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Thermal and photodegradation mechanism of (FA-
MA)PbIl; perovskite and spiro-OMeTAD captured by
in situ EPR spectroscopyt
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and Frédéric Sauvage (&*?

A comprehensive description of halide perovskite degradation is still lacking. Light and temperature are
herein combined as stressors to gain novel insights into the involvement of free carriers in the
degradation of (FAg73MAq »7)Pb(lp 945Bro.055)3s and spiro-OMeTAD. In situ EPR spectroscopy is at the core
of this study because of its ability to probe free carriers with high sensitivity. The results are corroborated
with in situ X-ray diffraction, and thermogravimetric and calorimetric analysis to link the generation of
free carriers with long-range structural modification, gas release and heat exchange during degradation.
It is highlighted that temperature-induced perovskite decomposition does not involve radicals, in
contrast to the final stage of the decomposition, which involves radicals localized on the formamidinium.
When combined with light, the rise in spin concentration correlates with the increasing rate of the
degradation compared to that in darkness. The de-doping reaction of spiro-OMeTAD is observed up to
its crystallisation temperature (128 °C). Finally, by combining light, temperature and an external magnetic
field, we provide the first evaluation of the room-temperature exciton binding energy for (FAq73MAg »7)
Pb(lg 945Bro 0s5)3 for which a value of 43 meV was determined.

Halide perovskite materials have significant potential to revolutionize various fields related to optoelectronics, in particular for photovoltaics for which a never
before reached level of performance has now been achieved. The main attributes of these materials stem from a combination of unique photophysical properties
and the richness of the composition space, which overall can be adapted to specific needs. However, significant challenges in achieving long-term stability
remain to fully capitalize on the efforts in material development and properties. To capture degradation mechanisms, it is important to combine very sensitive
techniques to probe the seeds, correlated with tools sensitive to the long-range, together with an in situ approach to reveal in real time the failure mechanisms
without having to stop the ageing and characterization of the event under non-stressing conditions. In this work, we combine different techniques and provide
a correlative dataset through in situ electron spin resonance to assess the involvement of free carriers, in situ X-ray diffraction to link carriers to structural
degradation and a thermogravimetric/calorimetric approach combined with mass spectrometry to obtain additional information regarding formation of volatile
compounds and heat exchange during degradation. This study reveals in real time the involvement of the free carriers generated in a-FAPbI; and spiro-OMeTAD
upon temperature and light. New insights are provided on the step-by-step breakdown of the perovskite and spiro-OMeTAD materials when exposed to
temperature and when combined with light as an additional stressor. This approach provides crucial insights for the community focusing on strengthening

perovskite materials, interfaces and overall stack stability.

Introduction

Significant achievements have been made in raising hybrid
halide perovskite performance, mainly through molecular
passivation of non-radiative electronic defects, composition
engineering and interface control. These unprecedented efforts
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have reinforced the credible idea that perovskite technology will
be at the forefront of thin-film photovoltaics. Today, power
conversion efficiencies (PCEs) of 26.7% in laboratory cells,
18.6% in small modules (810 cm?®) and 34.5% in monolithic
materials (2 terminal) in tandem with Si (1 cm® active area) have
been reported.”* One important asset of perovskites lies in the
vast chemical richness offered by the possibility of combining
different monovalent cations, including organics in the A site,*
potentially mixing lead with tin, bismuth or other elements in
the B site,* and finally through anionic substitution with halides
or pseudo-halides.” This wide range from simple to more
complex intermixing of elements contributes to an almost
endless composition space, which not only enables fine optical
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bandgap control® but also extends the range of functional
physical properties more globally. Perovskites gather a unique
combination of physical attributes, such as structural softness
enabling long-range optical phonon dispersion’ and self-
healing properties,® strong electron-phonon coupling allowing
long excited-state lifetimes and carrier mobility,” direct optical
transitions contributing to high absorption coefficients (« = 2
x 10* em™ ), long-lived excited states exceeding a microsecond
and good tolerance of electronic defects.'®** Material process-
ing is also peculiar if we consider that from a simple solution
process associated with a mild and rapid post-annealing treat-
ment, you can obtain a well-structured polycrystalline film with
physical properties analogous to single crystals. However,
perovskites still face significant problems, particularly envi-
ronmentally with soluble lead and the harmful solvents used for
processing,” and technically with their high sensitivity to
almost all relevant external stressors, such as temperature,*®*”
humidity,**?* light>>** and electrical bias.>* These two down-
sides are the main barriers to capitalizing research efforts
towards industrialization.?** With regards to stability, the
problem has multifactorial causes. The degradation pathways
are composition dependent,” defect dependent,”®* and subject
to perovskite dimensionality®® while the interface with the
extraction layers (H/ETLs) also affects the degradation pathways
and kinetics.?*3%*

For the last few years, formamidinium lead iodide (o-FAPbI;)
has been the state-of-the art composition owing to its low
bandgap value of 1.49 eV>* and greater thermal stability
compared to its methylammonium counterpart.**** However,
the photo-active cubic structure is not the thermodynamically
stable polymorph owing to its tolerance factor being a little
greater than 1,% straddling the hexagonal yellow phase.?” The
community has come up with a wealth of propositions to sta-
bilise the cubic polymorph through additive engineering,***%°
structural modification using low-dimensional perovskite,***°
or by controlling the deposition process.* Understanding the
degradation pathways from seeds to their longer-range propa-
gation is essential for a comprehensive understanding of the
reactivity of the material under stress. To this end, an in situ
approach under external stress conditions is most relevant,
given that perovskites can additionally self-heal when the
external stress is stopped.® Only a very few reports involve in situ
techniques for monitoring degradation, focusing on X-ray
diffraction, transmission electron microscopy (TEM), or
visible/infrared spectroscopy under different conditions
(humidity, temperature, light, applied voltage).>*****-*¢ Electron
paramagnetic resonance spectroscopy (EPR) has also been used
in the field of solar cells to probe the accumulation of photo-
generated radicals under light.*-*° Radical accumulation is
correlated with a loss of cell performance; thus it is suspected to
be one origin of the degradation mechanisms.*® Temperature is
another stringent stressor due to the structural softness of the
hybrid perovskite, the content of organic moieties and the large
propensity for vacancy formation.** When combined with light,
the degradation kinetics could even be accelerated, although
these studies were carried out under anoxic conditions.*>** In
previous work, structural information on the thermal and
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Fig. 1 (a) In situ evolution of the electron paramagnetic resonance

spectrum of (FA-MA)Pbls in the dark upon heating between 20 °C and
300 °C. (b) Comparative plot showing the evolution of the spin density
in the perovskite film (red) and mass evolution of the perovskite
measured by TGA-MS analysis (blue) as a function of temperature. (c)
2D contour plot representation of the in situ X-ray diffraction study as
a function of temperature between 25 °C and 245 °C for (FA-MA)Pbl3
in the dark.
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photodecomposition of (FA.73MAg.27)Pb(I.045Br¢.055)3 under an
ambient atmosphere was reported based on in situ X-ray
diffraction.®® We highlighted that this perovskite degradation
is substantially accelerated when temperature is combined with
light and when it is interfaced with the extraction layers. We
also revealed the existence of a temperature gap region forming
exclusively under illumination, in which an intermediate
disordered phase is involved between perovskite decomposition
and Pbl, formation. In this work, we captured complementary
information by linking structural to electronic information on
the seed origin of this photo-induced and thermal degradation
by means of in situ electron paramagnetic resonance (EPR)
spectroscopy. This technique offers high sensitivity to the
formation of free carriers while revealing very valuable insights
into electronic interactions on materials and interfaced
materials.*”*>5%5

Results and discussion

The procedure for the preparation of different samples is
described in the experimental section. All the films have
a homogeneous and a mirror-like aspect. The incorporation of
MABr into a-FAPDbI; allows the crystallisation of a pure a-phase
(Fig. S1at). The refined lattice cell parameter (@ = 6.3315 A) is
slightly reduced from that reported in the literature for pure o-
FAPbI; (a = 6.35 A), suggesting that an amount of MABr is
incorporated into the final film.***® Indeed, by considering
Vegard's law, i.e. linear evolution of the lattice cell parameter
depending on the amount of bromide in the film (Fig. S1b¥), the
final amount of Br~ incorporated in the film is around
5 mol%.>*° The bandgap value, calculated based on absorption
spectroscopic data, shows a bandgap of 1.55 eV, compared to
1.49 eV for pure o-FAPbI; (Fig. S1ct).®® The final perovskite
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composition was further confirmed by EDX analysis where an
atomic ratio of Br/I of 0.05 was consistently found (Fig. S1d¥).

Fig. 1a shows the in situ evolution of the EPR signal of the
perovskite in darkness between 20 °C and 400 °C. The g-factor is
equal to 2.0041 regardless of temperature. This value corre-
sponds to an electron stabilized in the 7 orbital of carbon.**
Both the shape and intensity of this paramagnetic signal are
similar from room temperature up to 245 °C, indicating no
change in the chemical environment and no drastic evolution of
the spin concentration in the perovskite film, which was
determined to be Nypin = 5 x 10'* spin per g. The very slight
decrease in spin density stems from the higher recombination
of carriers with temperature. The value of 5 x 10" spin per g is
in a similar range to that of the spin concentration reported for
MAPbI; film under similar conditions (ca. 10" spin per g).*5%
Interestingly, thermogravimetric analysis (TGA) performed
under air combined with mass spectrometry shows that the
perovskite film is not thermally stable in this temperature
region.”” A first mass loss of 6.9% is observed at an onset
temperature of 163 °C up to ca. 245 °C (Fig. 1b). This corre-
sponds to the release of either methylammonium iodide or
methylamine and HI from the perovskite structure. This allows
us, along with structural refinement of the lattice cell parame-
ters, to determine the exact stoichiometry of our perovskite film,
which is FA73MAg 5,Pb(Iy.95Bro.05); and will be referred to as
“(FA-MA)PbI;” in the following discussion. It is interesting to
note that almost all the methylammonium used during film
preparation is successfully incorporated into the perovskite
structure in contrast to the bromide. The excess of for-
mamidinium and bromide is washed away during anti-solvent
dripping.

In this temperature range, the perovskite structure degrades
into crystalline Pbl,, crystalline PbBr, and a remaining X-ray-
amorphous content, including formamidinium, lead and
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(a) Arrhenius plot of spin concentration depending on temperature for the perovskite in the dark (blue) and under illumination (red) with the

corresponding activation energies Ex. (b) 2D contour plot representation of in situ X-ray diffraction at temperatures between 175 °C and 300 °C for

(FA-MA)PDI5 film.
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halide (Fig. 1c).”> Consequently, we conclude that the first step
of the thermal degradation of perovskite is not a radical-type
process and is triggered by the high volatility of the methyl-
ammonium group.

By contrast, the EPR signal increases proportionally with
temperature between 245 °C and 335 °C accordingly to an
Arrhenius activation law (Fig. 2a). The radical concentration in
the film reaches 3 x 10" spin per g with a rate constant of (2.7
+ 0.1) x 10" spin per g per K. For higher temperatures, the
number of radicals present in the film is stabilizing. This result
is again well correlated with the TGA analysis. Indeed, above
245 °C, the rise in radicals relates to the second weight loss of
25.8% corresponding to the formamidinium iodide (FAI)
located in the remaining amorphous content in the film, as
supported by the in situ X-ray diffraction (Fig. 2b).>® Thus, in
contrast to the first weight loss, this degradation step has a clear
radical origin, where the radicals are located in the carbon of
the formamidinium cation, leading due to fragments of for-
mamidinium cation, as deduced by mass spectrometry
(Fig. S21). The activation energy for this degradation reaction is
11.7 keal mol " (Fig. S31). For temperatures greater than 335 °C,
the radicals formed are trapped in the remaining film. The
latter is based on crystalline lead iodide and lead bromide and
probably other amorphous content, without any organic groups
remaining, as deduced from the final mass obtained from TGA
analysis and correlated with the in situ X-ray diffraction
(Fig. 2b).

The effect of temperature and illumination as combined
stressors has been assessed. The resulting behaviour shows
a stark difference upon light excitation, although the EPR signal
of the perovskite film under illumination remains with a g-
factor of 2.0040 corresponding to an electron stabilized in the 7
orbital of carbon (Fig. 3a). At room temperature, the spin
density is three times higher under illumination (1.4 x 10"
spin per g) (Fig. 3b). This could be due to the accumulation of
long-lived (>10 ps) free carriers in the perovskite film under
illumination.*”*> This concentration increases rapidly within
the first minutes of illumination and reaches a steady-state
value after 12 hours (Fig. S3f). Between room temperature
and 220 °C, a slight increase in concentration is noticed, as one
would expect due to the thermal activation of free carriers in
semi-conductors. The Arrhenius thermal activation dependency
is observed with an activation energy of 1 kcal mol " (Fig. 2a).
This value refers to the energy barrier for the generation of free
carriers and exciton dissociation induced by the temperature
and the applied B® magnetic field (0.33 T) from EPR. Given that
the same experiment in darkness shows that temperature
makes no contribution, we can conclude that the exciton
binding energy of (FA-MA)PbI, is 1 kcal mol ', corresponding to
43 meV for the cubic phase. This value is higher than the ca. 14
meV reported from the magneto-absorption technique by
Nicholas et al. for FAPbI; at 2 K (orthorhombic unit cell)**** and
falls in a comparable range to earlier studies also performed at 4
K for MAPDI; (37-45 meV).*®*® These results seem to confirm
that the tetragonal-to-cubic phase transition is responsible for
an increase in the excitonic binding energy, as previously dis-
cussed in the literature by Even et al. and Yamada et al.*”® The

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 3 (a) Comparison of EPR spectra of (FA-MA)Pbls in the dark (black
line) and under illumination (red dashes) at 25 °C. (b) Comparison of
the evolution of the spin density of (FA-MA)Pbls as a function of
temperature in the dark (black) and under illumination (red). For illu-
mination measurements, the lamp was turned on ca. 1 minute before
starting the EPR acquisition.

quantity of radicals increases proportionally for temperatures
above 220 °C and up to 350 °C. The rate constant of radical
formation is (6.8 & 0.24) x 10" spin per g per K, a value 2.5
times greater than that under darkness. These results confirm
that the onset of radical formation takes place at a lower
temperature than in darkness, by ca. 25 °C. This trend with free
carrier generation can be linked with previous results based on
in situ X-ray diffraction, in which we found that the onset of
structural degradation of the perovskite under illumination
took place at a temperature 35 °C lower than in darkness.”
Nevertheless, it is also important to highlight that such
threshold temperatures for the formation of new radicals are
significantly higher than (i) the starting temperature of perov-
skite decomposition (ca. 110 °C), or (ii) the formation of PbI, as
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a byproduct of degradation (ca. 125 °C).>* The temperature of
220 °C correlates very well with the maximum content of Pbl, in
the film before its light-driven decomposition through radicals,
or chemical reaction with the amorphous remainder.>**
Indeed, the increase in carbon-centred radicals in the material
between 220 °C and 350 °C is more important than in the dark,
suggesting that light favours their formation and therefore their
reaction with Pbl,. The apparent activation energy for this
photodecomposition reaction of Pbl, is 6.9 kcal mol ™.

In most of the reported literature on degradation mecha-
nisms, little is said about the effect of the perovskite interfacing

View Article Online
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with the extraction layer, whereas it has a clear role in the
instability of the perovskite layer, as it has been highlighted in
previous work including that by our group.>®** We performed
similar investigations with perovskite interfaced with doped
spiro-OMeTAD, namely [2,2/,7,7'-tetrakis(NV,N-di-p-methox-
yphenyl-amine)-9,9’-spirobifluorene], as a hole transport layer
(HTL) (Fig. 4). The g-value is 2.0048, whether in the dark or
under illumination. This corresponds to the strong para-
magnetic signal of the oxidized spiro-OMeTAD " radical cation,
which herein hides the perovskite signal.®® This g-value is
slightly higher than the value reported in the literature for spiro-
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Fig.4 Electron paramagnetic resonance spectroscopy on (FA-MA)Pblz/spiro-OMeTAD as a function of temperature between 20 °C and 300 °C:
(a) in the dark, (b) under illumination, (c) comparison of the evolution of spin concentration as a function of temperature in the dark (blue) and
under illumination (red). For illumination measurements, the lamp was turned on ca. 1 minute before starting the EPR acquisition.
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OMEeTAD doped with LiTFSI (ca. g = 2.0030).**77* This suggests
that the free electron in the spiro-OMeTAD"" radical cation
interacts strongly with the other components of the HTL blend,
in particular Co(bpy),** and tert-butylpyridine.

When the temperature is increasing, the g-value is not
affected, whereas both the intensity and the shape of the first
derivative absorption signal are drastically modified (Fig. 4a and
b). The signal decreases in intensity and a shoulder appears due
to a new paramagnetic contribution, with a g-value of 2.0023
corresponding to the free electron value (g.). Note that under
illumination, the new signal appearing is more intense than in
the dark and continues to grow with temperature (Fig. S47).
Fig. 4c depicts the evolution of spin concentration. In the dark,
the latter decreases by almost one order of magnitude, from 10'°
spin per g down to 2 x 10" spin per g at ca. 140 °C. This result
underlines that temperature induces a de-doping mechanism in
spiro-OMeTAD either through a redox reaction with air or by
disrupting the intricate molecular interactions between the HTM
and the additives.”” This trend is also observed when the spiro-
OMEeTAD is not in contact with the perovskite, ruling out the
potential effect of the latter in this deactivation path (Fig. S51). In
the temperature range between 140 °C and 230 °C, the spin
concentration is rather constant (2 x 10" spin per g), before
increasing again beyond 10'° spin per g (Fig. 4c). Differential
scanning calorimetry experiments were carried out to collect
more information about the thermal behaviour of spiro-OMeTAD
(Fig. S61). The exothermic heat exchange at 128 °C is ascribed to
crystallization of the disordered doped spiro-OMeTAD. The
endothermic peak at 244 °C corresponds to the melting point.
Interestingly, the doping agents substantially lower the crystalli-
zation temperature by ca. 40 °C (the crystallization temperature of
undoped spiro-OMeTAD is 165 °C). This results from two aspects.
First, there are strong molecular interactions between the HTM
and the dopants. Secondly, it stems from slight modification of
the crystal structure, which influences the mesoscale packing of
spiro-OMeTAD molecules.” In relation to this, the energy
released during crystallization is also noticeably affected, —12.98 ]
g ' when doped compared to —5.47 J g ' for the undoped
counterpart. Consistently, the evolution of the EPR signal corre-
lates with this calorimetric study. After crystallization, the de-
doping reaction stops and the free carriers generated from the
thermal activation compensate with the rate of recombination.
The plateau observed for Ny, in this temperature range is not
present when the spiro-OMeTAD is not in contact with the
perovskite and in darkness (Fig. S51), i.e. Ngpin keeps decreasing
until melting in contrast to the case under illumination. It is
worth mentioning that this plateau is also visible when the
perovskite is in contact with the HTL, both in the dark and under
illumination (Fig. 4c). This is likely to be the result of the first
steps of perovskite degradation, taking place in this temperature
range when it is interfaced with the HTL.> To account for these
observations, we can raise the hypothesis that the byproducts
from perovskite degradation, ie. methylammonium and/or
iodide/iodine, interact with the spiro-OMeTAD molecules and
eventually also modify the interactions between the spiro-
OMeTAD and the additives (e.g. replacing TFSI” by I and/or
lithium by methylammonium).”

© 2025 The Author(s). Published by the Royal Society of Chemistry
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By contrast, light excitation of undoped spiro-OMeTAD
induces a self-doping mechanism. This is confirmed by the
continuous increase in spin density with time at room
temperature, in agreement with previous studies based on UV-
visible absorption spectroscopy and conductivity measure-
ments (Fig. S77).7%7®

For spiro-OMeTAD in contact with (FA-MA)PbI; under illumi-
nation (Fig. 4b and c), the evolution of signal intensity is similar to
that in darkness, ie. a decrease with temperature until crystalli-
zation. By comparing the concentrations in darkness and under
illumination, one can see that the concentration at room
temperature is lower under illumination, 6 x 10'® spin per g and
10'® spin per g, respectively. This result is the outcome of the
photogenerated carriers within the perovskite recombining at the
interface with the HTL, making them undetectable by EPR spec-
troscopy.””” In the dark, the spin concentration decreases until
around 130 °C, but at a slower rate, reaching a comparable
concentration of 2 x 10" spin per g before increasing to 1 x 10'°
spin per g at a rate of (1.9 £ 0.2) x 10" spin per g per K until
melting (ca. 250 °C). This rate is relatively similar to that in the
dark: (2.9 + 0.3) x 10" spin per g per K.

Conclusions

We have herein reported the thermal and photodegradation
behaviour of (FAq;3MAg,7)Pb(Ip045Bro0s5); alone and when
interfaced with spiro-OMeTAD by using in situ EPR spectroscopy.
The results from probing free carriers are well corroborated with
the structural evolution studied by in situ X-ray diffraction, and its
thermal stability by thermogravimetric and calorimetric analysis.
In this work, we have demonstrated that perovskite decomposi-
tion under heating proceeds in two steps. The first involves a non-
radical-based degradation inducing methylammonium and
iodide release. This is in contrast with the second step that
involves the remaining formamidinium, iodide and bromide in
the already decomposed perovskite, in which this further
decomposition is mediated by radicals localized in the carbon of
the formamidinium leading to the release of formamidinium
fragments. The thermal behaviour of spiro-OMeTAD has also
been clarified. More particularly, EPR spectroscopy confirms the
self-doping reaction of pristine spiro-OMeTAD under continuous
illumination. However, when chemically doped, our results
underline the harmful effect of temperature, which translates
into a de-doping reaction of the oxidized spiro-OMeTAD"" radical
cation. This mechanism is particularly deleterious for full device
operation under ageing under temperature stress. Finally,
combining temperature, magnetic field and illumination, we
determined that the exciton binding energy at room temperature
of cubic (FA-MA)PDI; is 43 meV.
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