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Broader Context

The global push toward carbon neutrality necessitates transformative technologies that can sustainably 
produce energy and chemicals while minimizing CO2 emissions. Chemical looping processes offer an 
elegant solution by integrating redox-mediated reactions with inherent separation, enabling efficient energy 
conversion and chemical production. However, the discovery of suitable redox-active materials, 
particularly mixed metal compounds with tailored thermodynamic and surface properties, has remained a 
bottleneck due to the vast material design space. This work addresses this challenge by highlighting how 
computational screening and machine learning can accelerate the identification of optimal oxygen and 
nitrogen carriers for applications ranging from combustion and air separation to ammonia synthesis and 
CO2 capture. Beyond enabling cleaner energy systems, these approaches promise to transform materials 
discovery by reducing experimental trial-and-error, guiding the design of new multifunctional materials, 
and laying the foundation for autonomous research platforms. By illustrating the synergy between 
computation, data science, and experimental validation, this perspective outlines a scalable and 
generalizable framework for rapid development of redox materials. These advancements are crucial for 
decarbonizing power and industrial sectors – major contributors to greenhouse gas emissions – and ensuring 
a more sustainable future.
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Computationally Accelerated Discovery of Mixed Metal 
Compounds for Chemical Looping Combustion and Beyond

Kunran Yang1 and Fanxing Li1*
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*Corresponding Author, fli5@ncsu.edu,

Abstract – Compared to their monometallic counterparts, mixed metal compounds, such as mixed metal 
oxides and nitrides, are highly versatile in their compositional, structural, redox, and surface properties. 
This versatility unlocks exciting opportunities for applications in clean energy conversion and 
sustainable chemical production. However, efficiently identifying optimal compositions remains a 
significant challenge due to the vast and complex material design space. This perspective discusses how 
high-throughput computational and data science tools are transforming the rational design of mixed 
metal compounds for chemical looping applications beyond combustion. The specific applications 
covered include chemical looping air separation, redox-based CO2 and water splitting, NH3 synthesis, 
and redox-activated CO2 sorbents, among others. We aim to illustrate how high-throughput density 
functional theory (DFT) calculations, combined with machine learning and experimental validation, 
have accelerated material screening and optimization, enabling the efficient exploration of vast 
compound families. Finally, we discuss future trends aimed at improving the efficiency and accuracy of 
chemical looping carrier discovery.

Broader Context

The global push toward carbon neutrality necessitates transformative technologies that can sustainably 
produce energy and chemicals while minimizing CO2 emissions. Chemical looping processes offer an 
elegant solution by integrating redox-mediated reactions with inherent separation, enabling efficient 
energy conversion and chemical production. However, the discovery of suitable redox-active materials, 
particularly mixed metal compounds with tailored thermodynamic and surface properties, has remained 
a bottleneck due to the vast material design space. This work addresses this challenge by highlighting 
how computational screening and machine learning can accelerate the identification of optimal oxygen 
and nitrogen carriers for applications ranging from combustion and air separation to ammonia synthesis 
and CO2 capture. Beyond enabling cleaner energy systems, these approaches promise to transform 
materials discovery by reducing experimental trial-and-error, guiding the design of new multifunctional 
materials, and laying the foundation for autonomous research platforms. By illustrating the synergy 
between computation, data science, and experimental validation, this perspective outlines a scalable and 
generalizable framework for rapid development of redox materials. These advancements are crucial for 
decarbonizing power and industrial sectors – major contributors to greenhouse gas emissions – and 
ensuring a more sustainable future.

1 Introduction 
The chemical looping (CL) strategy, which makes use of cyclic reactions facilitated by a carrier 
or reaction medium, offers an excellent opportunity to integrate energy and/or chemical 
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conversion with feedstock or product separations, leading to more sustainable processes. Over 
the past few decades, various applications for chemical looping have been explored. Examples 
include chemical looping combustion,1-5 carbonate looping,6-9 air separation,10-12 solar 
thermal CO2 and/or water splitting,13-19 ammonia synthesis,20-22 selective oxidation or 
reduction for the production of chemicals,23-29 to name a few. A large fraction of the 
aforementioned chemical looping applications relies on the redox reactions of a metal 
oxide-based oxygen carrier to facilitate the cyclic reaction. As such, oxygen carrier 
performance plays a critical role in the technical feasibility and economic attractiveness 
of many CL processes investigated to date. Nitrides and imides, on the other hand, have 
shown promise as nitrogen carriers for chemical looping ammonia synthesis.30-32 Despite 
extensive research efforts related to the development of these carriers, their design and 
optimization are still mostly empirical based. Meanwhile, many recent studies have 
pointed to the excellent potential of mixed metal compounds when compared to their 
monometallic counterparts.33, 34 As a result, the corresponding material design space has 
been substantially expanded, with infinite potential options for material compositions. 
Given that materials synthesis and evaluation guided by heuristics can be tedious and 
time-consuming, computational tools that can efficiently and accurately identify 
promising carrier compositions out of a large material design space are highly desirable.

Herein, we review recent advancements in the accelerated development of mixed metal 
compounds for chemical looping applications, leveraging high-throughput 
computational models and machine learning tools. The discussion begins with 
computationally assisted high-throughput development of oxygen carriers and their 
applications, followed by nitrogen carrier design and selection for ammonia synthesis. 
We then explore multifunctional oxygen and CO2 carriers and their roles in CO2 
sorption-enhanced reforming and gasification. Finally, we provide perspectives on 
future research directions in this field.

2 Recent advances in mixed metal compound development

2.1 High-throughput development of oxygen carriers

2.1.1 Chemical looping combustion and chemical looping air separation

Simplified schematics of chemical looping combustion (CLC) and its variant, chemical looping 
air separation (CLAS), are shown in Fig. 1. CLC operates through two main steps for energy 
generation with integrated CO2 capture: First, metal oxide carriers serve as an oxidant to 
completely combust a carbonaceous feedstock such as methane, coal, or biomass, producing a 
concentrated CO2 stream after steam condensation.23, 35-43 Second, these reduced metal oxides 
are regenerated through exposure to the air.  From a thermodynamic standpoint, the metal oxide 
carriers must maintain a favorable Gibbs free energy change (ΔG) to enable both the fuel 
oxidation and air regeneration steps, i.e. the oxygen carrier reduction potential needs to be high 
enough for fuel combustion, while the subsequent re-oxidation with air must also be 
spontaneous. The primary idea behind CLC lies in its ability to separate oxygen from air in-situ 
while indirectly oxidizing carbon-based fuels. As such, CLAS is a natural extension from CLC  
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where a separated O2 stream is the target product (Fig. 1b).44-57 Oxygen carrier selection for 
CLAS is more restrictive thermodynamically than CLC since the oxide should spontaneously 
release gaseous oxygen under vacuum or steam purge (i.e. higher equilibrium PO2), while still 
being re-oxidizable by the air. 

Fig. 1. Schematic illustration of chemical looping combustion (CLC) and CL air separation (CLAS) and 
thermodynamic criteria for the redox potential of the oxide expressed in terms of equilibrium PO2. For CLC, 
this value is calculated assuming a CO2 : CO ratio of 100 : 1, the equilibrium PO2 as a function of 
temperature can be approximated by PO2, eq = 104e(20.86-67885/T) within the general temperature range of 
interest. The equation was obtained by calculating the PO2 values that would lead to an equilibrium CO2/CO 
ratio of 100:1 within a temperature range of 750 °C and 900 °C based on the CO2 thermolysis reaction 
(2CO2  2CO + O2). The ΔG values of the CO2 thermolysis reaction as a function of temperature (T) were 
calculated using the HSC Chemistry software.

Inherent to their operating principles, the redox properties of oxygen carriers are crucial to all 
chemical looping processes involving lattice oxygen release and replenishment. However, 
systematic, bottom-up strategies for effectively designing oxygen carriers are still lacking. The 
inherent complexity of redox reactions, which extend well beyond the interaction between 
reactant molecules and often poorly-defined oxide surfaces, makes it difficult to design redox 
oxides from first principles. This is particularly the case in the context of chemical looping 
catalysis, an emerging area receiving increased attention.58-60 In such applications, oxides’ 
surface catalytic properties play a major role in determining the overall reaction performance, 
in addition to the redox properties of the oxygen carriers.61-66

Although expecting an ab-initio or DFT model to fully capture all aspects of oxygen carrier 
design is impractical, modern computational and data science tools, combined with relatively 
simple selection criteria, can greatly reduce the experimental workload in screening and 
developing oxygen carriers. As a starting point, it is rather straightforward to begin with the 
underlying thermodynamic requirements that drive the envisioned chemical looping reactions, 
as illustrated in Fig. 1. As early as 2017, Lau et al. screened over 5,500 compounds from the 
Materials Project database to identify materials with suitable thermodynamic properties 
for  redox based O2 separation and chemical looping combustion, as well as their resistance 
toward carbonation.67 Through a systematic screening methodology (Fig. 2a), which considers 
the oxides’ redox properties, equilibrium oxygen partial pressure, capability of single-phase 
redox reactions, and cost and toxicity, more than 100 promising perovskite oxides were 
identified, with SrFeO3-δ emerging as the most promising candidate for chemical looping with 
oxygen uncoupling and CLAS at intermediate temperatures (<823 K). Experimental validation 

MxOy MxOy-δ

b) CLAS

Air

O2 (through vacuum
or steam purge)

O2-lean Air

a) CLC

MxOy MxOy-δ

CxHy CO2/CO + steam

AirO2-lean Air
pO2: ~0.01 - ~0.1 atmpO2(T): ~1.7 × 10-16 at 750°C - ~8.2 × 10-13 at 900°C

Assuming CO2 : CO = 100 : 1
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showed SrFeO3-δ had excellent cycling stability and resistance to carbonation when synthesized 
as a pure phase, though impurities like Sr3Fe2O7 led to unwanted carbonation reactions. The 
screening also revealed broader insights into stabilizing metal oxides within different structural 
frameworks to optimize their redox properties. It is interesting to note that a few compounds 
identified by this study (or those with similar compositions) were subjects of further 
experimental investigations, showing promising results.68-73 This highlights the usefulness of 
the screening method building upon readily available computational databases. 

Fig 2. (a) Screening workflow by Lau et al.67, plotted based on the description in the manuscript and SI 
data; (b) Overview of the key results from screening the Materials Project database for compounds that 
undergo redox reactions.67 The predicted reduction temperature at PO2 =2.1×104 Pa for each reaction is 
plotted against Hreduction (upper panel) and O2 gravimetric capacity (lower panel).  Fig. 2b adapted from 
ref67 with permission from the Royal Society of Chemistry, copyright 2017.

Although the Materials Project database is highly useful, the accuracy of thermodynamic 
parameters for some oxide compounds of interest are limited. Wang et al. developed a 
systematic workflow (Fig. 3a), in conjunction with high throughput DFT calculations, to select 
perovskite oxides with a general formulation of SrxA1-xFeyB1-yO3-δ (A = Ca, K, Y, Ba, La, Sm; 
B = Ti, Ni, Mn, Mg, Cu, Co) for CLAS applications.74 A cubic SrFeO3-δ parent structure was 
chosen due to its high symmetry and ease of simulation. The DFT simulation covered 
more than two thousand distinct cation compositions. These results were then used to 
develop a machine learning model to predict the redox properties of over 200,000 
perovskite oxides with general compositions of Srx(A/A’)1-xFey(B/B’)1-yO3-δ. Fig. 3a 
summarizes the generalized simulation workflow whereas Fig. 3b illustrates the machine 
learning (ML) procedure.  The DFT simulations, which can predict the enthalpy and entropy 
changes related to oxygen vacancy creation at varying, discretized vacancy concentration 
levels, can project the equilibrium oxygen chemical potential (or equivalently oxygen partial 
pressure) as a function of perovskite oxide composition and its vacancy concentration level. As 
such, by comparing the predicted oxygen chemical potential ranges with the desirable ranges 
for CLAS, potentially suitable perovskite oxide compositions can be determined. The DFT 
simulation results can then be used to train the ML model to significantly expand the material 
design space with higher computational efficiency.

a b
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Fig. 3. High throughput materials screening and experimental validations.74 (a) DFT model 
construction, high-throughput calculations, and materials screening. (b) ML steps for the training, 
evaluation, and prediction of perovskite datasets.  Heatmap of the screened candidates for (c) CLAS 
at 700 °C within the δ range of 0.3125 ~ 0.4375. (d) Experimental oxygen capacity, recovery, and 
usable capacity of the samples tested for CLAS. Squares and circles represent DFT and ML 
predicted samples, respectively.74 Fig. 3 adapted from ref74 with permission from the Royal Society of 
Chemistry, copyright 2021.

Of the 113 CLAS materials predicted by DFT (Fig. 3c), 11 compositions with similar structures 
have been validated in prior experimental studies and shown outstanding performance. Building 
on these predictions, the authors prepared and experimentally evaluated 12 new compositions 
based on DFT predictions, along with 3 materials identified through machine learning (ML) 
models. All 15 samples were assessed using a standardized experimental procedure, with 
SrFeO3 serving as the reference material. As illustrated in Fig. 3d, a substantial portion of the 
computationally predicted materials demonstrated satisfactory CLAS performance: 13 of the 
15 experimentally tested samples outperformed SrFeO3, and 10 exhibited more than a 50% 
increase in oxygen capacity compared to SrFeO3. Notably, some compositions, such as 
Sr0.875K0.125Fe0.75Co0.125Ni0.125O3-δ, represent new discoveries without direct counterparts in the 
existing literature. These unique compositions would have been unlikely to emerge using 
traditional heuristic or empirical approaches, underscoring the transformative potential of the 
high-throughput methodology. Despite its effectiveness in identifying promising oxygen carrier 
compositions, the computational strategy developed in this study is nevertheless subjected to 
limitations due to the compromise between computational accuracy and efficiency considering 
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the complexity of perovskite oxides. As such, a number of simplifying assumptions were used 
in carrying out this study, as detailed in the manuscript.74 

Duan and co-workers also adopted a high-throughput DFT screening approach to identify 
promising SrFeO3--based perovskite materials for chemical looping, in particular CLAS and 
chemical looping with oxygen uncoupling.69 They evaluated more than 1,100 perovskite 
compositions by considering various dopant conditions and substitution patterns and calculated 
the oxygen vacancy formation energies (with an incremental ∆δ of 0.0625) and Gibbs free 
energies of the candidate structures across a temperature range of 298-1200 K. These DFT 
results were then used to train various ML models, with the best-performing model (ALL-KNN) 
achieving an R2 of 0.95 and RMSE of 37 kJ/mol on test data. This ML model enabled rapid 
prediction of Gibbs free energies for new compositions, facilitating the identification of 
promising oxygen carrier materials. The authors validated their computational predictions 
through thermogravimetric analysis of oxygen storage capacity and O2-temperature-
programmed desorption. Their approach identified known high-performance materials (e.g., 
Sr1-xCaxFe1-yNiyO3-) and predicted a new potential system (Sr1-xBaxFe1-yCuyO3-). 

Singstock et al.75 screened 13,763 compounds from the Materials Project database to identify 
suitable materials for CLC and CL sulfur oxidation (CLSO) process. A systematic 5-step 
workflow was adopted (Fig. 2), considering the material stability, thermodynamic feasibility, 
and reaction performance. In terms of CLC, they highlighted 13 promising materials combining 
high oxygen storage capacity with low cost. They also demonstrated the method's broader 
applicability by using it to discover materials for a SO2 production process, identifying 12 
viable sulfate/sulfide pairs. Related to sulfur based chemical looping, Tolstova et al. reported a 
high-throughput computational screening approach, again using Materials Project database, to 
identify promising materials for chemical looping elemental H2S decomposition.76

Although the studies discussed above can greatly accelerate the development of oxygen 
carriers, these thermodynamic based predictions can have limited utility when the carrier 
performance is kinetically limited. Moreover, formation of metastable phases and side reactions 
can also affect the usefulness of the thermodynamic-based parameters, which are typically 
calculated based on idealized overall reactions. Moreover, computational simulations face their 
own challenges, particularly when the structures undergo significant lattice and symmetry 
changes after heteroatom doping. It is also difficult to model arbitrary doping concentrations 
and accurately describe the energetics and local structures of defect formation and clustering. 
Additionally, various DFT parameters, including hybrid functionals, Hubbard U values, van 
der Waals interactions, and spin momentum, require careful calibration and validation before 
implementing high-throughput workflows, increasing both complexity and computational cost. 
These limitations highlight the notable gap between experimental results and computational 
predictions, ultimately affecting the accuracy of high-throughput calculations.

2.1.2 CO2 or water-splitting

In this section, we first discuss chemical looping CO2 and water splitting facilitated by methane 
partial oxidation, which also is also known as chemical looping dry reforming of methane 
(CLDRM) or steam-methane reforming (CLSMR). The mechanism is shown in Fig. 4a. It is 
noted that the reaction scheme of CLDRM is different from traditional thermochemical CO2 or 
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water splitting where no carbon-based fuels are involved in the reduction step. The workflow 
shown in Fig. 3 computationally predicts the redox properties and equilibrium oxygen 
chemical potentials of over 200,000 perovskite oxides. Using this data, oxygen carrier 
materials suitable for chemical looping CO2 or water-splitting coupled with methane 
reforming were identified (Fig. 4a). In this process, the oxygen carrier is first reduced by 
methane to produce a syngas product suitable for Fischer-Tropsch or methanol synthesis. This 
is followed by CO2 or water splitting to generate CO or H2. Similar to the findings in CLAS, 
the DFT prediction of suitable CLDRM materials (Fig. 4b) was largely validated by 
experimental results (Fig. 4c). 85 materials were predicted by DFT, and 4 of them have similar 
compositions and demonstrated excellent activity.77, 78 Of the ten samples the authors prepared 
and evaluated, all 7 samples predicted by DFT achieved over 80% syngas yield and more than 
85% CO2 conversion, while all three samples predicted by machine learning achieved over 70% 
syngas yield and more than 80% CO2 conversion. It is noted that perovskite materials show 
promise for achieving higher lattice oxygen capacities than CeO2-δ due to their structural 
flexibility and tunable composition. While many newly discovered materials may not 
immediately surpass established benchmarks, recent studies have demonstrated the 
applicability of computationally discovered materials under industrially relevant conditions and 
their potential for scale-up70, providing valuable insights for rational materials design and 
optimization.

Fig. 4. a) Scheme for chemical looping CO2 or water-splitting on ABO3-δ perovskite oxide structures. (b) A 
heatmap of the screened promising candidates for CL CO2/H2O splitting at 950 °C within the δ range of 
0.3125–0.4375. (c) Experimental syngas yield and CO2 conversion of the samples tested for CL CO2 splitting. 
Squares and circles represent the DFT and ML predicted samples, respectively. Figure b and c are 
reproduced from ref74. Fig. 4b, 4c adapted from ref74 with permission from the Royal Society of Chemistry, 
copyright 2021.

In addition to methane assisted CO2 and water splitting processes, solar-thermal driven water 
and CO2 splitting can also benefit from high-throughput computational screening approaches. 
Emery et al. conducted a comprehensive DFT study of 5,329 perovskite (ABO3) compounds79 
to identify promising candidates for thermochemical water splitting. Their two-step screening 
process evaluated both thermodynamic stability and oxygen vacancy formation energies within 
specific ranges (2.5-5.0 eV/atom) suitable for water splitting applications. They identified 139 
stable perovskites with favorable properties, including several previously unexplored materials 
like CeCoO3 and BiVO3. The researchers also demonstrated that traditional geometric criteria 
for perovskite stability (such as tolerance factors) are necessary but insufficient predictors of 
actual stability and performance. 

ABO3-δ1 ABO3-δ2

CH4 CO + 2H2

CO2
(or H2O)

CO
(or H2) δ2>δ1

a cb
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2.1.3 Thermochemical energy storage

Besides CLAS and CLDRM, the high-throughput screening combined with DFT calculations 
on SrFeO3-δ-based perovskites can be readily adopted to design materials for thermochemical 
energy storage (TCES).73, 80 A typical TCES scheme is shown in Fig. 5. In this case, the material 
selection criteria focus on identifying materials with near zero ∆G (feasible for releasing and 
replenishing gaseous oxygen) but high ∆H within desirable temperature and pressure swing 
windows (e.g. 400 – 800 ℃, 0.01 – 0.2 atm). Based on DFT predictions, 61 promising TCES 
candidates were identified, with 45 materials featuring pure perovskite phases undergone 
detailed evaluation. The experimental findings confirmed the high-throughput approach's 
effectiveness in determining the oxygen capacity and oxidation enthalpy of perovskite oxides. 
Many of the screened materials showed excellent performance under practical operating 
conditions: Sr0.875Ba0.125FeO3-δ achieved a chemical energy storage density of 85 kJ/kg 
calculated from ABO3 structure in an isobaric environment with air between 400°C and 800°C, 
while Sr0.125Ca0.875Fe0.25Mn0.75O3-δ demonstrated an energy density of 157 kJ/kg ABO3 between 
400°C at 0.2 atm and 1100°C at 0.01 atm of O2 (see Fig. 6). Integration of the experimental 
findings has in turn facilitated the development of an improved set of optimization criteria (Fig. 
6c). 

Fig. 5. The typical operating scheme of perovskite-based TCES. Fig. 5 adapted from ref73 with permission 
from Wiley-VCH GmbH, copyright 2023.

Page 9 of 22 Energy & Environmental Science

E
ne

rg
y

&
E

nv
ir

on
m

en
ta

lS
ci

en
ce

A
cc

ep
te

d
M

an
us

cr
ip

t

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

5 
O

ct
ob

er
 2

02
5.

 D
ow

nl
oa

de
d 

on
 1

0/
30

/2
02

5 
4:

07
:5

6 
A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d 

L
ic

en
ce

.

View Article Online
DOI: 10.1039/D5EE02521D

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5ee02521d


9

Fig. 6.  (a) Thermochemical energy storage density of the screened materials between 400 °C/0.2 atm O2 and 
800 °C/0.2 atm O2; (b) energy density between 400 °C/0.2 atm O2 and 1100 °C/0.01 atm; (c) improved 
workflow based on experimental findings for high throughput combinatorial screening of perovskite oxides 
for TCES. Fig. 6 adapted from ref73 with permission from Wiley-VCH GmbH, copyright 2023.

2.2 Nitrogen carriers

Besides mixed oxides, high-throughput screening for chemical looping materials can also be 
applied to identify nitrogen carriers in the context of chemical looping ammonia synthesis, as 
illustrated in Fig. 7a. Musgrave and colleagues screened 1,148 metal nitride/metal oxide pairs 
by combining data from the Materials Project with a statistically learned descriptor for 
temperature-dependent Gibbs energies.30 They retrieved formation enthalpies for binary 
nitrides and oxides with < 20 atoms per formula unit, excluding unstable compounds like azides 
and peroxides. Using their descriptor model and Gibbs energy minimization calculations, they 
assessed the thermodynamic viability of each reaction step in the solar thermochemical 
ammonia synthesis (STAS) cycle. They identified promising new materials based on B, V, Fe, 
and Ce and discovered that only 5 out of 1,148 pairs exhibited yields >0.01 mol NH3 per cycle 
(likely on a per mole of carrier basis) across all required reactions. When considering excess 
hydrogen feed to shift equilibrium, additional promising candidates based on Cr, Mo, Mn and 
W emerged. The reaction system and the Gibbs energy distribution are shown in Fig. 7. This 
work highlighted that the metal must bind nitrogen with a suitable strength. The proposed 
volcano relationship between oxide and nitride formation energies explains why finding viable 
materials for the complete cycle is challenging.

(c)
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Fig. 7. (a) Solar thermochemical ammonia synthesis (STAS) reaction scheme.  (b) Volcano 
dependence of STAS energetics. Limiting reaction plot for three-step STAS (top) and two-step 
STAS (bottom). The maximum allowable temperature swing is set to be 600 – 1800 K. ΔGf is 
reported at 0 K to present the target formation enthalpies for each reactant, which determines the 
minimum point of the volcano. Fig. 7 adapted from ref30 with permission from American Chemical 
Society, copyright 2019. 

Similar to the aforementioned work, Hu and co-workers used Materials Project database and 
screened 2,515 nitride materials, evaluating their equilibrium nitrogen pressures and nitrogen 
exchange capacities.32 This screening work identified 111 nitrides that can theoretically achieve 
sufficiently high ammonia yields to compete with the Haber-Bosch process. However, the 
uncertainties associated with these materials’ thermodynamic properties make it difficult to 
confidently identify viable materials. A related study in thermochemical ammonia synthesis by 
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Steinfeld’s group also used materials’ property data from Materials Project for screening 
nitrides.81 When comparing to experimental literature data, the predicted performance often 
differ significantly from experimental results. The authors conclude that improvements in both 
theoretical predictions and experimental validation are necessary to effectively identify suitable 
nitrogen carriers for chemical looping NH3 synthesis.

Using machine learning (ML) methods and ML-driven interatomic potentials offers an 
interesting approach to generating additional thermodynamic data. Fan et al. conducted a 
computational screening of 1,699 bicationic redox pairs for chemical looping ammonia 
synthesis.31 They employed several machine learning approaches, including a Gibbs energy 
descriptor for thermodynamic predictions, the BOWSR algorithm for structure optimization, 
and MEGNet for formation energy calculations. They expanded the chemical space for metal 
hydride chemical looping by generating over 500,000 hypothetical compounds through 
elemental substitution. Their analysis revealed that three-step H2O-CL showed the most 
promise particularly when combining alkali/alkaline earth metals with transition metals. Such 
a process offers stronger thermodynamic driving forces compared to the H2O-CL process 
between a metal oxide and nitride redox pair (MaOb/McNd), and the H2-CL process between 
two nitrides (MαNβ/MαNγ). Notably, they introduced a new metric (λ) to evaluate "cooperative 
enhancement" between bicationic compounds and their simpler monocationic counterparts, 
finding that only about 17% of bicationic pairs showed genuine cooperative benefits. This 
challenges the assumption that more complex materials automatically perform better. Several 
promising new material combinations were identified, especially those containing Ni/Mn/Mo 
paired with alkali/alkaline earth metals.21, 82  For example, Gao et al. reported that NH3 can be 
produced via a two-step chemical looping process mediated by BaH2/BaNH pair and Ni (for 
kinetic acceleration) at 100 °C and atmospheric pressure.16

While computational screening approaches have provided valuable insights into potential 
nitrogen carriers for chemical looping applications, their practical impact remains limited. 
High-throughput computational studies face challenges including uncertainties in calculated 
thermodynamic properties, difficulties in modeling complex reaction mechanisms, and limited 
validation against experimental data. This explains the relatively low number of viable 
candidates identified despite screening thousands of materials. Nevertheless, this remains an 
active research area with complementary approaches being pursued. Experimental studies 
focusing on systematic testing of selected material families, such as alkali and alkaline earth 
metal imides21, are providing crucial validation data, while more detailed and targeted 
computational investigations can greatly improve prediction accuracy.83 These parallel efforts 
are potentially able to bridging the gap between theoretical predictions and experimental 
performance. 

2.3 Synergistic multielement carriers 

The thermodynamic information for the mixed oxides generated from computational models, 
such as those presented in Section 2.1, can be quite useful to design and optimize oxide 
materials beyond redox based chemical looping processes. In a recent study, Cai et al. addressed 
several inherent limitations of CaO based CO2 sorbent in the context of sorption enhanced 
reforming and gasification processes.84-87 These limitations include: (1) the need for large 
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temperature increases to drive the de-carbonation or calcination reaction; (2) deactivation over 
repeated carbonation-calcination cycles; (3) limited sorbent operating temperature for the CO2 
uptake step, which limits the kinetics for gasification or reforming reactions. 

To tackle these challenges, the authors proposed that perovskite-structured materials, which can 
readily incorporate alkali earth cations at the A-site and transition metal cations at the B-site, 
are among the mixed oxide options that meet the needed criteria.70, 88, 89 Using the computed 
SrxA1-xFeyB1-yO3-δ enthalpy and entropy values coupled with tabulated thermodynamic 
parameters for simple oxides, the thermodynamic feasibility for the oxide formation 
(synthesizability), sorption, and desorption reactions can be calculated based on the following 
solid state reactions:

Synthesizability: 
m n 2 3 i j 1 2 x 1-x y 1-y 2.5

1 1SrO A O Fe O BO O Sr A Fe B O
2

x y yx z
m i
- -

+ + + + ® （1）

Sorption Rxn: 
x 1-x y 1-y 2.5 2 2 2 3 m 3 2 3 i j 2 2

1 1Sr A Fe B O CO H SrCO A CO Fe O BO H O
2

x y yz x z
m i
- -

+ + ® + + + + (2)

Desorption Rxn: 
3 m 3 2 3 i j 3 2 x 1-x y 1-y 2.5 2

1 1SrCO A CO Fe O BO O Sr A Fe B O CO
2

x y yx z
m i
- -

+ + + + ® + (3)

Using the procedure depicted in Fig. 8a, the authors assessed 1,225 perovskite structures for 
their thermodynamic feasibility to reversibly and isothermally absorb and release CO2. The aim 
was to identify materials that can achieve a high CO2 sorption capacity without requiring the 
thermal swings needed for conventional sorbents. Through this screening, SrMnO3-δ and related 
compounds were identified as promising candidates. These materials achieved CO2 sorption 
capacities of up to 78% in TGA experiments, significantly surpassing the levels needed for 
practical applications (Fig. 8b). Their uniquely adaptable structure enables the reversible 
incorporation and release of lattice oxygen, which is essential for maintaining the redox cycle 
required for effective CO2 capture and release. 

Additionally, this study identified a correlation between thermodynamic parameters and 
sorption capacity, providing a useful descriptor for optimizing sorbents.70 Among the screened 
candidates, SrMnO3 demonstrated significant promise, particularly for biomass gasification and 
methane/biogas reforming, yielding green hydrogen and hydrogen-enriched syngas. The 
experimental results, summarized in Fig. 8b and 8c, validate the computational predictions and 
highlight the material's potential for practical applications.
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Fig. 8. (a) Computational screening workflow for iSERG sorbents. The values above each arrow represent 
the count of perovskite structures that successfully passed the preceding screening step. (b) Performance of 
the SrMnO3 sorbent for isothermal gasification of various biomass feedstocks and reforming of methane 
and biogas. All the experiments were conducted isothermally at 850℃; (c) conversion of biogas with 2:1 
ratio of CH4: CO2. Reforming reaction is performed at 850℃ and 2:1 steam to carbon ratio. Fig. 8 
reproduced from ref.70 with permission from the Royal Society of Chemistry, copyright 2024.

3 Summary and outlook
The urgent need to mitigate global climate change demands transformative technologies that 
can decarbonize power generation and heavy manufacturing. Chemical looping strategies, with 
their intrinsic ability to integrate chemical transformation, energy conversion, and simultaneous 
feedstock/product separation, offer unique opportunities to simplify industrial processes, 
improve energy efficiency, and lower CO₂ emissions. Realization of this potential hinges upon 
the discovery and optimization of high-performance carrier materials, e.g. oxygen or nitrogen 
carriers, for these looping systems. Computational screening approaches, particularly high-
throughput density functional theory (DFT) calculations combined with data-driven analysis, 
are now reshaping the development of these carrier materials for chemical looping beyond 
combustion. Even with simplifying assumptions (for example, modeling random distributions 
of dopants and focusing on equilibrium thermodynamics over kinetics), these methods have 
proven powerful in accelerating materials discovery. Indeed, they have uncovered new oxygen 
and nitrogen carrier compositions that would likely not have emerged from traditional trial-
and-error experimentation. 

a

b c
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However, current computational models still face important limitations. Table 1 summarizes a 
few key areas requiring focused development, along with corresponding emerging solutions.  
Computational accuracy and realistic modeling assumptions remain critical bottlenecks. Mixed 
metal compounds present numerous possible cation distributions, yet current calculations 
struggle to account for potential cation ordering or defect clustering that may occur in real 
materials. The complexity intensifies with multi-valency transition metals, where defect and 
vacancy structures significantly impact the calculation results. Conventional DFT studies can 
only explore limited structural variants and disorder patterns, leading to substantial errors in 
entropy and free energy predictions. Additionally, commonly used Hubbard U parameters from 
general databases require system-specific calibration for accurate results.90, 91 Recent advances 
in system-specific benchmarking protocols and explicit defect ordering models show promise 
for addressing these limitations. Moving forward, continued advances in computational 
materials science will be pivotal for overcoming these challenges. In particular, expanding the 
availability of high-fidelity training data, via both more accurate theoretical calculations and 
high-throughput experiments, will improve machine learning models, making their predictions 
more robust and interpretable. Integrating emerging explainable artificial intelligence (XAI) 
techniques can further elucidate the fundamental structure–property relationships that govern 
reactive performance, guiding rational and effective design of oxygen and nitrogen carrier 
materials. 

We also note that material stability and synthesizability present intertwined challenges for CL 
carrier discovery. Most screening studies rely on thermodynamic criteria, such as the energy 
above hull (Ehull) which analyzes the thermodynamic stability of a material relative to other 
stable products from its constituents.92 Ehull provides a straightforward way to evaluate 
structural stability. However, as mentioned above, defect and vacancy structures in the 
materials of interest can be highly complex and evolve dynamically during chemical looping 
cycles. Current DFT approaches can only sample limited structural configurations, leading to 
uncertainties in both enthalpic and entropic contributions to free energy calculations. Phonopy-
based entropy calculations, while widely used, may not capture the full complexity of 
vibrational modes in disordered oxide systems. These computational limitations would 
compound when attempting to predict synthesizability, as kinetic barriers and metastable 
intermediate phases are often inadequately represented in equilibrium-based screening 
approaches.

Beyond thermodynamic stability, CL materials must maintain cyclic stability through 
reversible phase transitions and defect creation/annihilation processes under harsh operating 
conditions. The dynamic nature of these structural changes, such as ion migration, nucleation, 
and phase segregation, requires simulation methods that can capture both thermodynamic and 
kinetic effects across multiple length and time scales. Machine learning force fields (MLFFs) 
trained on high-fidelity DFT data offer a promising approach for modeling these phenomena in 
larger, more realistic systems. Kinetic Monte Carlo simulations excel at capturing rare events 
and long-timescale evolution, while phase field modeling and multiscale coupling approaches 
provide complementary insights into mesoscale structural evolution during chemical looping 
operation.

Target phase formation and reaction pathway determination historically relied on trial-and-error 
approaches. Traditional thermodynamic stability analysis using formation energies and convex 
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hull methods provides the foundation for identifying potentially stable phases, but these 
equilibrium-based approaches have inherent limitations. While convex hull analysis can predict 
the most thermodynamically favorable products, it cannot account for kinetic barriers that may 
prevent formation of the predicted phases or lead to metastable intermediates during synthesis. 
To address these limitations, Persson's group integrated convex hull concept and developed 
cellular automaton simulation frameworks that enable prediction of time-dependent phase 
evolution during solid-state reactions.93 They also developed graph-based reaction networks 
using path-finding algorithms that can suggest likely synthesis routes by mapping 
thermodynamic relationships between materials and identifying low-energy reaction 
pathways.94 These integrated approaches provide systematic methods to identify viable 
synthesis recipes and predict both target phase formation and potential impurity phases that 
may compete during synthesis.

Table 1. Challenges and solutions in high-throughput chemical looping carrier discovery

Challenges Possible Solutions / Available Tools Ref

Computational inaccuracy 
and realistic modeling 

assumptions

System-specific calibration and benchmarking; explicit 
defect/dopant ordering models; advanced or hybrid exchange-

correlation functionals
90, 91

Material stability during CL 
conditions

Machine learning force fields (MLFFs); kinetic Monte Carlo 
(KMC) simulations; phase field modeling; multiscale coupling 

approaches
95-98

Target phase formation and 
reaction pathway 

determination

Cellular automaton simulation frameworks; graph-based 
reaction network analysis; ML-predicted synthesis routes

93, 94

Reaction simulation under 
CL conditions

Stochastic surface walking global optimization combined with 
global neural network potential, Reaction Mechanism 

Generator  
99-103

Standardized workflows and 
experimental validation

Digital twin frameworks; self-driving labs;
104-

107

Reaction simulation under chemical looping conditions represents a critical frontier for 
mechanistic understanding. CL processes involve complex phase transition reactions at solid-
solid and solid-gas interfaces, where detailed reaction mechanisms often are poorly understood. 
Stochastic surface walking global optimization combined with global neural network potentials 
offers a promising approach for exploring these complex reaction landscapes. This method has 
successfully revealed mechanistic insights in related catalytic systems, such as silver surface 
oxide formation during ethene epoxidation.100 Additionally, the Reaction Mechanism 
Generator  (RMG)102, 103 and similar automated network generation tools show promise for 
identifying key elementary steps and reaction pathways in gas-phase and surface processes. A 
similar approach may be adopted/expanded to chemical looping reactions.

Lastly, current computational workflows lack standardization, making it difficult to 
systematically integrate experimental feedback to refine theoretical predictions and screening 
criteria. The emergence of self-driving laboratories could provide a powerful new paradigm on 
materials discovery. These autonomous research systems integrate automated synthesis, high-
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throughput characterization, and machine learning–driven decision-making into a closed-loop 
workflow. In such a system, computational models propose candidate materials; automated 
synthesis robots prepare and process those candidates; high-throughput experiments then test 
their properties; and machine learning algorithms analyze the results in real time to refine the 
models’ predictions. Digital twin frameworks that mirror experimental conditions can further 
enhance this integration by providing virtual testbeds for optimization before physical 
synthesis. This combination of physics-based simulation, data-driven prediction, and 
autonomous experimentation can significantly reduce the time and cost associated with 
identifying optimal new redox materials. 

By harnessing the synergy among advanced computation, data-driven modeling, and automated 
experimentation, we can envision an accelerated discovery pipeline for chemical looping 
materials. In this framework, high-throughput computational screening serves as an initial filter 
to map the vast chemical space of possible candidate compounds. Machine learning models 
then rank and prioritize these candidates through multi-objective optimization (balancing 
factors such as redox capacity, stability over cycling, productivity, and cost). Finally, 
autonomous laboratories rapidly synthesize and evaluate the top-ranked candidates, feeding 
experimental feedback to continually refine the computational models and design criteria. Such 
an iterative, hybrid approach could reveal entirely new families of redox-active materials, 
optimize reactor operating conditions, and even guide the discovery of novel reaction pathways 
or mechanisms that would remain inaccessible with conventional trial-and-error methods. 
Ultimately, integrating advanced computation, data science, and autonomous experimentation 
holds great promise for transforming the landscape of chemical looping technology and 
significantly accelerating the development of the next generation of materials vital to global 
decarbonization.
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