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Advancing next-generation proton exchange
membrane fuel cell design through multi-physics
and AI modeling

Guobin Zhang, a Zhiguo Qu, *a Qiang Zheng,b Yichen Zhou,a Ning Wanga and
Yun Wang *c

Next-generation proton exchange membrane (PEM) fuel cells of high power density and durability are a

cornerstone technology for future sustainable energy systems. While traditional three-dimensional (3D)

full-size computational fluid dynamics (CFD) modeling has been pivotal in fuel cell design by numerically

resolving electrochemically coupled multi-physics transfers, it faces persistent challenges, including a

major theoretical gap in channel two-phase flow physics, oversimplified representations of catalyst layer

(CL) microstructures, outdated membrane correlations, inadequate validation, and lack of consideration

on material degradation. This perspective paper identifies key challenges and opportunities for fuel cell

design through multi-physics and artificial intelligence (AI) modeling. Data-driven sub-models describing

specific physics (e.g., multi-physics transfers within CLs) can be integrated with traditional modeling

frameworks to balance the trade-off between computational efficiency and accuracy. Moreover, by

utilizing physics-informed operator learning (e.g., PI-DeepONet) for evolution of multi-physics

distributions and generating datasets via transient 3D models incorporating balance of plant (BOP)

components, it is foreseeable to ultimately pave the way for predictive digital twins enabling health

monitoring and degradation analysis throughout the life cycle, crucial for developing next-generation

high-power-density and durable PEM fuel cells.

Broader context
Proton exchange membrane (PEM) fuel cells, which can directly convert green hydrogen energy into electricity, represent a pivotal technology for future
sustainable energy systems to achieve the carbon neutrality target, due to their promising merits such as zero emission, high energy density, and fast dynamic
response. Overcoming the power density and durability bottlenecks for large-scale commercial application urgently requires further fundamental under-
standing of the electrochemically coupled multi-physics transfer mechanisms within fuel cells. Traditional multi-physics modeling struggles with critical
theoretical gaps (e.g. channel two-phase flow dynamics), oversimplified catalyst layer (CL) microstructures, outdated correlations for membranes, and low
computational efficiency. In this Perspective, we identify key challenges and opportunities in advancing next-generation PEM fuel cell design through multi-
physics and artificial intelligence (AI) modeling, including degradation-oriented design, transient system-level integration, and AI-augmented approaches, for
evolution of multi-physics distributions under real conditions and enabling of health monitoring and degradation analysis. Ultimately, this work provides a
critical roadmap to transition PEM fuel cell digital design from theory and laboratory level to industrial application.

1. Introduction

Green hydrogen, produced via water electrolysis using solar,
wind, and other renewables, is emerging as a cornerstone of
future sustainable energy systems.1,2 Proton exchange
membrane (PEM) fuel cells, which can efficiently convert
hydrogen into electricity with zero emissions, high energy
density, and rapid response capabilities, have found promising
applications in transportation,3 aerospace,4,5 distributed power
generation,6 among others. Notably, the automotive sector has
witnessed significant advancements since Toyota pioneered the
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commercial fuel cell vehicle (FCV) market with the first Mirai
FCV launched in 2015,7 followed by models like Honda Clarity,8

Hyundai NEXO,9 and Chinese counterparts such as Shanghai
Automotive Industry Corporation (SAIC) Maxus EUNIQ 7,10

First Automotive Works (FAW) Hongqi H5, Changan Deep Blue
SL03,11 etc. These FCVs offer distinct advantages over battery-
electric vehicles (BEVs),12 including faster refueling, extended
driving ranges,13 and exceptional subfreezing-temperature oper-
ability (down to �40 1C).14 However, the commercialization trajec-
tory of FCVs lags behind BEVs due to persistent challenges,15

including lack of supporting hydrogen infrastructure,16 relatively
high cost,17 low performance18,19 and insufficient durability under
low loading of precious catalysts.20

Fig. 1 illustrates the schematic architecture of a PEM fuel
cell across three hierarchical levels: unit cell, stack, and system
levels for automobiles. The fundamental unit cell comprises a
central PEM coated with catalyst layers (CLs) on its two sides,
i.e., catalyst coated membrane (CCM), which is sandwiched by

two gas diffusion media, including micro-porous layers (MPLs)
and gas diffusion layers (GDLs), to form the membrane elec-
trode assembly (MEA).21 Bipolar plates (BPs) are integrally
arranged on both anode and cathode terminals, in which flow
fields are embedded for reactant supply and water removal.22

Stack-level integration involves multiple unit cells connected in
series to achieve higher voltage and power capabilities.23 This
modular assembly approach enables scalable power delivery
while maintaining compactness. And the balance of plant
(BOP) subsystems are integrated to facilitate optimal stack
operation such as temperature and humidity by regulating
hydrogen and air supply, humification, and thermal manage-
ment units.24

From the perspective of polarization curves characterizing
overall fuel cell performance, it is axiomatically recognized that
the output voltage at specific current densities is mainly
determined by three distinct polarization mechanisms: the
activation polarization, ohmic polarization, and concentration

Fig. 1 Schematic of a PEM fuel cell at unit cell, stack and system levels for automobile applications,25 key materials, and the targets of next-generation
PEM fuel cells, adapted/reproduced from ref. 25 with permission from Elsevier,25 copyright 2024, and from ref. 26 with permission from John Wiley &
Sons,26 copyright 2023.
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polarization (as diagrammatically illustrated in Fig. 2).27 These
voltage loss mechanisms exhibit strong dependence on inter-
dependent factors including catalyst activity, electrochemical
surface area (ECSA), operational temperature, proton and electron
conductivity, and multi-phase transport (e.g. gas/liquid flow
dynamics),28 etc. Ideally, concurrent optimization of all these
mechanisms for highest output voltage through enhanced gas–
liquid–heat–electron–proton transfers could maximize fuel cell
performance. However, significant challenges exist due to the
inherent coupling and competing relationships among these
factors.26

Furthermore, fuel cell component degradation inevitably
induces deterioration in multi-physics transfer efficiencies,
primarily attributed to progressive structural modifications
(e.g., CL microstructure collapse, carbon corrosion, platinum
dissolution, ionomer redistribution),29 ultimately accelerating
performance decay and reducing lifespan.30 Simultaneously,
the pursuit of cost-effective PEM fuel cell commercialization
necessitates substantial reduction of precious catalyst (plati-
num, Pt) loadings, but this often induces increased oxygen
transfer resistance at the ionomer–catalyst interface and dimin-
ished ECSA in CLs,31 which compromises both fuel cell
performance and long-term durability.32 This multifaceted
technical challenge underscores the critical need for systematic
investigation of multi-scale and multi-physics transport phe-
nomena, their coupling with electrochemical reactions, and
their interactions among cell components in unit cell, indivi-
dual cells in a stack, and subsystems in a fuel cell system, as
such fundamental understanding is crucial for developing next-
generation PEM fuel cells that simultaneously achieve high
efficiency, extended operational durability, and cost reduction
targets.33

To date, scientific understanding of multi-scale and multi-
physics transport phenomena in PEM fuel cells remains insuffi-
cient, necessitating integrated research methodologies that syner-
gize experimental characterization, computational modeling/
simulation, and emerging techniques like machine learning.
Among these approaches, first-principles-based models couple
multi-physics transport processes with electrochemical reactions,
exhibiting high fidelity, flexibility, and capability of disclosing
detailed spatial and temporal processes. Table 1 summaries typical
first-principles-based models across different scales. Clearly, first-
principles-based models can be classified according to their
targeted level, including component, cell, stack, and system levels;
the first one mainly focuses on the multiple transfers in a single
component (e.g., membrane,34 CL,35,36 MPL,37 GDL,38 or channel/
flow field39), the second on a unit cell consisting of all basic
components,40 the third on a stack of multiple cells connected in
series,41 and the forth on a fuel cell system (also called fuel cell
engine) including stacks and auxiliary BOP components.42

In power generation, a single cell serves as an elemental
unit; and its inherent complexity necessitates systematic inves-
tigation of multi-physics interactions among its constituent
components and their impacts on electrochemical perfor-
mance. Three-dimensional (3D) full-size models integrating
complete fuel cell morphologies and multi-physics transfers
as well as electrochemical reactions demonstrate high fidelity
in prediction for fuel cell performance in diverse cell structures
(e.g. different flow field structures,43,44 GDL/MPL materials, and
dimensions) and operation conditions.26 Notably, commercial
software platforms including ANSYS FLUENT,28,45 COMSOL,46

and AVL Fire47 have developed specialized modules for PEM
fuel cell simulation over the past decade, significantly accel-
erating fuel cell R&D and have become increasingly popular in
FCV development. Currently, PEM fuel cell deployment
remains largely constrained by commercialization barriers,
which requires substantial advancements in cell structure and
materials to achieve the targets of power density, durability, and
cost.13,48 The existing PEM fuel cell module in commercial soft-
ware cannot fully support these targets due to multiple limita-
tions, such as restricted capability, poor extensibility, outdated
correlations for properties, etc. Self-developing 3D PEM fuel cell
models are still essential and under active development to
account for new physics and model capabilities.49

Despite the past three decades of research efforts, the 3D
full-size modeling of PEM fuel cells needs further major
advancement due to persistent technical challenges.50 The
inherent complexity arises from multi-physics couplings
among the ‘gas–liquid–electron–proton–heat’ transfers in con-
junction with electrochemical reactions across multiple scales,
ranging from microscale to macroscale (Fig. 2). This necessi-
tates solving over ten highly-coupled second-order partial dif-
ferential equations (PDEs) with the reaction kinetics (e.g. the
Butler–Volmer equation) embedded in their source terms,
which will be more challenging when integrating the channel
two-phase flow physics into fuel cell model frameworks.51 State-
of-the-art modeling frameworks also exhibit size limitations:
though most show a good capacity of handling single-channel

Fig. 2 Schematic of ‘gas–liquid–heat–electron–proton’ transport in
conjunction with electrochemical reaction and their mechanism of influ-
ence on the electrochemical performance of PEM fuel cells.
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or lab-scale fuel cells with performance validation, their exten-
sion to commercial-size cells (4300 cm2 active area) and stacks
frequently faces major challenges of computational scalability
and numerical stability against divergence.52 This perspective
systematically identifies key challenges and future advance-
ments in 3D full-size modeling for PEM fuel cells, along with
integration of artificial intelligence (AI) modeling for achieving
a digital twin in next-generation fuel cell design.

2. Multi-physics model framework
2.1 Fuel cell components in design

As mentioned above, traditional 3D PEM fuel cell models are
typically constrained by computational efficiency and numer-
ical stability, often limited to single-channel53 and lab-scale
analyses.54 It is crucial to emphasize that the multi-physics

transport mechanisms revealed at these simplified scales may
not be directly extrapolated to full-size commercial fuel cells.55

For instance, it has been demonstrated that single-channel
models significantly underestimate challenges in liquid water
removal.56 Notably, commercial fuel cell architectures exhibit
substantially greater complexity,57 rendering single-channel
and lab-scale models inadequate to directly support industrial
design.58 This limitation arises primarily because accurate
prediction of multiple variable distribution characteristics
and electrochemical behavior fundamentally depends on ana-
lysis of flow field across the entire cell.59

Table S1 lists typical flow field structures in 3D full-size fuel
cell modeling. Fig. 3A presents a schematic representation of
commercial PEM fuel cells for automobiles in 3D full-size
modeling. The geometry encompasses not only essential com-
ponents such as the MEA and two BPs, but also incorporates
coolant channels and flow-guiding zones that distribute

Table 1 Characteristics of PEM fuel cell modeling methods across different scales

Models Advantages Limitations
Computational
cost Application scenarios

MD model Takes into account detailed mole-
cular structures in simulations

Limited to very-short-period nano-scale
phenomena with accuracy highly depen-
dent on the potential energy functions

High Proton, heat, oxygen, or water
transfers at nano-scale within CL
and membrane

LB model Captures pore-scale multi-physics,
multi-component and multiphase
reactive transport processes in
electrodes

Hard to couple all the multi-physics
transport processes simultaneously due
to the different time-scales of the trans-
port scalars

High Two-phase flow in GDLs, MPLs,
and gas flow channels

Easy to handle complex porous
structures

Multi-physics transfers and elec-
trochemical reactions in CLs for CL
microstructure design and
optimization

VOF model Track the gas/liquid phase interface
with surface tension effect

Low calculation efficiency due to small
time step

High Two-phase flow dynamics in gas
flow channels, GDLs, MPLs

Not applicable when the continuum
assumption is invalid

Channel and electrode design for
liquid water drains or retention

Reduced-
dimensional
cell/stack
model

High calculation efficiency Poor prediction accuracy Low Parameter sensitivity analysis
Suitable for large-scale cell- and
stack-level calculation

Transient analysis of multi-physics
transfers and performance
evolution

3D full-size
model at
cell/stack
level

Captures almost all the multi-
physics transfers and electro-
chemical activities in detail

Low computational efficiency High (increase
with cell/stack
size)

3D cell/stack structure (e.g., BP and
flow field) design and optimization

High prediction accuracy Difficult to use for long-time transient
simulations

System-level
model

Capture influence of BOP’s dynamic
features on fuel cell/stack
performance

No/low dimension detail in fuel cell/stack Ultrahigh (if 3D
models are
considered)

System-level analysis of multi-
physics transfers for system control
strategy optimization

Large calculating burden if 3D sub-system
models are considered

Impact of humidifier responses on
fuel cell/stack performance

Degradation
model

Predict degradation rate or its
influence on multi-physics transfer
and fuel cell/stack performance

Low prediction accuracy if only consider-
ing degradation mechanisms

Ultrahigh (if 3D
models are
considered)

Predict ECSA decay with time

Difficult to achieve real two-way coupling
between multi-physics transfer and
degradation

Design anti-degradation structure

Large calculating burden if 3D models
and long-term operation are considered

Investigate interaction between
degradation and fuel cell structure

AI assisted
model

High calculation efficiency Prediction accuracy relies on training
data quality

Low Prediction of fuel cell/stack perfor-
mance considering complex
phenomena

High accuracy if properly trained Require a large amount of experimental/
simulation data for training

Prediction of impacts of different
scale phenomena

Suitable for handling complex non-
linear relationships

Need to select appropriate AI algorithms Optimization of fuel cell/stack
multiscale structure

Suitable for cross-scale problems Rapid control of fuel cell/stack
dynamics in real-world conditions
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hydrogen, air, and coolant from the stack manifolds to the cell’s
active region.60 Recent numerical studies by Wang et al.,55 Zhang
et al.,61 Wu et al.62 and Deng et al.63 systematically investigated
how the geometric configurations of these flow-guiding zones
may greatly influence gas flow uniformity among individual
channels. Compared with single-channel approaches, full-size
fuel cell models can reproduce the cross-flow enhancement
effect caused by gas pressure differences between adjacent
channels, as pointed out by Wang et al.,55 which can lead to
reductions of 16.0% in the concentration loss and 8.2% in the
ohmic one.

Current 3D full-size modeling approaches can theoretically
be extended to stack-level simulations, as most physicochem-
ical processes within fuel cell stacks occur in the constituent
fuel cells. Practical implementation remains scarce due to
substantial computational demands, with existing studies pre-
dominantly focusing on short stacks with no more than 10
cells.64–66 The computational complexity primarily arises
from the massive grid resolution required to capture detailed
BP structures and flow field geometries.67 Consequently, homo-
genization of the BP component has emerged as a viable
strategy for developing large-scale stack models. Recent
advancements by Zhang et al.68 demonstrate this approach

through a 30-cell air-cooled stack model integrated with fan-
assisted air supply using a multiple reference frame (MRF)
framework.69 These findings revealed that non-uniform airflow
induced by mechanical fans significantly impairs output vol-
tage uniformity among the stack’s cells.

Fig. 3B illustrates the computational domain configuration
for a 3D stack model comprising hundreds of interconnected
cells. The geometry includes not only serially connected unit cells
but also headers and manifolds guiding the hydrogen, air, and
coolant flow from the stack inlet into each cell, which are essential
for accurately assessing the uniformity characteristics of key
parameters such as gas concentration, liquid saturation, voltage,
etc. among stack cells. Notably, flow regimes in stack-level headers
predominantly exhibit turbulent characteristics under operational
conditions, contrasting to the laminar flow behaviors observed
within individual cells. To balance computational efficiency and
predictive accuracy, Reynolds-averaged Navier–Stokes (RANS) tur-
bulence modeling approaches (e.g., k–e model70) are universally
adopted for these high-velocity, high-Reynolds-number flow
regions in industrial-size stack simulations.71

2.2 Governing equations of electrochemically coupled multi-
physics processes

The detailed governing equations describing the electrochemi-
cally coupled multi-physics processes are listed in the SI. Table
S2 lists the source terms of the above governing equations and
a typical CL agglomerate model and Table S3 lists physical
properties and correlations in 3D full-size fuel cell modeling.
The mass flow rates together with gas species mass fraction and
boundary pressures are separately specified at the inlets and
outlets of the anode and cathode gas flow fields, and the mass
flow rates are calculated according to the stoichiometric ratio
(x), working current density (I, A cm�2), MEA area (AMEA, m2),
inlet area (Ainlet, m2), relative humidity (RH), saturation vapor
pressure at the inlet temperature (psat, Pa), as shown below:

ma ¼
ragIxaAMEA

2FCH2
Ainlet;a

; mc ¼
rcgIxcAMEA

4FCO2
Ainlet;c

(1)

CH2
¼

pag;in � RHap
sat

RT
; CO2

¼
0:21 pcg;in � RHcp

sat
� �

RT
(2)

Yi ¼
MiCiP
MiCi

(3)

where M (kg mol�1) and C (mol m�3) are gas molar mass and
concentration, respectively, and the subscripts/superscripts a,
c, H2 and O2 denote anode side, cathode side, hydrogen, and
oxygen, respectively. The constant flow velocities and pressures
are specified at the inlets and outlets in the coolant distribution
zones, respectively.

As for the electron conduction equation, the reference
voltage (0 V) and working current density are specified at the
outer surfaces of cathode and anode BPs, respectively.

As listed in Table 2, the through-plane directional boundary
conditions for proton conduction and membrane water trans-
port equations both specify Neumann-type flux constraints.

Fig. 3 (A) Schematic of commercial PEM fuel cell and flow plates for
automobile applications;60 (B) computational domain in 3D full-size fuel
cell stack modeling, images in A adapted/reproduced from ref. 60 with
permission from Elsevier,60 copyright 2024.
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Mathematically, these boundary configurations yield non-unique
solutions without supplementary constraints, as Neumann
boundary conditions inherently lack mathematically stable
steady-state solutions. Fundamental coupling between proton
and electron conduction mechanisms in fuel cell models requires
careful consideration: the source terms exhibit exact mutual
negation (0 = Se + Sion), thereby satisfying global charge conserva-
tion principles. Crucially, these source terms correspond to the
corresponding electrochemical reaction rates, which inherently
depend on both electronic and protonic potentials. This dual
dependency between electronic and protonic potentials enables
the determination of unique steady-state protonic potential dis-
tribution through two Neumann boundary conditions.27

Regarding the membrane water equation, within the CLs the
membrane water content correlates with liquid water satura-
tion or water vapor concentration. Most PEM fuel cell models
introduce the concept of equivalent membrane water content
(leq), expressed as a function of water activity (a), as below:

leq ¼
0:043þ 17:81a� 39:85a2 þ 36:0a3 0 � a � 1

14:0þ 1:4 a� 1:0ð Þ 1o a � 3

(
(4)

a ¼ CH2ORT

psat
þ 2s (5)

The phase change between membrane water and liquid water
or water vapor is systematically incorporated into the

source term:

Sm�v ¼ gm�v
rPEM
EW

l� leq
� �

MH2O (6)

In these circumstances, the membrane water content in CLs is
resolved through both the water vapor concentration and liquid
saturation.

2.3 Numerical implementation

To date, 3D PEM fuel cell models have been systematically
validated across multiple computational platforms, including
ANSYS FLUENT, COMSOL,72 AVL Fire,73 and OpenFoam,49 with
the first two demonstrating predominant adoption in published
studies. Notably, large-scale PEM fuel cell simulations74 invol-
ving complex BP/flow field architectures75 predominantly
employ ANSYS FLUENT, due to its capability of handling mas-
sive computational grids and numerical stability in solving the
continuity and momentum conservation equations.

Computational grid generation constitutes a critical bottle-
neck in PEM fuel cell modeling. While orthogonal grids are
popularly adopted for conventional single-channel simulations,
large-scale fuel cell/stack architectures present unique chal-
lenges due to complex BP & flow field structure. This challenge
is systematically addressed through a hybrid meshing strategy:
decomposing complex geometries into modular subdomains
for localized unstructured grid generation followed by merging
into full cell configurations. Such partitioning methodology

Table 2 Boundary conditions in multi-physics modeling

Equations Solution zones Boundary conditions

Electron conduction (eqn (S11)) BPs, GDLs, MPLs, CLs
1: je = Ztotal = Er � Vout or keffe

@je

@x
¼ I ;

2-1, 5, 6, 9-1:
@je

@x
¼ 0;

10: je = 0;
2-2, 3, 4, 7, 8, 9-2: continuous boundary

Proton conduction (eqn (S12)) PEM, CLs
4:
@jion

@x
¼ 0; 7:

@jion

@x
¼ 0

5, 6: continuous boundary

Membrane water content (eqn (S10)) PEM, CLs
4:
@l
@x
¼ 0; 7:

@l
@x
¼ 0

5, 6: continuous boundary

Liquid pressure (eqn (S9)) GDLs, MPLs, CLs 2-1, 9-1: pl = pg � pc;

2-2, 5, 6, 9-2:
@pl
@x
¼ 0;

3, 4, 7, 8: continuous boundary
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achieves optimal trade-offs between grid quality metrics (ortho-
gonality, skewness) and discretization density requirements, which
has been successfully implemented to simulate PEM fuel cells with
complicated BP & flow field structures (e.g., metal foam75,76 and 3D
fine mesh flow fields77) and large-scale fuel cells.62

2.4 Model validation and parametric calibration

Though 3D full-size PEM fuel cell models show great promise for
predicting detailed electrochemical performance and spatial
distributions of over ten critical variables (e.g., gas concen-
tration, liquid saturation, current density, temperature, velocity,
etc.), reported experimental validations remain insufficient to
fully verify these predictions. Current diagnostic capabilities
(e.g., segmented fuel cells78) are largely constrained by multiple
technical limitations and state-of-the-art techniques are only
capable of simultaneously resolving spatial distributions of
current density, temperature, and relative humidity to some
degree.79 This limited experimental dataset creates a major
bottleneck for comprehensive model validation, particularly
given the complex multi-physics coupling inherent in PEM
fuel cells.

Notably, existing validation efforts prioritize overall perfor-
mances such as the polarization curves under diverse operating
conditions and geometric configurations,80 alongside indivi-
dual electrochemical losses. However, this approach is largely
insufficient, as the polarization curves represent aggregated
metrics influenced by multiple intertwined variables. Only a
few of studies successfully validated the spatial distributions of
critical parameters, including current density, temperature,
and water content.81–83 Recently, Huo et al.84 conducted a
systematic comparative study on the polarization characteris-
tics of commercial-scale PEM fuel cells (SinoHytec, MEA area:
332 cm2), evaluating the impact of five important parame-
ters—namely anode/cathode stoichiometric ratios, cathode
pressure, relative humidity, and operating temperature—on
performance metrics across seven discrete current densities
ranging from 0.265 to 2.2 A cm�2. Their work not only validated
the polarization curves under varying load conditions but also
pioneered the use of a high-resolution segmented print circuit
board (PCB, 408 measurement points, 0.8 cm2 per segment) to
map current density distributions.

Despite significant advancements, the insufficient valida-
tion status of 3D full-size PEM fuel cell models continues to
undermine their predictive reliability across diverse operational
conditions and geometric configurations. Future validation of
the 3D full-size model requires more rationally designed experi-
mental datasets. Beyond conventional polarization curve and
electrochemical losses, it is crucial to obtain comprehensive
spatiotemporal distribution data for key variables,85,86 includ-
ing current density, gas species concentration, relative humid-
ity, liquid water saturation, membrane hydration, and
temperature, etc. Critically, even with abundant experimental
data, achieving complete validation of electrochemical perfor-
mance and multi-variable distributions (e.g., temperature, cur-
rent density, water content) at the same time remains elusive.
Empirical evidence indicates that validation complexity

escalates exponentially with the diversity of the experimental
dataset, including variations in operating conditions, cell archi-
tectures, and the number of distributed variables. This issue is
primarily attributed to the inherent trade-off in current model-
ing, where use of empirical formulas to enhance computational
efficiency and stability inevitably compromises prediction fide-
lity. Consequently, the universal applicability of existing models
remains questionable, particularly for edge-case scenarios that
fall outside the validation dataset.

To address this gap, parametric calibration has emerged as
an indispensable prerequisite for the practical deployment of
3D full-size fuel cell models in structural optimization. At its
core, parametric calibration ensures that models maintain high
fidelity within the localized operating regimes prioritized
during product design, thereby enhancing their application
as design tools. Given computational resource constraints, a
hierarchical calibration strategy is recommended: initial refine-
ments should focus on single-channel architectures to estab-
lish baseline correlations, followed by scalability to full-size
commercial cells. Wen et al.57 established a general calibration
procedure for a commercial 310 cm2 fuel cell. First, a single-
channel computational domain was selected as the representa-
tive unit. Next, experimentally determined parameters were
incorporated into this model, and all the other unknown
parameters were calibrated within physically plausible ranges.
Finally, the complete set of calibrated parameters was applied
to the 3D full-size model for validation. A similar procedure was
also adopted by Huo et al.59 and Xie et al.56 This approach can
significantly reduce computational costs and expedite the
parametric calibration process, thereby enhancing the practical
implementation of 3D full-size models in fuel cell design,
control, and optimization.

3. Advancements in multi-physics
model
3.1 Channel two-phase flow physics

Current 3D fuel cell models typically simplify or even neglect
liquid water in channels, with most assuming it exists in a mist
state while disregarding the gas/liquid interface for computa-
tional efficiency. This simplification leads to discrepancies
between simulated water states in fuel cells and the reality.87

Several two-phase flow physics in fuel cell channels were
revealed experimentally, including various two-phase flow
patterns,88,89 droplet dynamics,90,91 and flow instability at out-
let/manifold interfaces,92,93 which can greatly influence gas-
eous reactant supply and water removal. In our previous
studies, it was found that neglecting liquid water in the
channels caused approximately 5% overestimation in the
ohmic loss,82 and an 8% underestimation in the concentration
one.51 These errors, which grew with current density, were
mainly due to underestimation of the liquid water removal
difficulty within the electrodes. And it was also found that
neglecting the liquid water in channels underestimates the
nonuniformity of current density distribution by about 40%.82
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Currently, the volume of fluid (VOF) and lattice Boltzmann
(LB)94 models are widely adopted for simulating channel two-
phase flow because of the capacity of tracking the gas/liquid
interface, their computational inefficiency—mainly con-
strained by small time steps (10�8–10�5 s) and huge grid
size—poses significant challenges when directly integrated
with 3D fuel cell models. In application, although the VOF
and LB models yield similar predictions regarding the liquid
water dynamics in channel (B0.3–1 mm in size) and GDL (pore
diameter of 50–150 mm), the VOF method is severely con-
strained by narrow spatial scales (where the Knudsen number
is larger than 0.01), and the LB model is suitable for simulating
two-phase flow phenomena within the MPL (pore size of
0.1–1 mm) and CL (pore size of B1–10 nm) due to the inherent
advantages of the Boltzmann equation-based approach and its
capability to handle complex porous structures.

To address this, some VOF models incorporate simplified
1D models describing the multi-physics transfer in conjunction
with the electrochemical reactions in MEAs.95,96 Besides, Zhang
et al.97 developed a 2D PEM fuel cell model at the single-
channel level, directly integrating a VOF model that tracks
the gas/liquid interface in the cathode channel. Through this
model, they revealed the influence mechanism of two-phase
flow pattern in the cathode channel on cell performance.
However, their model framework neglected the liquid transport
between GDL and channel.

Recent advancements by Wu et al.98,99 and Xu et al.100 in
PEM water electrolysis (PEMWE), which has a similar structure
to PEM fuel cells, achieved integration of VOF models with 3D
full-size models through bidirectional data exchange at the
liquid/gas diffusion layer (L/GDL)/channel interface. Specifi-
cally, the 3D full-size model is first executed to obtain the
oxygen flux from the L/GDL into the channel, which is then
input into the VOF model to simulate channel two-phase flow.
The VOF simulation is terminated once the average channel
oxygen volume fraction and distribution reach a quasi-steady
state, characterized by minimal variation in the average gas
volume fraction within the channel. Conversely, the gas
volume fraction distribution at the L/GDL surface from the
VOF model is extracted and applied as the boundary condition
for solving the gas pressure equation in the L/GDL and CL
zones, initiating a new computational loop. Approximately 2–4
loops are required to achieve convergence, where the simulated
oxygen distribution in the channel and electrochemical perfor-
mance of PEMWE remain stable across further loops. This
method’s reliability was validated against experimental mea-
surements of gas bubble distributions in parallel and serpen-
tine flow fields, alongside corresponding PEMWE operational
voltages.99

However, directly applying this integration framework to
PEM fuel cells introduces additional complexities. The for-
mation of liquid water at the GDL surface occurs much slower
than gas bubble formation, with a typical timescale of several
minutes for the former. This discrepancy limits the direct
implementation of liquid water flow velocity from the GDL into
the VOF model due to this computational burden.101 In most

VOF simulations, this velocity is often amplified by 10–
1000 times to cut the simulation time.102,103 Nevertheless, the
inherently low computational efficiency of such integration
remains a substantial barrier for large-scale full-size fuel cell
simulations.104

Developing a reliable model describing the gas/liquid two-
phase flow while maintaining computational efficiency is likely
to be the optimal solution for tackling this challenge. Zhang
et al.51 proposed a modified two-fluid model to address this
issue, deriving the relationship between gas and liquid velo-
cities through a two-phase Darcy’s law framework. The capillary
action is assumed to be negligible because the capillary pres-
sure gradient along the channel is very small,66 which yields:

ug ¼ �
Kkg

mg
rpg (7)

ul ¼ �
Kkl

ml
rpl (8)

pc = 0 ) pg = p1 (9)

ul;i

ug;i
¼

mg
ml

kl

kg
¼

mg
ml

s

1� s

� �n
(10)

ug ¼ �
Kkg

mg
rpg ¼ �

K

mg=kg
rpg ) m0g ¼

mg
kg
¼

mg
1� sð Þn (11)

where K (m2) is the intrinsic permeability (or hydraulic con-
ductance) of the channel and kg and kl the relative permeabil-
ities of gas and liquid phases, respectively.

The dynamic viscosity of the gas mixture can be adaptively
adjusted to account for two-phase pressure drop predic-
tions along the channel, as shown in eqn (11), which exceeds
the single-phase pressure drop due to the hindrance caused
by liquid water on gas flow. The validity of this viscosity adjust-
ment requires experimental validation in future studies. In the
coming years, a central focus can be on developing computa-
tionally efficient models for gas and liquid two-phase flow
in channels to integrate with a 3D full-size PEM fuel cell
model, enabling accurate prediction of the water distribution
throughout the fuel cell and its impact on electrochemical
performance.

3.2 Pore-scale physics in CL

Current 3D PEM fuel cell modeling frameworks mostly treat the
electrode materials (e.g. GDL, MPL, or CL) as homogenous
porous media characterized by porosity and permeability
parameters. While this assumption offers high calculation
efficiency, it largely oversimplifies the porous electrode struc-
tures. For popular GDL materials, carbon papers exhibit dis-
tinct anisotropic transport properties between in-plane and
through-plane directions,105 which can be addressed by imple-
menting anisotropic transport equations (e.g. electron conduc-
tion, heat transfer, intrinsic permeability, gas diffusion) in 3D
PEM fuel cell models.106,107 In addition, CLs present greater
complexity due to their heterogeneous composition (e.g. micro/
mesopore structure and ionomer coverage over Pt particles on
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carbon support) and intricate multi-physics processes encompass-
ing co-transport of gas, liquid, heat, proton and electron, and water
in multiple phases, and the electrochemical reactions.108,109 Never-
theless, the CL’s thin thickness (5–10 mm) and micro/nanoscale
phenomena make the influence mechanisms of its structure on
cell performance particularly challenging to elucidate.110,111

In current 3D full-size PEM fuel cell modeling frameworks,
the multi-physics transport phenomena and electrochemical
reactions in CLs are predominantly characterized through
agglomerate sub-models.112 This approach conceptualizes the
CL’s representative unit structure as agglomerates comprising
platinum nanoparticles of about 1–5 nm size on carbon support
of about 50–100 nm in size, enveloped by thin ionomer films of
about 1–10 nm thickness.113 While this methodology demon-
strates improved predictive accuracy relative to primitive inter-
face models (assuming CL is an interface without a thickness)
and homogeneous CL (assuming constant Pt/C and ionomer
volume fractions and porosity114) approximations, particularly in
capturing proton and oxygen transport resistances critical for
high-current-density performance simulations,77 it remains
significantly oversimplified, compared to realistic CL microstruc-
tures. The model’s dependence on multiple empirical fitting
parameters fundamentally limits its capacity to establish quan-
titative correlations between microstructural characteristics (e.g.,
multi-layered structure,115 pore morphology, agglomerate size)
and macroscopic fuel cell performance metrics.116,117 Conse-
quently, current 3D fuel cell simulations remain largely
incapable of comprehensively evaluating and optimizing CL
microstructure from a holistic system performance perspective,
particularly to address the complex interfacial phenomena and
multiphase transport dynamics inherent to fuel cell operation.

Currently, the LBM has been widely employed to investigate
multi-physical transport and electrochemical reactions based
on reconstructed CL microstructures.118 Two main limitations
persist: first, discrepancies exist between reconstructed CL
microstructures and actual configurations, particularly regard-
ing ionomer distribution patterns which are difficult to char-
acterize through experiment. Secondly, few LB models fully
incorporate all the coupled multi-physics processes with elec-
trochemical reactions. This mainly stems from fundamental
challenges in three aspects: the transient nature of LBM creates
inherent difficulties in handling transport coefficients which
can differ by multiple orders of magnitude (e.g., ionomer
proton conductivity and oxygen diffusivity), which drives relaxa-
tion times toward 0.5 with a risk of numerical instability or
excessive computational costs – a potential solution is to
implement different time resolutions for coupled physical
fields. Beyond this temporal challenge, modeling electroche-
mical reactions at heterogeneous active sites introduces com-
plexity, which requires a modification of unknown distribution
functions to account for source terms (e.g., species and energy
equations), particularly when using complex discrete velocity
models. Furthermore, precisely capturing water phase-change
processes within CLs presents persistent difficulties for LBM.

Moreover, direct integration of LB-based pore-scale CL
models into full-size 3D fuel cell models faces a challenge in

computational efficiency. A promising solution is to develop a
multi-scale modeling framework through two-way data exchange
between CL models and 3D full-size models.119,120 This approach
first reconstructs CL microstructures either through stochastic
algorithms based on key parameters (Pt loading, I/C ratio, etc.), or
advanced characterization techniques (e.g., FIB-SEM,121 nano-CT,
electron tomography at cryogenic temperatures (cryo-ET),122 etc.).
Subsequently, electrochemical surface area (ECSA) is calculated by
evaluating proton/oxygen/electron accessibility at the Pt particle
surface. LB simulations then compute effective CL transport
parameters (gas diffusivity, electron/proton conductivity, perme-
ability, and interfacial oxygen transport resistance) for integration
into a 3D full-size model. Concurrently, full-model outputs of non-
uniform multi-physics distributions (e.g. temperature, relative
humidity, and liquid saturation) feed back into LB simulations
to refine the transport properties’ calculation. This iterative
coupling could bridge microstructural effects with macroscopic
performance predictions while ensuring computational feasibility
to facilitate optimal CL microstructure design for both conven-
tional and novel order-structured configurations.123,124

In the coming years, research efforts should prioritize the
development of science-based multiscale modeling frameworks
that incorporate reconstructed CL microstructural details and
facilitate two-way data exchange with fuel cell performance
predictions. Simultaneously, it is also crucial to enhance the
physical fidelity of pore-scale CL models by incorporating
coupled multi-physics processes, in particular phase change
and electrochemical reactions along with experimentally vali-
dated CL microstructural parameters, thereby enabling effec-
tive optimization of CL microstructures.

3.3 Update of water phase change mechanisms and
membrane property correlations

The model fidelity under diverse operating conditions and
geometric configurations is significantly constrained by its
assumptions regarding the multiphase water states in fuel cells
(i.e., gas vapor, liquid water, and membrane water) and their
phase transition mechanisms.125 Fig. 4 illustrates the sche-
matic of water phase transitions and their correlated impacts
on fuel cell performance. Specifically, the membrane water
content determines proton conductivity and consequently the
ohmic loss; liquid water obstructs gaseous reactant transport
and can cover active catalyst sites, contributing to the concen-
tration and activation losses, respectively; while water vapor
influences gaseous reactant partial pressures and associated
concentration loss. Given that cell output voltage depends on
the cumulative effects of the activation, ohmic, and concen-
tration losses, which are all sensitive to water distribution,
accurate prediction of the phase-specific water content, which
is greatly influenced by operation conditions (pressure, tem-
perature, etc.), becomes paramount.

Currently, experimental characterization is largely limited
due to the inability to directly quantify in situ water states at
high resolution: membrane hydration can be indirectly
assessed through the ohmic loss or resistance measurement
using EIS or HFR techniques; liquid water can be visualized by
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employing transparent fuel cells,126 X-CT,127 neutron
radiography,128,129 nuclear magnetic resonance (NMR) and so on,
which however can hardly distinguish detailed water contents in
CLs, MPLs and GDLs; while the water vapor distribution relies on
relative humidity mapping.79 But it remains challenging to directly
probe and robustly characterize the state of electrochemically
generated water within the complex nano-porous structure of CLs
using in situ techniques.

Existing phase transition models make certain assumptions
to achieve simplified formulations for computational effi-
ciency. For water evaporation and condensation, the phase
change rate is given by:

Sv�l ¼
gv�le 1� sð Þ CH2O � Csat

� �
MH2O CH2O 4Csat

gl�ves CH2O � Csat

� �
MH2O CH2O oCsat

8<
: (12)

where g1–v(gv–1, s�1) is the evaporation (condensation) rate
typically ranging from 1.0 to 10 000 s�1.

For membrane water absorption and release, the
equation is:

Sd�v or l ¼ gd�v or lrmem=EW l� leq
� �

MH2O (13)

where gd–v or 1 (s�1) is the membrane water absorption or release
rate set as 1.0 or 1.3.27 It should be noted that the membrane
water may transition into or from liquid water and water vapor.
This water transition scheme may not support an accurate
prediction at various conditions. Xie et al.56 proposed a self-
adaptive water transition mechanism in relation to local vapor
saturation state by fitting the experimentally measured polar-
ization curve and ohmic loss, which improves the model
adaptivity to various operation conditions. However, this
approach lacks a sufficient theoretical base to support it.

On the other hand, current key membrane transport equa-
tions remain based on the experimental results by Springer

et al.130 and Zawodzinski et al.131 published in 1991 for Nafion
117 with EW of 1100 g mol�1, as shown below,

Proton conductivity:

kion ¼ 0:5139l� 0:326ð Þexp 1268 1=303:15� 1=Tð Þ½ � (14)

Electro-osmotic drag (EOD) coefficient:130

nd ¼
2:5

22
l (15)

Membrane water diffusion coefficient, measured by Motu-
pally et al. (Nafion 115 with EW of 1100 g mol�1):132

Dd ¼
3:1� 10�7l exp 0:28lð Þ� 1ð Þexp �2346

T

� �
0olo3

4:17� 10�8l 161exp �lð Þþ 1ð Þexp �2346
T

� �
3� lo17

8>>>><
>>>>:

(16)

While foundational transport equations derive from experi-
mental data for Nafion 117/115 membranes,133 commercial
fuel cells usually adopt Nafion 211 and reinforced membranes
such as Gore membranes. Moreover, the industry-wide push to
elevate PEM fuel cell operating temperatures from conventional
60–95 1C to over 100 1C demands novel thermally stable
membranes,134,135 a transition possibly to alternative molecular
architectures and consequently different proton/water trans-
port mechanisms.136,137 This high-temperature operation leads
to multiple benefits, including enhanced heat dissipation,
accelerated electrochemical kinetics, improved CO tolerance,
and simplified water management. However, current PEM fuel
cell models predominantly adopt traditional transport equa-
tions and properties developed for obsolete membranes.

Recent progress includes Wang et al.’s138 and Han et al.’s139

comprehensive characterization of anion exchange membrane
and proton exchange membrane transport properties. Beyond
experimental approaches,140 molecular dynamics (MD) simula-
tions offer a viable pathway to decode proton/water/heat trans-
port phenomena across varying molecular architectures.141

Such computational models enable quantitative derivation of
the critical transport equations governing modern membranes,
particularly addressing the structure–property relationships
that show more physical insights than empirical correlations.

The fundamental water mass balance indicates that the
water flow rates exiting out of both anode and cathode outlets
must equal the sum of inlet water flow rates plus electroche-
mically produced water rate. Under fixed inlet flow conditions
and specified current density, cross-membrane water transport
(i.e. water flux across the membrane) directly influences the
water flow rates at the anode and cathode outlets. These water
flow rates at outlets can be validated against corresponding
experimental measurements142 to verify the membrane water
transport model. The quantitative agreement between simu-
lated and experimentally measured outlet water flow rates can
validate two transport correlations: the EOD coefficient in
eqn (15) and the back-diffusion characteristics in eqn (16).

Fig. 4 Schematic of water phase transition and its mechanism of influ-
ence on fuel cell performance.
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Future work ought to focus on developing adaptive water
phase transition mechanisms based on local thermodynamic
conditions, such as saturation and temperature, moving beyond
fixed-rate assumptions. It is equally important to develop accu-
rate transport equations for modern or emerging membranes
using structure–property relationships derived from integrated
experimental–computational approaches (such as MD simula-
tions), rather than relying on legacy Nafion-based correlations.

3.4 System-level transient characteristics

Most 3D full-size models of PEM fuel cells are focused on
steady-state analyses partly due to computational burden,
which elucidate the structural influences on overall cell perfor-
mance and spatial distributions of important variables. How-
ever, real-world operation of PEM fuel cells inherently involves
transient fluctuations.143 As illustrated in Fig. 5A, the speed
variation of fuel cell vehicles (FCVs) under the Worldwide
Harmonized Light Vehicle Test Procedure (WLTP) will induce
significant water and thermal dynamics in the fuel cell stack.
Such dynamics may raise operational risks, including water
flooding,144 membrane drying,145 and accelerated degradation,
making it more challenging to predict transient spatial distri-
butions within stacks.146 Moreover, the interaction between
stacks and balance of plants (BOP) (e.g., hydrogen/air supply,147

cooling,148 and humidification subsystem) further amplifies
the challenge of predicting transient responses under practical
operating conditions.

Recent advancements in system-level modeling integrated
PEM fuel cell stacks with auxiliary subsystems.151–153

Leveraging such integrated frameworks, Hu et al.149 simulated
voltage and membrane water content variations during
dynamic operation under New European Driving Cycle (NEDC)
and WLTP driving cycles. Similarly, Kim et al.154 developed a
system-level model by incorporating membrane humidifiers,
cathode backpressure valves, air compressors, and anode
hydrogen recirculation systems (e.g., ejectors) to investigate
the impacts of air compressor and backpressure control.
However, these models are based on 0D or 1D simplification
for multiphysics transport to enable computational feasibility.

To address spatial resolution limitations, Liu et al.155

coupled a 3D fuel cell model (implemented in FLUENT) with
a 1D dynamic system model (in Simulink) to analyze 3D
transient of vehicular PEM fuel cells under system-level load
variations. Despite this progress, their work only considered the
hydrogen and air supply subsystems, notably excluding crucial
thermal management, and assumed an isothermal condition.
Luo et al.156 conducted a comprehensive investigation of tem-
perature distribution characteristics in PEM fuel cells through
integration of a 2D stack thermal model in MATLAB/Simulink
with a 3D single-cell model in FLUENT. This method enabled
simultaneous evaluation of three thermal management strate-
gies for stack temperature regulation and detailed analysis of
internal temperature field evolution under dynamic operating
conditions. Zhang et al.69 advanced 3D modeling by incorpor-
ating realistic fan geometries via the multiple reference frame
(MRF) method, revealing the influence of fan-induced airflow
on stack performance and spatial distributions of cell voltage,
temperature, and so on in an air-cooled stack. However, extend-
ing such detailed 3D models to transient conditions remains
challenging due to computational burden.

A promising approach involves directly embedding 0D/1D
BOP models into 3D PEM fuel cell simulations. As depicted in
Fig. 5B, this method dynamically integrates the boundary
conditions (e.g., hydrogen/air/coolant inlets and outlets) of
the 3D stack model with corresponding BOP subsystems. By
considering single-channel or single-cell scales, this hybrid
methodology balances computational efficiency with spatial-
temporal resolution,157 enabling prediction of the current
density, temperature, and water content distributions and
evolution during realistic FCV operation. Such high-fidelity
simulations hold significant potential for diagnosing health
status,158 identifying degradation mechanisms and optimizing
system durability for fuel cells.

However, the development of system-level 3D models that inte-
grate a fuel cell stack with the BOP faces several critical challenges.
First, a significant time constant discrepancy exists between the 0D/
1D BOP model and the 3D stack model, making it challenging to
couple their dynamics. Secondly, integrated models may exhibit
substantial robustness issues, making it unable to reach numerical
stability under dynamic operating conditions. Furthermore, high-
fidelity 3D stack models require a large number of computational
grids, which severely limits computational efficiency and conse-
quently impedes the application of real-time control strategies.

Looking forward, emphasis should be placed on multi-scale
hybrid modeling frameworks that combine high-fidelity 3D

Fig. 5 (A) FCV driving speed at different times (from WLPT);149 (B) sche-
matic of integrating a 3D stack model with hydrogen, air, and coolant BOP
subsystems.150 The images in (B) were adapted/reproduced from ref. 150
with permission from Elsevier,150 copyright 2018.
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stack models with BOP subsystems. Meanwhile, developing
experimentally validated digital twins capable of predicting
transient spatial distributions of key variables such as current
density, temperature, and water content, under realistic oper-
ating conditions is also crucial for proactive health monitoring
and durability optimization of fuel cell systems.

3.5 Degradation sub-model

3D full-size PEM fuel cell models have become instrumental in
optimizing component structure, particularly BP/flow field
architectures. While these models reveal the deterministic
influence of cell structure on spatial distribution characteris-
tics, its impact on overall electrochemical performance always
becomes significant at high current densities near the limiting
current regime, where the concentration loss dominates.26

However, practical fuel cell operation predominantly targets
medium current densities, where structural optimization exerts
limited influence on global performance even though it may
induce substantial variations in local variable distributions.159

Critically, such substantial variations may profoundly affect
fuel cell degradation.160 Recent experimental work by Han
et al.161 demonstrated that non-uniform current density distri-
butions drive in-plane platinum (Pt) particle degradation, with
elevated operating current density accelerating Pt dissolution
and voltage decay. Chu et al.162 experimentally demonstrated
that BP & flow field geometry optimization effectively homoge-
nizes thermal gradients and reactant gas distribution patterns,
thereby significantly alleviating localized degradation phenom-
ena such as Pt agglomeration and carbon support corrosion.
These findings underscore the necessity of incorporating
detailed degradation mechanisms into 3D fuel cell models to
evaluate fuel cell structural designs in terms of degradation and
cell voltage decay rates.163 However, a challenge arises from the
vast disparity in timescale: multiphysics transport processes
typically operate on a sub-100-second timescale, whereas degra-
dation usually occurs over 100–5000 hours. Bridging this orders-
of-magnitude timescale difference remains a pivotal obstacle in
full-size model integration to tackle degradation prediction.

Recent efforts have explored hybrid modeling frameworks to
address this challenge. Hao et al.164 coupled a Pt degradation
sub-model with a 3D fuel cell model, through exchanging
spatially resolved overpotential and humidity data with the
electrochemical surface area (ECSA) loss iteratively. This
approach enabled analysis of heterogeneous catalyst degrada-
tion and optimization of Pt distribution for enhanced durabil-
ity, though it was limited to steady-state snapshots at discrete
cycle intervals. Haslinger and Lauer73 incorporated a 1D CL
degradation model into a single-channel 3D model, simulating
localized degradation under 600-second dynamic load profiles
derived from the EPA US06 drive cycle. While insightful,
this method faces scalability limitation for stack or long-
duration simulation. Yang et al.165 incorporated PtCo catalyst
degradation and dissolved Co2+ effects into a 3D fuel cell
model to electrochemical surface area (ECSA) reduction
and oxygen transport resistance increase. Their framework
employs empirical time-dependent formulas to describe CL

degradation, where the ECSA and Co2+ concentration are para-
metrized as explicit functions of operating duration. By itera-
tively coupling these degradation metrics with 3D multiphysics
simulations, they successfully predicted spatial distributions of
electrochemical performance and internal operating state at
discrete degradation intervals. This methodology enabled sys-
tematic investigations into flow field design’s impact on PtCo
degradation uniformity166 and cooling configuration’s effect on
stack lifetime.167 While this approach significantly alleviates
computational burden compared to full-size transient degrada-
tion models, it neglected the transient interactions between
dynamic load variation and fluctuation of internal operating
state during real-world operation.

Future advancements demand innovative integration meth-
odologies that can bridge timescale disparities while preserving
spatial-temporal resolution. A promising framework based on
interval data storage and staggered coupling proves effective in
mitigating timescale mismatch. It can be assumed that over a
specific number of cycles (e.g., 500 dynamic voltage cycles) or a
typical varying load cycle corresponding to realistic working
conditions, the water-thermal state variation process remains
consistent across each individual cycle. Under this assumption,
water-thermal state distribution data from a single cycle can be
stored at predefined time intervals and subsequently coupled
with the degradation model. Specifically, during the computa-
tion of the transient degradation mechanism model, the
corresponding time-step water-thermal state distribution data
are invoked as input. The resulting degraded parameters (e.g.,
ECSA) are then fed into the 3D fuel cell model to predict
performance and water-thermal state distribution after the
specified number of cycles. Using this approach, it is estimated
that simulating cell-scale (5 cm2) degradation over 10 000
voltage cycles (each lasting 16 s) can be completed within
approximately 120 hours. Consequently, the extension of this
integration method to commercial stack levels necessitates a
substantial reduction in computational burden and time. A
promising strategy involves the development of a 3D + 1D
model, which simplifies the multi-physics transport and elec-
trochemical reaction processes within the MEA region into a 1D
framework through dimensionality reduction. This approach
achieves significant computational efficiency gains, often by
orders of magnitude, when compared to 3D full-size models.
Such frameworks would empower predictive analysis of lifetime
performance under realistic operating profiles, facilitating the
design of degradation-resistant flow fields, thermal manage-
ment strategies, and adaptive control systems.

Furthermore, coupling these models with machine learning-
based surrogate models or reduced-order approximations could
dramatically enhance computational efficiency, enabling system-
scale durability simulations. By bridging the gap between multi-
physics transport and degradation kinetics, next-generation full-
size models can provide critical insights for structural optimiza-
tion and operational strategy development—ultimately acceler-
ating the commercialization of durable, high-performance PEM
fuel cells. This paradigm shift toward degradation-aware design
will not only extend fuel cell lifetimes but also enable predictive
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real-time health monitoring systems, revolutionizing the sustain-
ability and economic viability of fuel cell technologies.

4. Integration of AI with multi-physics
modeling

The development and implementation of 3D PEM fuel cell models
in practical applications face significant challenges stemming from
computational burden and instability. Recent advances in AI,
particularly deep learning methodologies, introduced transforma-
tive approaches to fuel cell modeling,168 and Table 3 lists the main
characteristics and application assessment of several typical AI
algorithms. Data-driven models trained by high-fidelity simulation
and experimental datasets demonstrate remarkable capability in
autonomously identifying complex nonlinear correlations between
operational parameters and multiphysics responses, bypassing the
need for coupled differential governing equations.

4.1 Data-driven surrogate models

Table S4 presents a short summary of AI works focusing on
integration with a 3D full-size PEM fuel cell model. Overall, current

approaches mainly focus on building data-driven surrogate models
for rapid prediction using a dataset generated from 3D full-size fuel
cell models, which establish relationships between operating/struc-
tural parameters and performance to optimize input conditions.
However, such end-to-end mapping approaches lack resolution of
localized physical field distributions. Wang et al.169 developed a
digital twin (DT) model for multi-physics field analysis in fuel cells
using artificial neural networks (ANNs) and support vector machines
(SVMs) based on 3D full-size simulation data. Besides, Bai et al.170–172

progressively advanced machine learning (ML)-enabled DT for pre-
dicting 3D multi-physics distributions of variables such as voltage,
temperature, water content, and saturation within PEM fuel cells,
which was subsequently extended to commercial stacks. This work
efficiently maps complex operational conditions to high-fidelity
internal field distributions, enabling computationally viable design
and control while capturing critical field interactions.

Moreover, some scholars also developed data-driven surro-
gate models for specific physical processes that can be coupled
with 3D full-size models. For instance, Pan et al.173 introduces a
hybrid 3D + 1D modeling framework augmented by machine
learning, where a neural network surrogate replaces the com-
putationally intensive 1D electrochemical module while

Table 3 Characteristics and application assessment of AI algorithms in fuel cell modeling

AI algorithms Characteristics Existing/potential fuel cell application scenarios
Application
maturity

Support vector regression (SVR) Good accuracy with medium/small
datasets; dependent on kernel function

Predict fuel cell/stack performance at different operation
conditions, geometry parameters, etc.

Relatively
widespread
use

Random forest (RF) High interpretability Identify and rank critical operation parameters for opti-
mizing fuel cells under dynamic operation conditions182

Nascent stage
Insensitive to missing data
Adaptive to high dimensionality

Boosting Good accuracy Develop surrogate models to predict liquid water and
oxygen transport resistance in electrodes174

Nascent stage
High data demands

Gaussian process regression
(GPR)

Uncertainty quantification ability Predict fuel cell performance under different operation
conditions183

Nascent stage

Easy to use for Bayesian optimization Predict spatio-temporal distribution of multiple
variables184

Unsuitable for large datasets Control strategy optimization185

Artificial neural network (ANN) High accuracy and efficiency Predict fuel cell performance under different operation
conditions, geometry parameters, etc.

Widespread
useLow interpretability

Convolutional neural network
(CNN)

Highly efficient for image-like data Rapid water quantification186 Relatively
widespread
use

End-to-end learning without hand-
crafted features

Generate high-resolution porous structure of electrodes187

Low interpretability Predict variable field and effective transport coefficients of
porous electrodes188

Recurrent neural network
(RNN)

Highly accurate and efficient for
sequence data

Short- and long-term degradation prediction189,190 Relatively
widespread
useEnd-to-end learning without hand-

crafted features
Predict remaining useful lifetime

Low interpretability
Physics-informed neural net-
work (PINN)

Lower data demand and higher accu-
racy than ANN

Predict remaining useful lifetime191 Nascent stage

Higher computational cost and slower
convergence than ANN

Identify unknown parameters in governing equations192

Predict spatial distributions of variables
Fourier neural operator (FNO) High accuracy and efficiency for func-

tional mapping on grid-like data
Predict temporal variation193 Not

implemented
Deep Operator Network
(DeepONet)

Flexible for data with irregular grids Accelerate multi-physics modeling Not
implemented

Physics-informed neural
operator (PI-NO)

Lower data demands and higher accu-
racy than FNO

Accelerate multi-physics modeling Not
implemented

Physics-informed deep opera-
tor network (PI-DeepONet)

Lower data demand and higher accu-
racy than DeepONet

Accelerate multi-physics modeling Not
implemented
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preserving nonlinear transport phenomena. After being trained
by synthetic datasets generated from a full 1D physical model,
the neural network achieves sub-0.2% root-mean-square-error in
flux predictions by using merely 0.5% of the computational cost of
its physics-based counterpart. Coupled with a 3D gas channel
model, the hybrid approach maintains broad applicability across
operating conditions, as validated against experimental polariza-
tion curves and impedance spectra under varying humidity.
Ghasabehi and Shams174 developed a surrogate model predicting
the water saturation and oxygen transport resistance trained by
the dataset generated by a 3D full-size fuel cell model, which is
used to construct a hybrid ‘‘3D + 1D’’ model that captures the two-
phase flow in flow field (3D domain) and electrochemical char-
acteristics in MEA (1D domain). Through this method, some
significant simplifications of complex physical processes-such as
gas and liquid two-phase flow dynamics and complicated mass
transport mechanisms in CLs in traditional 3D full-size fuel cell
models can be replaced by surrogate models trained by the
dataset from high-fidelity component-level models, e.g., two-
phase model (VOF or LBM) and mesoscopic CL models, respec-
tively, which is promising to balance the trade-off between
calculation burden and accuracy in 3D full-size models.

Going forward, a promising direction lies in integrating
high-fidelity multidimensional data, such as from channel
two-phase VOF models or pore-scale CL simulations, into
surrogate training sets, improving both spatial predictive accu-
racy and computational efficiency. Future efforts should prior-
itize multi-fidelity learning frameworks that dynamically
incorporate data from diverse sources and scales, enhancing
the surrogate’s ability to resolve critical local transients and
physical interactions under realistic operating conditions.

4.2 AI-assisted multi-physics modelling

As proposed in Section 3.4, coupling auxiliary BOP components
with 3D full-size models through boundary conditions can
enable accurate prediction of multiphysics distribution char-
acteristics under real-world dynamic loading conditions. While
this information is valuable for health monitoring and degra-
dation mechanism analysis, computational burden severely
restricts its practical implementation. Zuo et al.175 integrated
DT technology with dynamic mode decomposition (DMD) to
efficiently reconstruct multiphysics fields in PEM fuel cells. By
processing transient data (20 s at 0.1 s interval, 200 snapshots)
of current density, water content, and oxygen concentration,
DMD extracted low-dimensional spatiotemporal modes captur-
ing the dominant dynamics. The reconstructed fields achieved
high fidelity to full-size simulations while significantly redu-
cing computational time from hours to seconds. Though
effective for gradual transients under known conditions, the
approach faces limitation in predicting strongly nonlinear
behaviors or abrupt changes in uncharacterized scenarios. To
enhance robustness across complex transient regimes, the
methodology would benefit from complementary techniques
that address nonlinear dynamics and adaptive learning
mechanisms.

Deep learning-based methods have demonstrated break-
through potential in solving partial differential equations
(PDEs), leveraging neural networks’ universal approximation
capability to learn from data and physics-informed constraints—
achieving superior adaptability and flexibility compared to
conventional numerical methods. While utilizing a neural net-
work (NN) to build surrogates was discussed in the preceding
section, the quantity and quality of data significantly impact
the accuracy of these surrogates, yet obtaining reliable training
data is costly. To reduce the demand for training data, research-
ers proposed Physics-Informed Neural Networks (PINN), which
employ automatic differentiation to incorporate physical equa-
tions as regularity in the loss function, drastically reducing the
need for labeled training data. Moreover, the introduction
of physical equations as a global constraint overcomes the
limitation of observational data, which only provides local
constraints, thereby enhancing the model’s generalization cap-
ability in unseen scenarios. PINN is essentially a highly flexible
information fusion framework that can simultaneously inte-
grate information from both observations and physical
equations.176 When only observational data on initial/boundary
conditions and collocation points formed by the equations are
provided, PINN can achieve an approximate solution to the
PDE. It also avoids the significant computational burden
associated with mesh generation, a capability that has been
applied and validated in disciplines like fluid dynamics and
heat transfer problems. Raissi et al.177 introduced hidden fluid
mechanics (HFM), a physics-informed deep learning frame-
work that reconstructs hidden velocity/pressure fields from
sparse flow visualizations through direct encoding of the
Navier–Stokes equations into neural networks via automatic
differentiation. This physics-constrained AI learns from passive
scalar transport data (e.g., dye concentrations) without requir-
ing velocity measurement or predefined boundary conditions,
enabling accurate flow prediction in complex geometries with
robustness to noise and low-resolution inputs.

Recent studies also demonstrated PINN’s effectiveness in
accelerating two-phase flow predictions using the data from
VOF models. Jalili et al.178 developed a PINN framework to
model vapor bubble growth in superheated liquids, utilizing
50% of VOF simulations as training data to predict interfacial
dynamics and heat transfer with errors below 3.42%. Their
approach combined phase-field equations and Navier–Stokes
constraints to maintain sharp two-phase interfaces and enable
rapid parametric studies. In complementary work, Jalili et al.179

extended PINNs to multiphase heat transfer, successfully recon-
structing bubble-wall thermal interactions and wake vortices
using VOF-derived interface tracking data. These studies high-
light PINNs’ ability to fuse VOF-computed interfacial data and
governing equations, achieving order-of-magnitude reduction
on computational cost compared to traditional CFD while
preserving interfacial sharpness through physics-constrained
learning. Lee180 presented an extended multiphysics-informed
neural network (EM-PINN) framework to advance conjugate
heat transfer modeling through specialized sub-networks for
distinct physical domains and novel interface constraints. It
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effectively resolved abrupt temperature transitions while ensur-
ing energy conservation.

Beyond efficiently solving PDEs, PINN can also be used for
solving inverse problems such as parameter estimation and
optimization. This is because, when encoding the physical
equations, the unknown parameters within the equations can
be treated as learnable variables, optimized along with the NN
parameters during training,181 which can accelerate the para-
metric calibration work mentioned in Section 2.4.

Researchers are encouraged to advance PINN for modeling
strongly nonlinear and uncharacterized transient processes. A key
aim is to build computationally efficient digital twins that integrate
source training data with embedded physical constraints, thereby
enabling robust multi-physics reconstruction and predictive degra-
dation analysis under varying operational conditions.

4.3 AI-driven digital twins for multi-physics prediction in fuel cells

Although PINN flexibly fuses multi-source information and
unifies the solution of forward and inverse problems within
one framework, it essentially performs function approximation.
This still faces multiple limitations in practical applications.
For example, though PINN might solve a PDE efficiently and
predict the solution at arbitrary spacetime points, upon altered
initial/boundary conditions a new PINN model typically needs
to be trained from scratch, which can increase modeling costs.
To further enhance the generality of NN in solving equations,
approximating the PDE solution operator using NN-based
operator learning has been proposed. This method can handle
varying initial/boundary conditions without the requirement of
retraining a new model. The most common operator learning
approaches are DeepONet194 and Fourier Neural Operator
(FNO).195 DeepONet has just started to be used in applications
to assist in solving fuel cell equations, while FNO, although lacking
fuel cell applications to date, has been used in numerous case
studies in fluid dynamics.196 Building upon DeepONet and FNO,
researchers further integrated the concept of PINN to propose
Physics-Informed DeepONet (PI-DeepONet)197 and Physics-
Informed Neural Operator (PINO).198 They aimed to reduce the
data requirements of operator learning and enable data-driven
equation solving through operator models at lower cost.

To date, limited studies have been devoted to addressing the
multi-physics problem. In this regard, Cai et al.199 introduced a
novel data assimilation framework named DeepM&Mnet for
rapid prediction of coupled multi-physics systems. It solves the
multi-physics distribution within the electroconvection problem
by firstly pre-training specialized DeepONets that independently
learn mappings between physics fields from numerical simula-
tion results, which are subsequently integrated into a unified
network that infers full coupled variables from sparse measure-
ments. Crucially, DeepONets serve as physics-constrained
‘‘building blocks’’, enforcing solution consistency without sol-
ving governing PDEs numerically. This architecture enables
accurate, real-time predictions for unseen boundary conditions
while dramatically reducing computational costs.

Fig. 6 shows a promising flowchart for predicting the evolution
of multiphysics distributions in PEM fuel cells through PI-

DeepONet with multiple inputs and outputs,200,201 taking con-
tinuity, momentum, and energy equations as an example. In this
framework, the initial conditions, boundary conditions, and
model parameters are the model inputs for the branch nets, while
the space coordinates and time are for trunk net in PI-DeepONet,
which can predict the spatial and temporal distribution of multi-
ple variables. The continuity and momentum conservation equa-
tions share initial and boundary conditions, which are input into
Branch 1 and Branch 2 respectively. The output of these two
branch networks each has 2q neurons. The first q neurons from
the output of Branch 1 and the first q neurons from the output of
Branch 2, along with the output of the trunk net (which has q
neurons), undergo element-wise multiplication followed by sum-
mation to yield the pressure. Similarly, the remaining latter q
neurons from the output of Branch 1 and 3q neurons from
Branch 2 (for u, v, w, respectively) are combined with the output
of the trunk net to generate the velocity. The energy conservation
equation has its own separate initial and boundary conditions,
which are handled by Branch 3 and Branch 4. Their outputs each
have q neurons. This equation also shares the same space-time
coordinates with the other two equations, meaning it can share
the same trunk net. Therefore, the outputs of Branch 3, Branch 4,
and the trunk net are combined to generate the temperature.

Next, the dataset generated by conventional 3D full-size
models is used to train the PI-DeepONet, via constituting the
data loss. To further enhance prediction robustness and reduce
reliance on numerical simulation data, a physical loss is intro-
duced, which is constructed using model predictions and auto-
matic differentiation techniques to compute spatiotemporal
derivatives required by the governing equations. Residuals from
the equations and initial/boundary conditions collectively form
this physical loss. The resulting PI-DeepONet, which integrates
data-driven and physical information, achieves high accuracy
and efficiency while exhibiting strong potential for rapid, precise
predictions across diverse scenarios. Overall, the core idea of the
multi-input multi-output PI-DeepONet is to use different branch
networks to receive different input variables. The outputs of
different branches can be freely combined with the trunk
network’s output to obtain the dependent variables of interest.

Despite these advances, current AI algorithms remain insuffi-
cient for achieving rapid and accurate predictions of coupled
multiphysics transport and electrochemical reactions in fuel cells.
Future work should aim to advance PI-DeepONet frameworks
capable of simultaneously solving a set of governing equations
describing electrochemically coupled multiphysics phenomena.
Such computationally efficient digital twins are critical for achiev-
ing real-time, high-fidelity reconstruction of internal states under
dynamic operating conditions, paving the way for robust control
and predictive health management in next-generation fuel cells.

5. Summary and outlook

Multi-physics modeling of PEM fuel cells has demonstrated a
capability to substantially enhance the understanding of elec-
trochemical and transport phenomena for advanced design/
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optimization, yet major challenges still exist, hindering pre-
dictive accuracy and commercial-scale applications in next-
generation fuel cell development. Limitations mainly arise
from oversimplified representations of gas–liquid two-phase
flow physics in channels, insufficient accounting for CL micro-
structures, and reliance on outdated membrane properties
derived from limited material datasets.

In the short-term priorities (Table 4, by 2028), future work
should prioritize the development of physics-based channel
two-phase flow models that are compatible with existing mod-
eling frameworks. Equally critical is to establish effective bidir-
ectional coupling between full-size fuel cell models and pore-
scale LB simulations to address microstructural simplification
in CLs. Simultaneously, modernizing membrane transport

descriptions through integrated experimental characterization
and micro/nanoscale simulations remains urgent for new class
or high-temperature membrane materials. Current validation is
still constrained by limited experimental data, primarily
restricted to polarization curves, and localized measurements
of current density, temperature, or water content in a few
segments under narrow steady-state conditions. Furthermore,
systematic parametric calibration is indispensable when
deploying 3D full-size models for product development.
Another critical step is incorporating detailed degradation
mechanisms—such as carbon corrosion and platinum dissolu-
tion—via effective bidirectional data exchange between 3D full-
size models and degradation sub-models could enable durable
component/fuel cell design.

Fig. 6 Physics-informed operator learning for evolution of multi-physics distributions in PEM fuel cells (taking continuity, momentum, and energy
equations as an example), images of 3D PEM fuel cell model adapted/reproduced from ref. 60 with permission from Elsevier,60 copyright 2024.

Table 4 Roadmap for multi-physics and AI modeling development in PEM fuel cells

Time Tasks & goals

Short-term priorities (by
2028)

Integrate channel two-phase flow with 3D fuel cell model via two-way data exchange method
Integrate pore-scale CL model with 3D fuel cell model via two-way data exchange method
Integrate degradation model with 3D fuel cell model via two-way data exchange method
Update water phase change mechanisms and advance membrane property correlations
Develop commercial 3D stack model consisting of hundreds of cells
Comprehensive model validation, including polarization curve & electrochemical losses at multiple operation con-
ditions, temporal spatial variable distributions (e.g., current density, temperature, water content)

Medium-term priorities (by
2030)

Train data-driven surrogate model of channel two-phase flow
Train data-driven surrogate model of multi-physics transfers and electrochemical reactions in realistic CL
microstructure
Develop system-level transient model by integrating BOP sub-models with stack model
Achieve the integration of degradation model with 3D commercial stack-level model

Long-term priorities (by
2035)

Train PI-DeepONet model for evolution of multi-physics distribution in fuel cells
Achieve digital twin of PEM fuel cells for long-term operation
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For the medium-term priorities (by 2030), integrating BOP
units with full-size models for transient simulations will help
clarify dynamic water/thermal distribution during real-world
operation, linking load cycle characteristics to degradation
patterns for control optimization strategies. Additionally,
data-driven surrogate models can target specific physical pro-
cesses to couple with 3D full-size models, such as channel two-
phase flow dynamics and multi-physics transfers within CLs to
balance the trade-off between calculation burden and accuracy.
It is also vital to extend the integration of degradation models
to commercial stack-level configurations.

In the long-term priorities (by 2035), AI-augmented frame-
works utilizing PI-DeepONet to replace conventional solvers are
expected to overcome computational bottlenecks while preser-
ving physical fidelity. Hybrid approaches combining machine
learning with physics-based first-principles laws will enable
rapid real-time prediction of spatial gradients, paving the way
for digital twins in predictive maintenance and control optimi-
zation. Together, these advancements aim to bridge the major
gap between high-fidelity mathematical full-size modeling and
industrial requirements for the development of next-generation
high-power-density durable PEM fuel cells.
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