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Broader context

Combining high-throughput experimentation with machine learning (ML) accelerates material discovery 
and optimizes fabrication processes. While prior works in photovoltaics have explored ML-driven 
research using roll-to-roll (R2R) technology, no systematic study has guided selection of ML models to 
precisely predict device behavior. The next critical step is to forecast new material device properties using 
insights from existing ones, requiring expandable data structure. We present a universal and expandable 
data structure designed to improve ML models and develop photovoltaic parameter and J–V prediction 
models. Using MicroFactory platform, we fabricated over 26,000 unique organic photovoltaics (OPVs), 
creating datasets used to train these models. Random forest proved the most effective model, and its 
predicted formulation led to PCE of 11.8% for fully R2R printed OPVs. We showed that models trained 
on binary systems can predict ternary device performance, demonstrating how accumulated, compatible 
datasets enable the development of generalized ML models with broader applicability to new material 
systems.
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Broader context

Combining high-throughput experimentation with machine learning (ML) accelerates material 
discovery and optimizes fabrication processes. While prior works in photovoltaics have explored ML-
driven research using roll-to-roll (R2R) technology, no systematic study has guided selection of ML 
models to precisely predict device behavior. The next critical step is to forecast new material device 
properties using insights from existing ones, requiring expandable data structure. We present a universal 
and expandable data structure designed to improve ML models and develop photovoltaic parameter and 
J–V prediction models. Using MicroFactory platform, we fabricated over 26,000 unique organic 
photovoltaics (OPVs), creating datasets used to train these models. Random forest proved the most 
effective model, and its predicted formulation led to PCE of 11.8% for fully R2R printed OPVs. We 
showed that models trained on binary systems can predict ternary device performance, demonstrating 
how accumulated, compatible datasets enable the development of generalized ML models with broader 
applicability to new material systems.
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Abstract

High-throughput experimentation (HTE) combined with machine learning (ML) has emerged as a 
powerful tool to accelerate material discovery and optimize fabrication processes. However, in 
photovoltaics field, only a few studies have successfully applied this approach using industrially 
relevant techniques, roll-to-roll (R2R) process. We developed universal and extendable data structure 
for ML training that accommodates upcoming materials while retaining compatibility with existing 
dataset. Using MicroFactory platform, which enables mass-customization of organic photovoltaics 
(OPVs), we fabricated and characterized over 26,000 unique cells within four days. To guide selection 
of ML model for precisely predicting device behavior, photovoltaic parameter and J–V prediction 
models to forecast device parameters and J–V curves were developed, respectively. Random forest 
model proved most effective, achieving a PCE of 11.8% (0.025 cm²)—the highest record for fully R2R-
fabricated OPVs. By integrating accumulated datasets with smaller new-component datasets, we 
enhanced model performance for PM6:Y6:IT-4F and PM6:D18:L8-BO systems, showing that models 
trained on binary systems can predict ternary performance and enabling the development of generalized 
ML models for future high-performance materials.

Introduction

Organic photovoltaics (OPVs) hold immense promise as a clean and renewable energy source due to 
their myriad advantages, including being lightweight and flexible1, non-toxic2, 3 and colour-tunable4-6. 
Recent advancements largely driven by materials discovery have pushed the power conversion 
efficiencies (PCEs) of OPVs beyond 20%7-11. However, a gigantic parameter space including an 
astronomical number of materials and processing parameter combinations remain unexplored, leaving 
much of OPVs’ potential untapped.

High-throughput experimentation (HTE) has emerged as a promising avenue to address the limitations 
of conventional labor-intensive experimentations. It allows for the rapid screening of large 
combinational parametric libraries with fast characterization tools, thereby reducing labor, time and 
resource requirements. By combining HTE with machine learning (ML), vast datasets can be efficiently 
processed, accelerating material discovery or optimizing fabrication processes through data-driven 
decision-making.12 However, many ML-driven studies in photovoltaics have relied on fabrication 
techniques incompatible with large-scale and mass production, such as spin coating13-18. It is difficult 
to utilize ML models trained with data from industry-incompatible fabrication techniques for a lab-to-
fab transition. This is because such fabrication techniques require redevelopment of processing 
conditions specific to scalable manufacturing methods.19 Furthermore, high-efficiency materials 
optimized under small-scale laboratory conditions often fail to perform reliably in large-scale 
processing, emphasizing the need to develop materials tailored for scalable manufacturing rather than 
modifying existing processes to accommodate lab-optimized materials.20, 21 While some pioneering 
works successfully demonstrated ML-driven research with roll-to-roll (R2R) technology, industrial 
relevant method22-24, no systematic study has been conducted to give a guidance to determine ML 
models for accurately forecasting device behavior. Furthermore, the next critical step is to predict a 
device behavior of new materials leveraging insights from existing materials. This requires an 
expandable data structure for ML training to be able to accommodate new high-performance materials 
to be developed in the future, the critical gap yet to be addressed.

Here, we present a universal and expandable data structure designed to train ML models that 
continuously improve as more data are accumulated, regardless of the OPV material components. 
Through feature engineering, the training features are crafted to accommodate new materials while 
maintaining compatibility with existing dataset, enabling ML models to develop a comprehensive 
knowledge of OPV materials. Using the MicroFactory platform that mimics industrial processes24, 25, 
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we applied R2R slot die coating in a desktop machine to develop manufacturing process with minimum 
material usage and automated in situ formulation. This approach allowed for mass-customization of 
OPVs by continuously altering fabrication parameters and formulations while a R2R tester facilitated 
testing of the completed devices, leading to a production of over 26,000 unique OPV cells.

The fabrication parameters and device outcomes were digitalized and used to train ML models. Using 
this unprecedented amount of OPV data, we developed not only photovoltaic parameter (PP) prediction 
models forecasting device parameters but also J–V prediction models creating J–V curves of 
unexperimented devices. These models guided the selection of ML models through systematic 
evaluation by screening various algorithms, followed by hyperparameter optimizations for precisely 
predicting device behavior. The random forest (RF) model proved the most effective. Using the RF-
predicted formulation, we fabricated a device achieving PCE of 11.8%, a record-breaking efficiency 
for fully R2R-fabricated OPVs. Furthermore, we demonstrated that combining large, accumulated 
datasets with smaller datasets from different material systems improves ML model performance, 
showing that models trained on binary systems can predict ternary performance and supporting the 
creation of generalized models capable of forecasting device behavior for new materials.

Results and discussion

High-throughput device fabrication/characterization using the MicroFactory platform

In this study, we selected PM6 as a donor and L8-BO as an acceptor material, and optimized R2R device 
configuration of PET (polyethylene terephthalate)/TCE (transparent conducting electrode)/PM6:L8-
BO/BM-HTL-1/S315 as detailed in Note S1 and S2 (ESI). The material structure, energy diagram, 
device configuration, and resulting device performance are presented in Fig. 1a–c, Fig. S1–S12 and 
Table S1–S8 (ESI). Additionally, the effects of various additives including 1,8-diiodooctane (DIO), 1-
chloronaphthalene (CN), 2-hydroxy-4-methoxybenzophenone (2-HM), and 1,4-dichlorobenzene (DCB) 
were investigated, but no significant impact on device performance was observed (Fig. S11 and Table 
S7, ESI). To generate a large dataset efficiently, we leveraged the MicroFactory platform (Fig. 1d, Fig. 
S13 and S14, ESI) developed with resources from the 3D printing community. In our previous work, 
we introduced a 3D printer-based slot die coater as a lab-to-fab translation tool26, which only required 
minimal modifications to an existing 3D printer. Building on this concept, it involves the construction 
of a fully customized machine derived from a 3D printing framework, with operations governed by the 
open-source G-code protocol. Additional technical details are provided in Note S3 (ESI).

With this optimized device configuration and the advanced capabilities of the MicroFactory platform, 
we fabricated over 26,000 OPV cells across two experimental batches. These experiments 
systematically explored fabrication parameters, with each batch divided into multiple sub-batches to 
alter donor:acceptor (D:A) ratio or film thickness. We previously reported a dual-feed deposition 
method to formulate solutions in situ and a way to digitalize active layer composition by introducing 
deposition density (DD) and total deposition density (TDD)23. DD is an absolute quantity of a 
component per unit area (in µg cm-2), and TDD is the sum of DDs of all materials and has a strong 
correlation with film thickness. Due to the lossless nature of slot die coating, DD can be derived from 
deposition parameters and solution compositions. This lossless deposition significantly reduces material 
consumption compared to traditional spin-coating methods. In our experiments, we used only 10.3 mg 
of PM6 and 12.2 mg of L8-BO per 1,000 devices, corresponding to ~964 devices per mL of solution 
for both materials. In contrast, spin coating typically yields only 50–58 devices per mL. This high 
material efficiency highlights the practicality of our approach for screening new materials, even when 
available sample quantities are limited.

While our prior study required several months to collect data for about 2,000 devices23, the 
MicroFactory platform allowed for the high-throughput fabrication of over ten thousand devices in a 
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single day by one researcher, with testing completed the following day. Fabricating and characterizing 
over 26,000 OPV cells took only four days with the coater and tester operating in parallel. All data were 
saved online and could be simply combined using Python scripts. Although we paused fabrication for 
data analysis, this unprecedented fabrication capability demonstrates significant potential for creating 
big data on OPV manufacturing parameters.

Fig. 2a presents individual PPs, DD of each material, and L8-BO/PM6 ratios for 26,422 devices based 
on the device position on a 150 m-long substrate (Fig. 2b). Notably, failed devices were intentionally 
fabricated as markers between sub-batches and used to verify the combined dataset of fabrication and 
testing parameters. Since it is impossible to display J–V curves for all devices, we show J–V curves for 
the four most characteristic devices with the highest PPs in Fig. 2c and Table 1. The best device 
achieved a power conversion efficiency (PCE) of 11.6% at a D:A ratio of 1:1.13 (Fig. S15, ESI), similar 
to an optimal formulation found in a previous study27. Although this PCE is already significantly higher 
than that of the best fully R2R-fabricated OPVs in the literature (Fig. S16 and Table S9, ESI), further 
improvement might be possible through the ML-assisted device optimization. However, the achievable 
PCE would remain below 14.1%, a boundary determined by the best fill factor (FF), current density 
(JSC) and open circuit voltage (VOC) due to the inherent trade-offs among those photovoltaic parameters. 
However, identifying PP trends within a multi-dimensional fabrication parameter space from such large 
data sets is impractical for humans, necessitating the use of ML.

Developing ML models 

Utilizing ML for data analysis involves several steps, as illustrated in Fig. 3a. With the data already 
collected, the next important step is designing features as input parameters for ML training. Extracting 
meaningful features from available data is common practice. As we previously reported, ML models 
using simplified features, such as the DD of three materials, were able to visualize their effects23. 
However, we found this approach is not expandable for additional materials or fabrication parameters. 
Hence, we designed generic and material specific features (DD of each material) that can accommodate 
upcoming materials. Although some features may look like a duplication of another feature, it ensures 
the data can be used universally. Further details can be found in Note S4 (ESI), with descriptions of the 
data structures and features available in Tables S10–S12 (ESI), and the corresponding numerical values 
stored in Data S1 and S2.

After preparing and cleaning the data, ML models using various algorithms were trained and compared 
for a given multi-dimensional regression problem. Seven bagging and boosting algorithms were initially 
selected for evaluation. Bagging involves training multiple weak learners independently in parallel and 
averaging their predictions, which reduces variance and improves stability. Boosting, in contrast, builds 
weak learners sequentially, with each new model correcting the errors made by the previous ones.28 
These ensemble approaches are generally less prone to overfitting that a model learns the training data 
too closely including noise or fluctuations, resulting in poor generalization to new data. To identify the 
best-performing models, we optimized hyperparameters for each algorithm using GridSearchCV with 
5-fold cross-validation. This approach systematically explores all possible combinations of predefined 
hyperparameter values and evaluates performance to find the optimal set. Due to the training time 
required for large numbers of hyperparameter combinations up to two million, we used a small fraction 
(2.5%) of data for training (Note S5 for detail, ESI). Each hyperparameter combination was evaluated 
based on performance metrics: coefficient of determination (R2), mean absolute percentage error 
(MAPE), root mean squared error (RMSE)23 and overfitting index (OI, defined by R2 of test or 
validation dataset/R2 of train dataset where lower values indicate stronger overfitting whereas an OI 
close to 1 implies that the model generalizes well). This evaluation utilized 80% of the trained dataset 
for model training and the remaining 20% for model validation (Fig. S17, ESI). While RMSE is 
inherently tied to the scale of target variables, making it a scale-dependent metric29-31. MAPE can 
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become undefined or problematic when actual values are zero or near zero, resulting in infinite or 
extreme values30-32. In contrast, R² offers a scale-independent evaluation33, quantifying how well the 
model accounts for the variance in the data relative to the total variance. Given these considerations, 
we employed R² as a universal metric to determine the optimal hyperparameter combination of models 
generated by each algorithm and to enable cross-scale comparison between different prediction models. 
The performance metrics for the best model from each algorithm are shown in Fig. S18–S24 and Table 
S13–S19 (ESI) with detailed discussions in Note S6 (ESI). We found no outstanding model while Ada 
Boost algorithm produced model with poorer performance than others. 

Based on this evaluation, we selected one widely used algorithm from each category for subsequent 
analysis: Random Forest (RF) for bagging and Extreme Gradient Boosting (XGBoost) for boosting. 
While optimizing most of the available hyperparameters (Note S7, ESI), we discovered that only a few 
hyperparameters (max leaf nodes, max features and number of estimators for RF and learning rate, 
number of estimators and max depth for XGBoost) made meaningful difference across all PPs. 
Therefore, we picked the top three most effective hyperparameters and selectively showcased their 
impact on model performance for predicting JSC and PCE (Fig. S25–S28, ESI). This information will 
serve as a comprehensive guide for future hyperparameter optimization.

The models were then re-optimized with different dataset sizes (2.5%, 20 %, and 80%) using only the 
three most influencing hyperparameters. We observed general agreement in the optimal 
hyperparameters across various data fractions, indicating that hyperparameters optimized with a small 
dataset do not require re-optimization for larger datasets (Fig. S29–S32 and Table S20 and S21, ESI). 
The final optimized hyperparameters are shown in Note S8 (ESI).

Performance of ML models for photovoltaics

While PCE is a key parameter of interest, we developed prediction models for all PPs including series 
resistance (Rs) and shunt resistance (Rsh) for a comprehensive understanding of device behavior based 
on fabrication parameters. Additionally, we trained models to create J–V curves, referred to as J–V 
prediction models, by introducing reading voltage values in J–V curves as features in the train dataset. 
This approach resulted in about 1.8 million data points from 71 data points per J–V curve, with the 
model making 71 predictions using various reading voltages. The selection of the best J–V prediction 
models and their optimized hyperparameter combinations is described in Note S9 (ESI). Fig. 3 shows 
the predicted PPs and J–V curves alongside the original measured J–V curves of three randomly selected 
devices from the test dataset.

Therefore, our models offer three ways for predicting PCE: (i) direct prediction from the PCE prediction 
model, (ii) PCE calculated from the predicted FF, VOC and JSC, and (iii) PCE calculated from the created 
J–V curves. We found general agreement in PCE from all three approaches, with similar and 
exceptionally high R2 values (Fig. 3 and S33 and Table 2 and S22, ESI). This high model performance 
is attributed to a consistently produced train dataset rather than collection from multiple sources and 
optimized hyperparameters. Although any of these three approaches can predict PCE, the J–V-based 
approach provides comprehensive device insights while demanding more computing resources. 
However, once hyperparameters are optimized, training each model with 1.8 million datasets of 10 
input parameters takes only 15 minutes for RF and 7 seconds for XGBoost on a desktop computer, 
suggesting that computing resources will not be an issue soon.

Despite XGBoost’s advantage over RF in training time due to parallelized computing, it performed 
poorly in the J–V prediction model, as observed in 3 and 15 additional randomly selected devices (Fig. 
3 and S34, ESI). Although it still achieves comparable model evaluation metrics to the RF model (Fig. 
S35 and Table S23, ESI), these metrics fail to capture localized fluctuations in the predicted J–V curves, 
which become evident only when the curves are plotted and compared against experimental data. To 
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further understand model behavior, we calculated feature importance for both RF and XGBoost J–V 
prediction model, where higher values indicate greater influence on the model's predictions. Among all 
features, V showed the highest importance for both RF and XGBoost model. However, since J and V 
are directly correlated in J–V prediction, we excluded V from subsequent analyses to better highlight 
the relative importance of the remaining features (Fig. S36, ESI). Our analysis revealed that ‘Acceptor 
Frac’ was the most influential feature for both models, while TDD showed much lower contributions. 
The lower importance of ‘Donor Frac’ is expected because it is linearly dependent on ‘Acceptor Frac’ 
(Donor Frac = 1 − Acceptor Frac), meaning the model primarily relies on one of the two to avoid 
redundancy. Importantly, this does not imply that donor content is less significant for device behavior 
but rather that its contribution is already captured through ‘Acceptor Frac’. These results suggest that 
the D:A ratio plays a more critical role than active layer thickness in predicting J–V characteristics. 
Taking together, these results indicate that while RF and XGBoost identified similar trends in feature 
importance, RF provided more stable and consistent predictions across datasets. Therefore, RF-based 
J–V prediction models were chosen for photovoltaic optimization.

We observed poor performances in resistance prediction models. For the Rs model, this was attributed 
to a small number of extreme outliers, possibly from measurement error (poor contact during the 
measurement). After excluding about 3% of outliers, the model showed good performance with an R2 
score of ~0.88. The Rsh model underperformed because the slope of the J–V curves at 0 V for good 
devices is near zero, making the inverse value highly sensitive to measurement noise. Despite this, we 
found the model proved useful in predicting defective devices (Rsh < 336 Ω cm2, bottom 30% in this 
dataset) with R2 score of 0.80.

Photovoltaic optimization using ML models

The J–V prediction ML model provides a whole new way of device optimization. We could browse 
experimental parameters with an interactive ML tool instantly showing J–V curves of virtually planned 
experiments (Video S1). The tool provides insights into parameter-dependent device performance to 
researchers, while full optimization was carried out programmatically by generating all possible 
parameter combinations and sorting by predicted PCE. However, this approach will provide a global 
optimum point, all top formulations would be in the same zone and miss serendipitous discoveries of 
high-performance devices that may not be designed by human knowledge.

To address this, we split all possible parameter combinations with a coarse data resolution (2 µl min-1 
or µg cm-2) into clusters and examined the optimum condition for each cluster. Using K-means 
clustering, an unsupervised ML algorithm, we created ten clusters (Fig. S37 and Table S24, ESI). While 
the clusters of evenly spaced datasets differ from conventional meaning of clusters, it provides a simple 
solution for grouping multidimensional data. Subsequently, we generated all possible combinations 
with finer data resolution (0.5 µl min-1 or µg cm-2

,
 6,561 parameter combinations for each cluster) around 

each cluster's top formulation to refine them further. Finally, we compared the Euclidean distance (ED) 
(Eq. 1) of each cluster’s top formulation from the global best formulation in cluster 0 (Table S25 and 
Note S10 for detail, ESI).

Based on ED and predicted PCE, we fabricated devices using the predicted formulation of the global 
best and that of the cluster farthest from cluster 0. We found other clusters further than the selected 
cluster, however, parameters of those clusters were challenging to fabricate due to too high flow rates 
causing overflow issues and slightly lower PCEs. The device results are shown in Fig. 4 and 
summarized in Table 3. The global best formulation achieved up to 11.8% PCE, significantly higher 
than the best PCE for fully R2R fabricated OPVs in the literature. Previously, the highest reported PCE 
was 5.6% as summarized in Fig. S16 and Table S9 (ESI). Only recently, we reported a 9.35% using this 
high-throughput setup24 and this work marks another leap in the record PCE for R2R fabricated OPVs. 
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It clearly demonstrates how laboratory innovation and digital technologies such as ML can accelerate 
OPV progress and potentially other printed electronics.

With a view towards the eco-friendly manufacturing of OPV, we tested the parameters using a non-
halogenated solvent, o-xylene (Xyl), and found Xyl-based devices performed comparably (Fig. 4 and 
Table 3). These results show great potential for a commercial application of fabrication parameters 
found in this work. External quantum efficiency (EQE) spectra were obtained after printing the silver 
electrode and encapsulating the cells for manual testing (Fig. S37, ESI). All four devices display good 
agreement between JSC measured from the tester and calculated from EQE spectra (Fig. 4e and f).

The Future of data-driven and ML-assisted photovoltaic research

While the MicroFactory platform has a unique strength in thoroughly screening parameters of given 
materials, it is limited in the number of materials that can be automatically processed in a batch. 
Conversely, robotic-arm-based HTE systems can screen a variety of materials, albeit with a relatively 
lower throughput compared to the MicroFactory platform12. It would be ideal to combine two 
complementary HTE platforms to accelerate the research cycle from material screening to the 
development of manufacturing techniques. A key question is whether large dataset can be reused to 
optimize newly developed materials. To address this, we aimed to create a data structure that can 
accommodate upcoming high-performance materials, enabling the continuous improvement of ML 
models with accumulated data. To achieve this, we created generic features as well as material specific 
features. For example, “Donor Frac” in Table S11 (ESI) may seem redundant since it can be easily 
derived from “PM6 DD” and “L8-BO DD”. However, this feature becomes crucial when introducing a 
co-donor or different donor material. Without such features, ML models would not understand the 
relationship between a new donor and PM6. By leveraging the established knowledge of known 
materials, ML models could be trained for new materials without re-creating extensive datasets.

To prove this hypothesis, we combined the large dataset with smaller datasets including new 
components, with one new material-specific feature per component (Fig. S2 for detailed chemical 
structure, ESI), trained RF-based models, and compared their performance depending on the size of 
additional datasets. We first used a dataset created from our previous study on PM6:Y6:IT-4F ternary 
blend23. In that case, we simplified the system and minimized the number of features to visualize all 
feature-dependent performance in 3D space, manually re-creating features based on experimental 
parameters. New dataset of a PM6:D18:L8-BO ternary and a PM6:PYF-T-o all polymer systems were 
also created by running relatively small batch. For training, we used batches of data rather than 
individual cells, specifically 294, 467, 1240 and 1990 for PM6:Y6:IT-4F, 257, 517, 1289 and 2053 for 
PM6:D18:L8-BO ternary system and 258, 784, 1538, and 2323 for PM6:PYF-T-o all polymer system, 
respectively. The remaining datasets were reserved for testing (Note S11 for detail, ESI). The complete 
datasets and model performance results are available in Data S3 and S4, respectively.

Fig. 5 illustrates performances of RF-based models trained without and with accumulated PM6:L8-BO 
dataset. Despite the PM6:Y6:IT-4F system having only one common material, the models trained with 
the accumulated data consistently outperformed those without it, especially more improvement with 
smaller train datasets. The same trend was observed in the PM6:D18:L8-BO system, which shares two 
common materials with the accumulated dataset, leading to even more significant improvements. 
Notably, the model trained with only 10% of the new dataset performed well in predicting the remaining 
90%. Interestingly, while integrating the accumulated dataset substantially enhanced predictive 
accuracy for ternary systems, the improvement was not consistent for PM6:PYF-T-o all polymer system 
(Fig. S39, ESI). Specifically, in cases where the training dataset sizes were 784 or 1,538, the test R² 
values showed a slight decrease after adding the accumulated data. This behavior may arise from 
intrinsic differences between all polymer systems and small molecule NFA-based systems. These 
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findings suggest that polymer acceptors may require a separate model category or an additional 
independent feature to better capture their distinct characteristics.

Nonetheless, these results highlight the value of digitalizing research parameters and demonstrate how 
existing knowledge can be applied to new material systems in OPV research. By showing that models 
trained on binary systems can predict ternary performance, this work illustrates how accumulated, 
compatible datasets enable the development of ML models with a comprehensive understanding of 
materials and fabrication parameters. Such models could significantly accelerate OPV 
commercialization.

Conclusion

We developed new data-driven research approach that will significantly accelerate the progress of 
printed OPV towards commercialization. It includes generating reusable and expandable training data 
capable of predicting the properties of new materials and developing PP and J–V prediction ML models. 
The data was firstly generated using the MicroFactory platform, which facilitated the mass-
customization and characterization of over 26,000 OPV cells in just four days through fully digitalized 
processes. These data were then used to train the PP and J–V prediction models that can guide 
researchers to rapidly optimize OPV manufacturing parameters. We found the J–V prediction models 
are useful not only for predicting efficiencies, but also for understanding device behavior based on the 
composition and fabrication parameters of untested devices. The RF-J–V prediction models accurately 
predicted J–V curves with 0.969 of exceptional R2 score. The PCE calculated from these curves were 
also as precise as PCE prediction models, both showing approximately 0.96 of R2 score. This high 
model performance is attributed to the systematically collected high-quality and large-quantity data, as 
well as finding suitable algorithms followed by thorough hyperparameters optimization. In addition, 
OPV device using the RF model-predicted formulation recorded 11.8% PCE, best efficiency for fully 
printed OPVs to date. Further data accumulation will enable the development of more generalized ML 
models that leverage accumulated and compatible datasets to predict device behavior for new materials 
and fabrication conditions. By demonstrating that models trained on binary systems can effectively 
predict ternary performance, this work highlights how data reuse accelerates optimization and drives 
OPV development toward commercialization. This study paves the way to a digital revolution in printed 
photovoltaic research and, potentially, solution-processed electronics.

Experimental section

Material preparation

PM6 (PBDB-T-2F), L8-BO (L8-BO-2F), and BM-HTL-1 were procured from Brilliant Materials. Qx-
1 was synthesized following the procedures introduced in reference34 and also purchased from Hyper 
Chem. D18 (PCE18) was obtained from 1-Material. S315 (Orgacon S315) was purchased from Agfa-
Gevaert N.V. PEDOT:F was synthesized following the procedures outlined in reference35 A commercial 
solution of ZnO NPs (5.6% w/v in isopropanol (IPA)) was sourced from Infinity PV. PEIE 
(polyethylenimine, 80% ethoxylated solution, 37 wt. % in H2O), CB (chlorobenzene, anhydrous, 
99.8%), ortho-xylene (o-xylene, anhydrous, 97.0%), 2-methoxyethanol (anhydrous, 99.0%), and IPA 
(anhydrous, 99.0%) were acquired from Sigma-Aldrich. The TCE (OPV8, 8 Ω sq−1) was obtained pre-
patterned on PET from Mekoprint A/S with a proprietary deposited metal composition. Ag paste 
(PV416) was purchased from DUPONT. A 3MTM ultra barrier solar film 512 was purchased from 3M.

R2R device fabrication and optimization
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R2R devices were fabricated on pre-patterned TCE-coated PET substrates. A customized R2R coater 
equipped with programmable syringe pumps facilitated the experiment. A solution of ZnO NPs was 
prepared by diluting it with IPA in a 1:1 ratio (v/v), resulting in a 2.8% solution (w/v). A solution of 
PEIE (0.4 wt% dissolved in 2-methoxyethanol) and the ZnO NP solution were concurrently deposited 
using two distinct slot die heads (head 1: PEIE, head 2: ZnO NP). The substrate passed through head 1 
followed by head 2, enabling the deposition of the ZnO NPs layer over the PEIE layer. Both solutions 
were coated at a speed of 20 cm min-1 with varying solution feed rates (PEIE: 15 µl min-1 and ZnO NP: 
20 µl min-1), resulting in wet film thicknesses (WFT) of 5.76 µm for PEIE and 7.69 µm for ZnO NP 
based on a coating area of 26 cm2 min-1 (1.3 cm width × 20 cm length). The layers were then thermally 
annealed at different temperatures (PEIE: 130 oC and ZnO NP: 120 oC) on curved hot plates located 
beneath each slot die head for ~45 seconds immediately after deposition. Subsequent layers were 
fabricated at the same coating speed (30 cm min-1). Two different active solutions, PM6:Qx-1 and 
PM6:L8-BO (D:A = 1:1.5, w/w), were dissolved in Xyl (25 mg/ml total concentration) and stirred at 
80 oC overnight. During deposition, the solution feed rates were fixed at 60 µl min-1 (WFT: 1.54 µm 
based on a coating area of 39 cm2 min-1, 1.3 cm width × 30 cm length). Optimization of the active layer 
involved two technologies. Firstly, films were fabricated using a hot deposition technique36, 37 at various 
deposition temperatures (head/bed: RT/RT, 60/60, 60/100, 90/60 and 90/100 oC). Heat was applied 
directly to the slot-die head using a custom-built heater probe into a metal slot die, while a second heat 
source in a coating stage was applied to the substrate during slot-die solution deposition. Films were 
then thermally annealed at 130 oC on the curved hot plate for ~30 seconds. Next, drying kinetics were 
controlled by either thermally annealing the film at 130 oC on a coating stage, blowing air onto the wet 
film during deposition, or allowing the film to naturally dry without treatment for comparison. To 
fabricate a thin film HTL, a PEDOT:F solution was diluted with IPA in a 1:1 ratio (v/v). The PEDOT:F 
and S315 solutions were deposited from head 1 and 2, respectively, to create the PEDOT:F layer 
underneath the S315 layer. Solution feed rates were 30 and 168 µl min-1 for the PEDOT:F and S315, 
respectively, corresponding to WFTs of 10 µm and 8 µm based on coating areas of 30 cm2 min-1 (1 cm 
width × 30 cm length) and 21 cm2 min-1 (0.7 cm width × 30 cm length) at the same coating speed. The 
layers were then thermally annealed at different temperatures (PEDOT:F: 100 oC and S315: 130 oC) on 
curved hot plates for ~30 seconds. All R2R device fabrication was conducted under ambient laboratory 
conditions, where the relative humidity and temperature were maintained at 35.8 ± 3.68 % and 22.4 ± 
0.58°C (mean ± standard deviation), respectively.

High-throughput fabrication of R2R device

For high-throughput device fabrication, we selected the PM6:L8-BO system as an example. All active 
layers were formulated using CB solvents due to the limited solubility of L8-BO in the acceptor-rich 
solution when using Xyl solvents. A pre-mixed PM6:L8-BO solution (1:1.2, w/w, PM6 concentration: 
10 mg ml⁻¹) was first prepared, along with an identical solution containing various additives: DIO, CN, 
2-HM and DCB. The additive concentrations were set to 2 and 3 vol% for DIO and CN, and weight 
ratios relative to the donor solid of 150 wt% for 2-HM and the total donor and acceptor solids of 150 
wt% for DCB, respectively. Relative pump flow rates were adjusted to control the solid content of 
additives and to determine the optimal additive condition. Based on these evaluations, the best-
performing solution (without additives) was selected for large-scale fabrication. Using this optimized 
formulation, a total of 26,422 OPV devices were produced across two independent batches, each 
yielding more than 13,000 devices. The device fabrication process mirrored those introduced in the 
‘R2R Device Fabrication and Optimization’ section, with variations in the deposition of the active layer 
and HTL. These variations are detailed below for each batch.

Batch 1: Active layer solutions of PM6:L8-BO were prepared in CB at 80 oC overnight, with two distinct 
D:A ratios of 3:1 and 1:3 (denoted as donor- and acceptor-rich solutions), maintaining a fixed donor 
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concentration of 10 mg ml-1. These solutions were deposited using two programmable syringe pumps, 
combined in a Y-connector, and the in-situ mixed solution fed through tubing with an inner diameter 
of 0.5 mm. 13 sub-batches were conducted throughout the batch. Total solution flows remained constant 
at 72, 48, 36, or 24 µl min-1 (resulting in WFT: 1.85, 1.23. 0.923, or 0.616 µm) while adjusting the 
relative flow rates of the two pumps for first 4 sub-batches. This manipulation varied the D:A ratios of 
the total solution flow, leading to linear increases in TDD during deposition. In contrast, the volumetric 
ratios of the donor-and acceptor-rich solutions were held constant to achieve fixed D:A ratios of 1:3, 
1:2, 1:1.5, 1:1.2, 1:1, 1.2:1, 1.5:1, 2:1, or 3:1 in the total solution flow. The total solution flows varied 
within the range of 24‒96 µl min-1 (resulting in WFT: 0.616‒2.46 µm), leading to linear decreases in 
TDD during deposition for the remaining 9 sub-batches.

Batch 2: Active layer solutions of PM6:L8-BO prepared at 80 oC overnight consisted of a donor-rich 
solution (D:A ratio of 3:1 and a donor concentration of 15 mg ml-1) and an acceptor-rich solution (D:A 
ratio of 1:3 and a donor concentration of 5 mg ml-1) were prepared. The deposition process mirrored 
that of Batch 1. Total solution flows were maintained at a constant rate of 120, 90, 60, or 30 µl min-1 
(resulting in WFT: 3.08, 2.31, 1.54, or 0.769 µm) while altering the relative flow rates of the two pumps 
for the first 4 sub-batches. The D:A ratios of the total solution flow were varied while TDD remained 
constant, corresponding to 63.5, 47.7, 31.8, or 15.9 µg cm-2, respectively. The volumetric ratios of the 
donor-and acceptor-rich solution were held constant to achieve fixed D:A ratios of 1:3, 1:2, 1:1.5, 1:1.2, 
1:1, 1.2:1, 1.5:1, 2:1, or 3:1 in the total solution flow. The total solution flows varied within the range 
of 24‒120 µl min-1 (resulting in WFT: 0.616‒3.08 µm), leading to linear decreases in TDD during 
deposition for the remaining 9 sub-batches.

All active layers were fabricated at RT for both head and bed temperatures, and the films were exposed 
to air blowing process during deposition. The dead volume of the tubing from the Y-connector and the 
slot die was calculated to be ~33.7 and ~39.6 µl for Batch 1 and Batch 2, respectively. This implies that 
the in situ mixed solution was deposited around 28 and 20 seconds after mixing at a flow rate of 72 and 
120 µl min-1. The composition of the film at each position was calculated based on the relative flow rate 
and the deposition offset originating from the dead volume of the deposition system. BM-HTL-1, 
diluted with IPA in a 1:1 ratio (v/v), was used as the HTL material, and concurrently deposited with the 
S315 layer in the same manner as depicted in the previous section.

Device characterization

All devices had a defined cell area of 2.5 mm2, determined by the TCE pattern and a commercially 
available circular aperture (Thorlab, 1.8 mm diameter). J–V characteristics of all OPV devices were 
characterized using an AAA solar simulator (Enlitech, SS-F5-3A), which employed a Xenon lamp light 
source (USHIO, UXL-300D-0) coupled with an AM 1.5G solar spectrum filter. This setup was 
integrated with a R2R tester connected to a source measurement unit (a Keithley 2400-LV) under 
standard test conditions (1 sun, 100 mW cm2, AM 1.5G) and ambient surroundings. The light intensity 
was calibrated and monitored using an Enlitech certified secondary reference cell (Si-FigRC-5021), 
which had been pre-calibrated by a certified KG-2 filtered Si reference cell. Ag paste was screen printed 
on top of the S315 layer using a SP-006 screen printer (ESSEMTEC AG) to establish electrical contact 
with a test clip during EQE measurement. Subsequently, the devices were encapsulated with a barrier 
film. EQE spectra were acquired in air using a PEC-S20 instrument (Peccel Technologies Inc.).

Film characterization

To analyze the properties of the thin films, several techniques were employed. Work function 
measurements were performed using photoelectron spectroscopy (PESA) in air. UV–vis absorption 
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spectra of thin films were obtained by using a SPM-C1 spectrometer (StellarNet Inc.) with a Xenon 
lamp serving as the light source. AFM height and phase images (5 µm × 5 µm) were captured using a 
Bruker Dimension Icon (Bruker Corporation, USA). Scans were recorded using tapping mode and 
Bruker ScanAsyst-Air probes (cantilever frequency 70 kHz, spring constant 0.4 N m-1, nominal tip 
radius 2 nm) under ambient conditions. A scan rate of 0.25 Hz was maintained for all scans. Nanoscope 
Analysis 1.9 (Bruker Corporation, USA) was used for image processing and production. All samples 
were R2R slot die coated onto PET substrates.

ML predicted formulation-based device fabrication

The fabrication process for all devices followed the steps outlined in the ‘R2R device fabrication and 
optimization” section, excluding the deposition of active layer. PM6:L8-BO active layer solutions in 
CB and Xyl were prepared at 80 oC overnight based on the ML-predicted formulations generated by the 
best PCE and J–V prediction models. These formulations were divided into two groups with different 
donor concentrations: Cluster 0 (10.2 mg ml-1, D:A = 1:1.14, w/w) and Cluster 1 (9.29 mg ml-1, D:A = 
1:1.22, w/w). The active layers were deposited using a single syringe pump at solution flow rates of 
72.5 and 117.5 µl min-1, corresponding to WFT of 1.86 and 3.01 µm based on 39 cm2 min-1 coating are. 
This resulted in TDD of 40.5 and 62 µg cm-2 for Cluster 0 and Cluster 1, respectively. All films were 
fabricated at RT for both head and bed deposition temperatures and dried under airflow conditions, 
consistent with the process used for the high-throughput produced devices.

Similarity measurement metrics

Euclidean Distance (ED) metric was utilized for quantifying similarities between two data points in a 
multidimensional space using following formula:

𝑀 represents the total number of features. 𝐹𝑘,𝑥 and 𝐹𝑘,𝑦 denote the kth features of two selected devices, 
such as TDDs of device 1 and device 2. 𝐹𝑘,𝑚𝑎𝑥 denotes maximum value of the kth features.

Ternary or all polymer system-based device fabrication and data preparation

PM6:Y6:IT-4F System: The data from previously fabricated and characterized devices were utilized, 
as detailed in a prior publication23. The final dataset included 16 different batches, totaling 2422 data, 
with 10 features and 1 label for PCE prediction. Notably, the introduction of Y6, IT-4F and o-
dichlorobenzene (DCB) is represented in the dataset as columns as ‘DCB FR’, ‘Y6 DD’ and ‘IT-4F 
DD’.

PM6:D18:L8-BO System: The device fabrication followed procedures outlined in the prior section, 
with the exception of the active layer deposition. The experiment consisted of two independent batches, 
each with 5 sub-batches. In Batch 1, donor-only solution (PM6:D18 = 4:1, total concentration: 20 mg 
ml-1) and acceptor-only solution (L8-BO concentration: 20 mg ml-1) were prepared. In Batch 2, pre-
mixed solutions of PM6:D18:L8-BO (0.5:0.5:1.2, PM6 or D18 concentration: 5 mg ml-1) and PM6:L8-
BO (1:1.2, PM6 concentration: 10 mg ml-1) dissolved in CB at 80oC overnight. During deposition, total 
solution flows were maintained at constant rates of 120, 96, 72, 48, or 24 µl min-1 (resulting in WFT: 
3.08, 2.46, 1.85, 1.23 or 0.615 µm), with alterations in the relative flow rates of the two pumps. The 

Euclidean Distance (ED) =
𝑀

𝑘=1

𝐹𝑘,𝑥 ― 𝐹𝑘,𝑦

𝐹𝑘,𝑚𝑎𝑥

2
(Eq. S1)
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D:A ratios (Batch 1) or PM6:D18 ratios (Batch 2) of the total solution flow were varied, while TDD 
were either changed (Batch 1) or kept constant (Batch 2), resulting in TDD of 68.7, 54.9, 41.2, 27.5, or 
13.7 µg cm-2, respectively. The deposition occurred under identical environment and the composition 
of the film at each position were calculated using the same methods as in the prior experiments. Dataset 
preparation involved consistent feature design and data cleaning procedures as in the previous section. 
The final dataset comprises 2570 data, with 10 features and 1 label for PCE prediction, incorporating 
D18 as the third material, represented by the column ‘D18 DD’ in the dataset. Any inconsistent data 
were removed prior to analysis.

PM6:PYF-T-o System: Device fabrication followed the procedures described previously, except for the 
active layer deposition. Three independent batches were prepared, each consisting of 5, 6 sub-batches 
and 1 sub-batch. In Batch 1, donor-only (PM6 concentration, 14 mg ml⁻¹) and acceptor-only (PYF-T-o 
concentration, 14 mg ml⁻¹) solutions were prepared. In Batch 2, pre-mixed solutions of PM6:PYF-T-o 
at ratios of 2.5:1 and 1:2.5 (PM6 concentration: 7 mg ml⁻¹) were prepared. In Batch 3, a pre-mixed 
PM6:PYF-T-o solution (1:1.2, w/w) (PM6 concentration: 7 mg ml⁻¹) was prepared along with an 
identical solution containing PN as a solid additive (100 wt% relative to the total donor and acceptor 
solids). All solutions were dissolved in CB and stirred overnight at 70 °C. During deposition, the total 
solution flow rates were set to 120, 96, 72, 48, or 24 µl min⁻¹ in Batches 1 and 2, resulting in WFTs of 
3.08, 2.46, 1.85, 1.23, and 0.615 µm, respectively, while Batch 3 was fixed at 72 µl min⁻¹. Relative 
pump flow rates were varied to control D:A ratios, film thickness, or the solid content of 2-PN. The 
TDD was kept constant in Batch 1 (43.1, 34.5, 25.8, 17.2, and 8.62 µg cm⁻²) but varied in Batches 2 
and 3. Deposition conditions were consistent with earlier experiments, and film composition at each 
position was determined using the same calculation methods. Dataset preparation followed the same 
feature design and data cleaning protocols described previously. The final dataset comprised 2,840 data 
points, including 10 features and 1 target label for PCE prediction. Two additional feature columns, 
PYF-T-o DD’ and ‘PN DD’, were introduced to represent PYF-T-o as the acceptor material and 2-PN 
as the additive, respectively. Any inconsistent data were removed before analysis.
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Data availability

All data generated or analyzed during this study are included in the published article and its ESI, 
supplementary data files and supplementary video. Detailed descriptions of the supplementary data files 
and video are as follows:

Supplementary data files

Data S1. Self-produced dataset for PP prediction composed of 25,249 data.

Data S2. Self-produced dataset for J–V prediction composed of 1,792,697 data.
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Data S3. Dataset for PCE prediction in ternary and all polymer material systems. It includes 16 batches 
totaling 2,422 data points for the PM6:Y6:IT-4F system, and 10 sub-batches totaling 2,570 data points 
for the PM6:D18:L8-BO system. Additionally, the all-polymer dataset comprises 11 sub-batches with 
2,840 data points for the PM6:PYF-T-o system.

Data S4. Model performance summary of ternary and all polymer material system without or with the 
accumulated dataset.

Supplementary video

Video S1. The J–V curves predicted by the J–V prediction model were displayed for selected features. 
Predicted PPs from the PP prediction model were also listed in the top-left legend of the chart. As each 
feature slider is adjusted, the predicted J–V curves and PPs update interactively according to the selected 
feature values.

Code availability

In this study all ensemble-based models were built using scikit-learn and xgboost, which are open-
source libraries. All code, relevant datasets and supplementary files are shared at:
https://figshare.com/s/ca0b8a65d1acdadb9f28.
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Fig. 1. Materials, energy diagrams and structure of R2R OPV device and MicroFactory platform illustration (a) 
Chemical structures of materials used in this study. (b) Detailed device structure illustration. (c) Energy diagram of 
fully-R2R fabricated OPVs. (d) A 3D schematic of the MicroFactory platform featuring custom-built automatic R2R 
coater and tester, along with a database that stores all collected data. The inset image in Fig. 1d illustrates the 
fabrication of an active layer with a gradient composition, represented by a rainbow-colored film, in a single deposition 
process. By employing programmable syringe pumps, two solution flows were controlled linearly, and the solutions 
were mixed in situ and deposited onto a continuously moving substrate. 9 deposition parameters were collected and 
stored in a database during deposition. Subsequently, the devices were automatically characterized using the R2R 
tester until a specified number of measurements had been made. The data collected from three coating runs and one 
test run were integrated into one consolidated dataset based on the position of the roll (device position).
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Fig. 2. PP distribution for a total 26,422 devices, photograph of an actual device and J–V characteristics of four 
selected devices. (a) PP data of individual devices, DD of each material, and L8-BO/PM6 ratios (w/w) across 26,422 
PM6:L8-BO devices, organized based on their positions in the device. These devices were part of 13 sub-batches in 
each batch, wherein various D:A ratios or film thicknesses were explored. The devices with 0% PCE were 
intentionally fabricated as checkpoints at the end of each sub-batch. (b) Photograph of actual devices corresponding 
to ~ 74.8 m for one batch. (c) J–V characteristics of four selected devices, each showcasing the highest JSC, VOC, FF, 
and PCE values among 26,422 devices. The positions of each value were indicated as star shapes on each J–V curve, 
except for the maximum PCE value. The maximum PCE, calculated to be 14.1%, was based on these values. Possible 
MPPs of ideal devices with the PCE were depicted as purple star shapes for visualization using an equation, JMP = –
PCE/VMP where JMP is current density and VMP is voltage of the MPPs within voltage range of 0‒VOC V (0‒0.884 V in 
this case). The larger and darker start shape indicated the proximity of MPP to the J–V characteristics of devices 
demonstrating the highest PCEs.
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Table 1. Summary of PPs of four selected devices exhibiting the highest JSC, VOC, FF and PCE, among 26,422 devices.

Device JSC
(mA cm-2)

VOC
(V) FF PCE

(%)
Rsh

(Ω cm2)
Rs

(Ω cm2)
Max JSC 22.0 0.805 0.548 9.70 1130 3.01
Max VOC 9.89 0.884 0.410 3.59 210 11.6
Max FF 17.4 0.831 0.727 10.5 996 2.00

Max PCE 20.5 0.835 0.677 11.6 5004 2.58
* 200 devices were fabricated at each formulation.
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Fig. 3. Workflow overview in this study, J–V measured and predicted characteristics and predicted PPs of 3 randomly 
selected devices. (a) Illustration of the comprehensive workflow in this study, comprising automated device 
fabrication and characterization, data storage of deposition and photovoltaic data in a database, and ML application. 
(b)–(g) J–V actual and predicted characteristics of 3 randomly selected devices. Predicted PPs, including JSC, VOC, Rsh, 
and Rs, were denoted by star-shaped markers and thick solid lines, derived from each best PP prediction model. 
Measured J and predicted J values were obtained from actual characterization and J–V prediction model, respectively. 
The MPP candidates were identified using the same method described in Fig. 2b, and were represented by star-shaped 
markers, with larger ones indicating the MPP point closest to the actual J–V curve (MPPclose). Additionally, the 
predicted JSC, VOC, Rsh and Rs values were represented as star-shape markers or solid lines, derived from each best PP 
prediction model. The predicted FFs were depicted as ivory-colored filled rectangles, with J and V values determined 
from the MPPclose. Predictions were generated using RF models for panels (b)–(d), and XGBoost models for panels 
(e)–(g).
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Table 2. R2 score, MAPE and RMSE of each PP (R2
JV, MAPEJV and RMSEJV) calculated from predicted J–V curves. 

R2 score, MAPE and RMSE of PP prediction model (R2
PP, MAPEPP and RMSEPP) were provided for comparison.

Model Dataset PP R²JV MAPEJV RMSEJV R²PP MAPEPP RMSEPP

RF 0.980 13.6 0.720 0.982 21.0 0.683
XGBoost

JSC 0.979 248 0.737 0.984 21.1 0.650
RF 0.953 1.46 0.037 0.964 1.38 0.032

XGBoost
VOC 0.893 2.04 0.056 0.965 1.46 0.032

RF 0.925 3.89 4.37 0.957 3.24 3.30
XGBoost

FF
0.866 6.48 5.84 0.961 3.20 3.17

RF 0.949 6.82 0.681 0.958 6.83 0.613
XGBoost

PCE
0.932 9.28 0.784 0.962 6.77 0.589

RF -7.26 98.7 13364 -0.225
(0.839)a)

75.5
(15.6)a)

5146
(41.5)a)

XGBoost
Rsh

-9.11 528 14786 -2.65
(0.800)a)

98.5
(16.4)a)

8879
(46.3)a)

RF -0.001 10.4 17552 0.028
(0.886)b)

3816
(6.80)b)

17296
(0.773)b)

XGBoost

Test

Rs

-0.001 15.4 17552 0.028
(0.885)b)

3751
(7.04)b)

17296
(0.775)b)

a) Metrics within the parentheses are derived from Rsh values belonging to bottom 30% (< 366 Ω cm2)
b) Metrics within the parentheses are derived after excluding outliers (about 3% of entire dataset).
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Fig. 4. Comparison of J–V characteristics and EQE spectra for R2R OPVs with top formulations in varied solvent 
condition. J–V characteristics of R2R OPVs with the top formulation in cluster 0 and 1 using processing solvents (a) 
and (c), CB and (b) and (d), xylene, along with (e) and (f), corresponding EQE spectrum. Predicted J–V characteristics 
obtained from the J–V prediction model are also included for comparison.
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Table 3. Summary of PPs for R2R OPVs with the top formulation in Cluster 0 and 1 using CB and xylene processing 
solvents. PPs obtained from PCE and J–V prediction model were also listed for comparison.

Cluster 
Number Prediction Solvent JSC

(mA cm-2)

Cal. JSC
(mA cm-

2)

VOC
(V) FF PCE

(%)
Rsh

(Ω cm2)
Rs

(Ω cm2)

PCE 19.7 - 0.834 0.632 11.3 913 2.72

J–V 20 - 0.829 0.679 11.3 1319 2.67CB
20.3

(19.9 ± 0.821) 19.91 0.835
(0.831 ± 0.010)

0.694
(0.688 ± 0.035)

11.8
(11.3 ± 0.550)

874
(2065 ± 6883)

2.18
(2.14 ± 0.279)

0

-
Xylene 20.0

(19.8 ± 0.674) 19.77 0.824
(0.820 ± 0.004)

0.678
(0.672 ± 0.025)

11.2
(10.9 ± 0.195)

6993
(1885 ± 5139)

1.77
(1.99 ± 0.184)

PCE 20.5 - 0.810 0.625 10.3 534 2.09

J–V 20.7 - 0.810 0.619 10.4 1730 2.01CB
21.6

(21.3 ± 0.573) 20.83 0.814
(0.804 ± 0.008)

0.632
(0.564 ± 0.056)

11.1
(9.67 ± 1.01)

3894
(813 ± 700)

2.90
(3.80 ± 0.808)

1

-
Xylene 20.8

(19.7 ± 1.51) 20.63 0.819
(0.816 ± 0.010)

0.638
(0.590 ± 0.063)

10.9
(9.51 ± 1.35)

664
(1210 ± 3153)

1.72
(1.96 ± 0.447)

* 200 devices were fabricated at each formulation.
* All statistical data were calculated from 200 devices.
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Fig. 5. Test R2 performance across train dataset sizes without or with accumulated dataset for two ternary systems. 
Box plots illustrating test R2 for two material systems, (a) PM6:Y6:IT-4F and (b) PM6:D18:L8-BO, in relation to the 
average number of train data, corresponding to about 10, 20, 50 and 80% without and with accumulated dataset 
(PM6:L8-BO material system composed of 20,199 data points). Each data point for the R2s was represented as circle-
shaped markers. Pink and blue boxes represented the interquartile range (IQR) of the test R2 without and with the 
accumulated data, respectively, extending from the first quartile (Q1) to the third quartile (Q3). Each median was 
indicated by a solid line within the box, accompanied by a numerical value. The whiskers' boundaries followed the 
1.5 IQR rule to identify outliers, where the lower whisker extends to the lowest data point above Q1 – 1.5*(Q3 – Q1), 
and the upper whisker to the highest data point below Q3 + 1.5*(Q3 – Q1). Outliers were denoted by a marker '×'.
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Data availability

All data generated or analyzed during this study are included in the published article and its ESI, 
supplementary data files and supplementary video. Detailed descriptions of the supplementary data files 
and video are as follows:

Supplementary data files

Data S1. Self-produced dataset for PP prediction composed of 25,249 data.

Data S2. Self-produced dataset for J–V prediction composed of 1,792,697 data.

Data S3. Dataset for PCE prediction in ternary and all polymer material systems. It includes 16 batches 
totaling 2,422 data points for the PM6:Y6:IT-4F system, and 10 sub-batches totaling 2,570 data points 
for the PM6:D18:L8-BO system. Additionally, the all-polymer dataset comprises 11 sub-batches with 
2,840 data points for the PM6:PYF-T-o system.

Data S4. Model performance summary of ternary and all polymer material system without or with the 
accumulated dataset.

Supplementary video

Video S1. The J–V curves predicted by the J–V prediction model were displayed for selected features. 
Predicted PPs from the PP prediction model were also listed in the top-left legend of the chart. As each 
feature slider is adjusted, the predicted J–V curves and PPs update interactively according to the selected 
feature values.

Code availability

In this study all ensemble-based models were built using scikit-learn and xgboost, which are open-
source libraries. All code, relevant datasets and supplementary files are shared at:
https://figshare.com/s/ca0b8a65d1acdadb9f28.
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