0.95,12,13

which have been rationalized in terms of the role of intrinsic
point defects such as vacancies (VCu), interstitials (Cui) and
antisites (InCu).14,15 Furthermore, in Cu-poor chalcopyrite,
ordered vacancy compounds (OVC, i.e. CuIn3Se5 or CuIn5-
Se8)16,17 can be unintentionally formed during selenization.
Copper selenide (Cu2−xSe) secondary phases in Cu-rich
compositions are oen reported, which have a signicant
impact on device performance.18 However, it has also been re-
ported that Cu-rich CISe shows improved performance due to
its passivated defects and large grain morphology.19 Our
previous analysis on solution processed CISSe, based on vari-
able temperature admittance and photoluminescence spec-
troscopy, have shown signicant contributions of surface
recombination, identifying grain growth as a key parameter to
control.20 Consequently, there is a delicate balance of morpho-
logical and opto-electronic parameters linked to Cu/In ratio in
the lm which requires further investigation.

In this study, we uncover the impact of Cu/In ratio on the
complex surface electronic landscape of solution processed
CISSe. We rst investigated the device properties, phase
formation, and morphology associated with Cu/In ratios
between 0.80 and 1.10. The champion device was measured
with a Cu/In ratio of 0.95, exhibiting a power conversion effi-
ciency (PCE) of 9.1% and an open-circuit voltage decit (VOC,def)
of 431 mV. XPS analysis shows that all lms are highly Cu-poor,
with Cu/In ratios ranging from 0.42 to 0.62. Sub-micron reso-
lution energy-ltered photoemission electron microscopy (EF-
PEEM) shows, for the rst time, complex spatial variations of
the work functions which are linked to surface chemical
disorder. As the bulk Cu/In ratio increases above 1, islands with
work functions as low as 3.9 eV are generated across the surface,
which are assigned to surface conned copper selenide phases.
Our analysis concludes that the complex dependence of device
performance with Cu/In ratio is the result of delicate balance
between a decrease in bulk disorder and an increase in surface
disorder with increasing Cu/In ratio.

Results and discussion

The impact of Cu/In ratio on PV metrics of CISSe solar devices
are shown in Fig. 1a–d (see also Table S1 in the SI). As described
in the experimental methods section of the SI, CISSe were
prepared by sequential spin-coating steps of a precursor solu-
tion containing thiourea, CuCl, and InCl3 in a 75 : 25
dimethylformamide/isopropyl alcohol mixture. As shown in our
recent study on solution processed CZTSSe, this solvent mixture
exhibits the appropriate rheology for deposition of homoge-
neous precursor lms.21 Throughout this study, CISSe
absorbers will be referred to by their bulk Cu/In ratio, 0.80, 0.95,
1.00 and 1.10 obtained from X-ray uorescence (XRF). As shown
in Table S2, the XRF data follows closely the Cu/In ratio in the
precursor solution. The box plots in Fig. 1a–d show that the
maximum PCE is achieved in devices with Cu/In ratio of 0.95,
1094 | EES Sol., 2025, 1, 1093–1101
which is primarily determined by the open circuit voltage (VOC)
and, to a lesser extent, ll factor (FF). Cu-rich phases also show
a signicant drop in the short-circuit current (Jsc).

Fig. 1e display illuminated and dark J–V curves and EQE of
the champion cells for each Cu/In composition, as summarized
in Table S3. CISSe solar cells with a Cu/In ratio of 0.95 gave
a champion PCE of 9.1%, with VOC of 533 mV, Jsc of 26.4 mA
cm−2 and FF of 64.7%. The PCE decreased for absorbers with
Cu/In ratios of 1.00 and 1.10, to 8.9% and 6.2%, respectively.
The EQE spectra (Fig. 1f) show that current losses have contri-
butions from the CdS absorption, reection losses, and, as
shown below, some transmission losses may also occur as the
lms thickness is below 600 nm. The key observation from this
data is the VOC decit (VOC,def), decreasing from 486 mV to
431 mV upon increasing the Cu/In ratio from 0.80 to 0.95, and
then increasing to 504 mV for Cu/In-1.10 (Table S3), indicating
that Cu/In-0.95 exhibits the lowest charge recombination losses
of the series.22 The Urbach energy (EU) was also extracted from
EQE, as displayed in Fig. 1g.23 The EU decreases from 21.9 to
16.9 meV with increasing Cu/In ratios, suggesting a reduction in
band edge uctuations and bulk disorder with increasing Cu
content.24 Similar observations have also been reported for co-
evaporated double-graded CIGSSe absorbers.25–27 Also, Cu-poor
devices exhibit higher saturation current density, suggesting
a more signicant bulk recombination (Table S3). This inter-
esting observation reveals that the overall device performance is
not only determined by the bulk opto-electronic properties of
the absorber.

Fig. 2a depicts the X-ray diffraction (XRD) patterns of lms
fabricated by different composition precursors. Regardless of
the Cu/In ratio, the (112), (220) and (312) crystallographic
planes located at around 27.1°, 46.5°, and 53.5° support the
presence of polycrystalline CISSe phase (JCPDS 65-2732 and
JCPDS 87-2265). Fig. S1 examines more closely the range of 20°
to 40°, conrming that no diffraction features attributed to
Cu2Se and In2Se3 secondary phases are observed in this range.
Based on the peak position, the estimated Se/(Se + S) of all CISSe
absorber is around 0.55, indicating a high replacement of sulfur
by selenium and consistent with the band gap values estimated
from EQE. Fig. 2b shows the Raman spectra, where the lms
exhibited characteristic CISe (175 and 220 cm−1) and CIS (295
and 320 cm−1) peaks. The peak at 159 cm−1 is within resonant
range of CuIn3Se5 OVC.17,28 Fig. S2 shows the normalized peak
ratio of the OVC-related mode to CISSe A1 mode decreasing with
increasing Cu/In ratio, indicating OVCs are more prevalent with
Cu-poor lms.29,30 It should be mentioned that Cu2Se phases are
characterized by broad features Raman bands at 260 and
290 cm−1, while CuSe exhibits well dened strong Raman
features at 260, 320 and 470 cm−1.31–37 None of these Raman
modes are observed in the spectra shown in Fig. 2b, regardless
of the Cu/In ratio.

The top-down SEM images of the CISSe thin-lms with
various Cu/In ratios are shown in Fig. 3a–d, exhibiting densely
packed polygonal grains for all samples. Although few smaller
grains are observed in Cu/In 0.80 lms, no systematic changes
in the thin-lmsmorphology can be seen with an increasing Cu/
In ratio. Cross-sectional SEM images (Fig. 3e–h) exhibit high
© 2025 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5el00116a


Fig. 1 (a–d) Statistical distribution of the photovoltaic parameters for devices with varying Cu/In ratios. (e) Illuminated and dark J–V and (f)
external quantum efficiency (EQE) characteristics of champion devices with varying Cu/In ratios, alongwith (g) plots of ln(−ln(1− EQE)) versus E–
Eg extracted from EQE.

Fig. 2 (a) XRD patterns and (b) Raman spectra with 488 nm excitation laser of Cu/In-0.80 (red), Cu/In-0.95 (blue), Cu/In-1.00 (green), Cu/In-1.10
films (purple).

© 2025 The Author(s). Published by the Royal Society of Chemistry EES Sol., 2025, 1, 1093–1101 | 1095
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Fig. 3 Top-view SEM images of Cu/In-0.80 (a), Cu/In-0.95 (b), Cu/In-1.00 (c), Cu/In-1.10 absorbers (d). Cross-section SEM images of Cu/In-
0.80 (e) Cu/In-0.95 (f), Cu/In-1.00 (g), Cu/In-1.10 absorbers (h).
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compact lms with a thickness ranging from 550 to 580 nm. An
additional contrast in the cross-section analysis can be seen in
the boundary between the absorber and the Mo support, which
is associated with the Mo(S,Se)x formed during selenization
step. It is important to mention that the addition of SeS2 to the
graphite box regulates the excessive selenization of the Mo layer
observed in our previous work, at the expense of S content in the
lm, which increases the band gap.20

Fig. 4a and b shows the X-ray photoelectron spectroscopy
(XPS) of Cu 2p and In 3d as a function of the bulk Cu/In ratio.
The Cu and In peak position, broadening and orbital splitting
are similar for all compositions, corresponding to Cu+ and In3+,
respectively.38 Fig. S3a and b show the Se 3d and S 2p/Se 3p XPS
spectra, which are comparable for all samples. Interestingly,
a low intensity Na 1s peak is observed arising from the diffusion
of Na from the SLG during rapid thermal annealing (Fig. S3c).39

As described in Experimental methods (SI), the lms were pre-
treated using Ar+ to remove surface contaminants. Fig. S4 shows
the XPS spectra of Se 3d for sample Cu/In-0.80 before and aer
Fig. 4 XPS binding energy profiles of (a) Cu 2p and (b) In 3d for CISSe ab
Cu/In-1.10 (purple) ratios. (c) Cu/In surface ratio as a function of Cu/In
determining the peak areas.

1096 | EES Sol., 2025, 1, 1093–1101
surface pretreatment, conrming that adventitious oxygen
residuals and contaminates are successfully removed. Fig. 4a
and b also shows a correlation between the intensity of Cu 2p, In
3d and the bulk Cu/In precursor ratio.39 As displayed in Fig. 4c,
the surface Cu/In ratio extracted from the XPS spectra show
a signicant Cu depletion, with values approximately 30% lower
than in the bulk. As shown in Fig. S5, Cu 2p and In 3d spectrum
of the Cu/In-1.00 absorber are used to demonstrate the data
analysis procedure. Cu surface depletion has been extensively
reported in the presence of alkali elements, which can generate
surface conned alkali-In–Se.25,40–47 Alkali-In–Se secondary
phases have been linked to a decrease in interfacial recombi-
nation rate, thus increasing VOC and FF.48 Fig. S6 illustrates the
elemental distribution across the Cu/In-0.95. The data conrms
the presence of Na across the lm, as well as relatively homo-
geneous distributions of Cu and In in a ratio consistent with the
XRF analysis (Table S2). These observations conrm the diffu-
sion of Na from the substrate upon annealing.
sorbers of Cu/In-0.80 (red), Cu/In-0.95 (blue), Cu/In-1.00 (green), and
bulk ratio. Error bars in (c) represent statistical errors associated with

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 5 shows sub-micron resolution effective work function
(WF) maps constructed from energy-ltered photoemission
electron microscopy (EF-PEEM) analysis of CISSe absorbers
with the various Cu/In ratio. EF-PEEM maps were recorded
under monochromatic He I excitation (21.22 eV) with a spatial
resolution of 100 nm. The 20 mm × 20 mm eld map provides
a wealth of information in relation to the surface electronic
landscape of CISSe. As shown in Fig. S7 and Table S4, tting the
WF spatial distribution to a Gaussian function enables us to
quantify the center of the distribution and the standard devia-
tion which can be linked to spatial inhomogeneities in the
surface electronic landscape. Cu/In-0.80 shows a narrow spatial
distribution of WF centered at 4.85 eV, which increases to
4.90 eV for Cu/In-0.95. As the Cu content further increases, the
center of the WF distribution sharply drops to 4.55 eV. It is
interesting to notice that the non-monotonic trend of WF center
with Cu/In ratio mirrors the trend of the device VOC, as di-
scussed further below. The standard deviation also exhibits
a complex dependence with the Cu–In ratio, varying between 54
to 102 meV. However, the most striking aspect in this analysis is
the long tail towards low WF values observed in the case of Cu/
In-1.10. The number of WF counts below 4.3 eV is several orders
of magnitude smaller than the WF center, indicating that these
are localized nanometer scale domains. The emergence of these
domains coincides with the drastic drop in device performance.
Fig. 5 3D photoemission WF maps of the Cu/In-0.80 (a), Cu/In-0.95 (b

© 2025 The Author(s). Published by the Royal Society of Chemistry
A variety of parameters can affect the spatial distribution of WF,
including topography, local surface potentials and surface
conned phases contributions.21,49–52 However, given that the
topographic features of the lms are rather similar across the
composition range, the low WF hot-spots can be linked to
surface conned Cu2−xSe phases which are characterized by WF
values in the range of 3 eV.53–55 Although it could be expected
that the formation of these secondary phases would take place
at higher Cu content, it is important to consider that the lm
surfaces are substantially Cu depleted in comparison to the
bulk. As concluded from the Raman analysis (Fig. 2b), there is
no evidence of binary Cu chalcogenide phases observed in the
bulk. These features are extraordinarily difficult to probe by
other techniques just by the virtue of being conned to discreet
sub-micron islands at the surface of the absorber.

Fig. 6a contrasts the ultraviolet photoelectron spectra (UPS)
of the CISSe lms as a function of the Cu/In ratio. Cu/In-0.80
and Cu/In-0.95 exhibits broad features in the valence band
(VB) spectra centered at 4.5 and 7.5 eV, which are in good
agreement with spectra reported of Cu-poor CISSe.56–58 These
features clearly sharpen in Cu/In-1.00 lms, which is consistent
with VB spectra reported in CuInSe2.59 The lineshape of the VB
spectrum changes signicantly for Cu/In-1.10, extending
beyond 10 eV in the binding energy scale. These features clearly
sharpen in Cu/In-1.00 lms, which is consistent with VB spectra
), Cu/In-1.00 (c), Cu/In-1.10 (d) CISSe films.

EES Sol., 2025, 1, 1093–1101 | 1097
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Fig. 6 (a) Normalized UPS spectra of the CISSe absorbers of Cu/In-0.80 (red), Cu/In-0.95 (blue), Cu/In-1.00 (green), Cu/In-1.10 ratios (purple).
(b) Summarized Urbach Energy, WF center and (c) VOC,def as a function of Cu/In ratios.
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reported in CuInSe2.59 The lineshape of the VB spectrum
changes signicantly for Cu/In-1.10, extending beyond 10 eV in
the binding energy scale. This spectral responses exhibit similar
features to those reported for Cu2Se.60,61 Furthermore, a tail in
the onset of electron photoemission is observed in the Cu/In-
1.10 spectrum, consistent with tail in WF values. These obser-
vations provide further evidence that the regions of low WF
observed in the EF-PEEM maps are associated with surface
conned sub-micrometer CuxSe phases.

As displayed in Fig. 6b and c, the combination of EF-PEEM
data and PV device metrics reveal some important aspects in
relation to the composition dependence of CISSe thin lms. As
Cu/In increases, we observed a close correlation between EU and
WF center, revealing a complex relation between bulk disorder,
ordered vacancy compounds (OVC) and the Fermi level. Cu-poor
chalcopyrite contains OVCs as well as InCu antisites,19,62 while
increasing the Cu content leads to more ordered structures with
larger grains.18 On the other hand, Fig. 6c shows that the VOC,def
sharply increases as the bulk Cu/In ratio increases above 0.95,
which is also consistent with previous studies on high efficiency
CISSe.63 EF-PEEM reveals a broadening of the spatial distribu-
tion of WF values, with evidence of the formation of surface
conned binary Cu chalcogenides phases as the surface Cu/In
ratio increases just above 80%.63 EF-PEEM reveals a broad-
ening of the spatial distribution of WF values, with evidence of
the formation of surface conned binary Cu chalcogenides
phases as the surface Cu/In ratio increases just above 80%. This
behavior could be the manifestation of the transport rates of
Cu+ vs. Na+ under our specic annealing conditions. Conse-
quently, we anticipate that introducing alkali ions in the
precursor solution, sodium content in the substrate and
annealing temperature can signicantly affect the emergence of
these low WF surface sites.
1098 | EES Sol., 2025, 1, 1093–1101
Conclusions

This work reveals a complex relationship between bulk and
surface disorder in solution-processed CISSe thin lms and its
impact on optoelectronic properties and photovoltaic perfor-
mance. The highest PCE was achieved at a Cu/In ratio of 0.95,
which also exhibited the highest VOC in the series. As the Cu/In
ratio increased, both VOC and Jsc declined signicantly, despite
no observable changes in bulk structural parameters. Interest-
ingly, band tailing, estimated from EQE spectra, systematically
decreased with increasing Cu/In ratio.

Bulk composition analysis conrmed a strong 1 : 1 correla-
tion between the Cu/In ratio in the precursor solution and the
annealed CISSe lms. However, XPS revealed a substantial
depletion of Cu at the surface, with surface Cu/In ratios
approximately 30% lower than in the bulk. EF-PEEM analysis
showed that the mean surface WF peaked at 4.90 eV for a Cu/In
ratio of 0.95, then dropped to 4.55 eV at higher Cu content. Most
notably, nanoscale-sized domains with WF values as low as
3.9 eV appeared at a Cu/In ratio of 1.10. These domains are
attributed to surface-conned Cu2−xSe islands, which form
even when the surface remains Cu-poor. Although these highly
conned islands are undetectable by conventional techniques,
such as Raman spectroscopy, they exert considerable inuence
on PV device performance.
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44 A. Loubat, S. Béchu, M. Bouttemy, J. Vigneron, D. Lincot,
J.-F. Guillemoles and A. Etcheberry, Cu depletion on
Cu(In,Ga)Se2 surfaces investigated by chemical
engineering: An x-ray photoelectron spectroscopy
approach, J. Vac. Sci. Technol., A, 2019, 37, 041201.

45 P. Jackson, R. Wuerz, D. Hariskos, E. Lotter, W. Witte and
M. Powalla, Effects of heavy alkali elements in Cu(In,Ga)
Se2 solar cells with efficiencies up to 22.6%, Phys. Status
Solidi RRL, 2016, 10, 583–586.

46 J. Keller, H. Aboulfadl, L. Stolt, O. Donzel-Gargand and
M. Edoff, Rubidium Fluoride Absorber Treatment for
Wide-Gap (Ag,Cu)(In,Ga)Se2 Solar Cells, Sol. RRL, 2022, 6,
2200044.

47 A. Stokes, M. Al-Jassim, D. Diercks, A. Clarke and B. Gorman,
Impact of Wide-Ranging Nanoscale Chemistry on Band
Structure at Cu(In, Ga)Se2 Grain Boundaries, Sci. Rep.,
2017, 7, 14163.

48 N. M. Martin, T. Törndahl, E. Wallin, K. A. Simonov,
H. Rensmo and C. Platzer-Björkman, Surface/Interface
Effects by Alkali Postdeposition Treatments of
(Ag,Cu)(In,Ga)Se2 Thin Film Solar Cells, ACS Appl. Energy
Mater., 2022, 5, 461–468.

49 D. Tiwari, M. Cattelan, R. L. Harniman, A. Sarua, A. Abbas,
J. W. Bowers, N. A. Fox and D. J. Fermin, Mapping
Shunting Paths at the Surface of Cu2ZnSn(S,Se)4 Films via
Energy-Filtered Photoemission Microscopy, iScience, 2018,
9, 36–46.

50 D. Tiwari, M. Cattelan, R. L. Harniman, A. Sarua, N. Fox,
T. Koehler, R. Klenk and D. J. Fermin, Impact of Sb and
Na Doping on the Surface Electronic Landscape of
Cu2ZnSnS4 Thin Films, ACS Energy Lett., 2018, 3, 2977–2982.

51 D. Tiwari, M. V. Yakushev, T. Koehler, M. Cattelan, N. Fox,
R. W. Martin, R. Klenk and D. J. Férmin, Mapping the
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