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Broader Context

The global push toward carbon neutrality necessitates transformative technologies that can sustainably
produce energy and chemicals while minimizing CO, emissions. Chemical looping processes offer an
elegant solution by integrating redox-mediated reactions with inherent separation, enabling efficient energy
conversion and chemical production. However, the discovery of suitable redox-active materials,
particularly mixed metal compounds with tailored thermodynamic and surface properties, has remained a
bottleneck due to the vast material design space. This work addresses this challenge by highlighting how
computational screening and machine learning can accelerate the identification of optimal oxygen and
nitrogen carriers for applications ranging from combustion and air separation to ammonia synthesis and
CO, capture. Beyond enabling cleaner energy systems, these approaches promise to transform materials
discovery by reducing experimental trial-and-error, guiding the design of new multifunctional materials,
and laying the foundation for autonomous research platforms. By illustrating the synergy between
computation, data science, and experimental validation, this perspective outlines a scalable and
generalizable framework for rapid development of redox materials. These advancements are crucial for
decarbonizing power and industrial sectors — major contributors to greenhouse gas emissions — and ensuring
a more sustainable future.
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Abstract — Compared to their monometallic counterparts, mixed metal compounds, such as mixed metal
oxides and nitrides, are highly versatile in their compositional, structural, redox, and surface properties.
This versatility unlocks exciting opportunities for applications in clean energy conversion and
sustainable chemical production. However, efficiently identifying optimal compositions remains a
significant challenge due to the vast and complex material design space. This perspective discusses how
high-throughput computational and data science tools are transforming the rational design of mixed
metal compounds for chemical looping applications beyond combustion. The specific applications
covered include chemical looping air separation, redox-based CO, and water splitting, NH; synthesis,
and redox-activated CO, sorbents, among others. We aim to illustrate how high-throughput density
functional theory (DFT) calculations, combined with machine learning and experimental validation,
have accelerated material screening and optimization, enabling the efficient exploration of vast
compound families. Finally, we discuss future trends aimed at improving the efficiency and accuracy of
chemical looping carrier discovery.

Broader Context

The global push toward carbon neutrality necessitates transformative technologies that can sustainably
produce energy and chemicals while minimizing CO, emissions. Chemical looping processes offer an
elegant solution by integrating redox-mediated reactions with inherent separation, enabling efficient
energy conversion and chemical production. However, the discovery of suitable redox-active materials,
particularly mixed metal compounds with tailored thermodynamic and surface properties, has remained
a bottleneck due to the vast material design space. This work addresses this challenge by highlighting
how computational screening and machine learning can accelerate the identification of optimal oxygen
and nitrogen carriers for applications ranging from combustion and air separation to ammonia synthesis
and CO, capture. Beyond enabling cleaner energy systems, these approaches promise to transform
materials discovery by reducing experimental trial-and-error, guiding the design of new multifunctional
materials, and laying the foundation for autonomous research platforms. By illustrating the synergy
between computation, data science, and experimental validation, this perspective outlines a scalable and
generalizable framework for rapid development of redox materials. These advancements are crucial for
decarbonizing power and industrial sectors — major contributors to greenhouse gas emissions — and
ensuring a more sustainable future.

1 Introduction

The chemical looping (CL) strategy, which makes use of cyclic reactions facilitated by a carrier
or reaction medium, offers an excellent opportunity to integrate energy and/or chemical
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conversion with feedstock or product separations, leading to more sustainable proggsses. Qyetes e
the past few decades, various applications for chemical looping have been explored. Examples
include chemical looping combustion,'-> carbonate looping,®® air separation,!?-12 solar
thermal CO, and/or water splitting,'3-1 ammonia synthesis,??-?? selective oxidation or
reduction for the production of chemicals,?*-?° to name a few. A large fraction of the
aforementioned chemical looping applications relies on the redox reactions of a metal
oxide-based oxygen carrier to facilitate the cyclic reaction. As such, oxygen carrier
performance plays a critical role in the technical feasibility and economic attractiveness
of many CL processes investigated to date. Nitrides and imides, on the other hand, have
shown promise as nitrogen carriers for chemical looping ammonia synthesis.3%-3? Despite
extensive research efforts related to the development of these carriers, their design and
optimization are still mostly empirical based. Meanwhile, many recent studies have
pointed to the excellent potential of mixed metal compounds when compared to their
monometallic counterparts.33 34 As a result, the corresponding material design space has
been substantially expanded, with infinite potential options for material compositions.
Given that materials synthesis and evaluation guided by heuristics can be tedious and
time-consuming, computational tools that can efficiently and accurately identify
promising carrier compositions out of a large material design space are highly desirable.

Herein, we review recent advancements in the accelerated development of mixed metal
compounds for chemical looping applications, leveraging high-throughput
computational models and machine learning tools. The discussion begins with
computationally assisted high-throughput development of oxygen carriers and their
applications, followed by nitrogen carrier design and selection for ammonia synthesis.
We then explore multifunctional oxygen and CO, carriers and their roles in CO,
sorption-enhanced reforming and gasification. Finally, we provide perspectives on
future research directions in this field.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.
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2.1 High-throughput development of oxygen carriers

2.1.1 Chemical looping combustion and chemical looping air separation

Simplified schematics of chemical looping combustion (CLC) and its variant, chemical looping
air separation (CLAS), are shown in Fig. 1. CLC operates through two main steps for energy
generation with integrated CO, capture: First, metal oxide carriers serve as an oxidant to
completely combust a carbonaceous feedstock such as methane, coal, or biomass, producing a
concentrated CO, stream after steam condensation.??- 3543 Second, these reduced metal oxides
are regenerated through exposure to the air. From a thermodynamic standpoint, the metal oxide
carriers must maintain a favorable Gibbs free energy change (AG) to enable both the fuel
oxidation and air regeneration steps, i.e. the oxygen carrier reduction potential needs to be high
enough for fuel combustion, while the subsequent re-oxidation with air must also be
spontaneous. The primary idea behind CLC lies in its ability to separate oxygen from air in-situ
while indirectly oxidizing carbon-based fuels. As such, CLAS is a natural extension from CLC
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where a separated O, stream is the target product (Fig. 1b).**>7 Oxygen carrier selectigie fofee o

E02521D

CLAS is more restrictive thermodynamically than CLC since the oxide should spontaneously
release gaseous oxygen under vacuum or steam purge (i.e. higher equilibrium Pg;), while still
being re-oxidizable by the air.

a) CLC b) CLAS

Assuming CO,: CO=100:1
CH, CO,/CO + steam

M, 0, M,O, 5 M, O, ﬁ M,O, 5
O,-lean Air  Air O,-lean Air Air
Poz(T): ~1.7 x 10-16 at 750°C - ~8.2 x 1013 at 900°C Poz: ~0.01 - ~0.1 atm

Fig. 1. Schematic illustration of chemical looping combustion (CLC) and CL air separation (CLAS) and
thermodynamic criteria for the redox potential of the oxide expressed in terms of equilibrium Pg,. For CLC,
this value is calculated assuming a CO, : CO ratio of 100 : 1, the equilibrium Py, as a function of
temperature can be approximated by Po, ., = 10%e@036-6785T) within the general temperature range of
interest. The equation was obtained by calculating the Py, values that would lead to an equilibrium CO,/CO
ratio of 100:1 within a temperature range of 750 °C and 900 °C based on the CO, thermolysis reaction
(2CO; 2 2CO + O,). The AG values of the CO, thermolysis reaction as a function of temperature (T) were
calculated using the HSC Chemistry software.

Inherent to their operating principles, the redox properties of oxygen carriers are crucial to all
chemical looping processes involving lattice oxygen release and replenishment. However,
systematic, bottom-up strategies for effectively designing oxygen carriers are still lacking. The
inherent complexity of redox reactions, which extend well beyond the interaction between
reactant molecules and often poorly-defined oxide surfaces, makes it difficult to design redox
oxides from first principles. This is particularly the case in the context of chemical looping
catalysis, an emerging area receiving increased attention.’®¢° In such applications, oxides’
surface catalytic properties play a major role in determining the overall reaction performance,
in addition to the redox properties of the oxygen carriers.®!-%

Although expecting an ab-initio or DFT model to fully capture all aspects of oxygen carrier
design is impractical, modern computational and data science tools, combined with relatively
simple selection criteria, can greatly reduce the experimental workload in screening and
developing oxygen carriers. As a starting point, it is rather straightforward to begin with the
underlying thermodynamic requirements that drive the envisioned chemical looping reactions,
as illustrated in Fig. 1. As early as 2017, Lau et al. screened over 5,500 compounds from the
Materials Project database to identify materials with suitable thermodynamic properties
for redox based O, separation and chemical looping combustion, as well as their resistance
toward carbonation.®” Through a systematic screening methodology (Fig. 2a), which considers
the oxides’ redox properties, equilibrium oxygen partial pressure, capability of single-phase
redox reactions, and cost and toxicity, more than 100 promising perovskite oxides were
identified, with SrFeO;_s emerging as the most promising candidate for chemical looping with
oxygen uncoupling and CLAS at intermediate temperatures (<823 K). Experimental validation
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showed SrFeO;_5 had excellent cycling stability and resistance to carbonation when synthegizedc e onne
as a pure phase, though impurities like Sr;Fe,O; led to unwanted carbonation reactions. The
screening also revealed broader insights into stabilizing metal oxides within different structural
frameworks to optimize their redox properties. It is interesting to note that a few compounds
identified by this study (or those with similar compositions) were subjects of further
experimental investigations, showing promising results.®®73 This highlights the usefulness of

the screening method building upon readily available computational databases.

a

Materials Project database 0.5

l Able to undergo redox reactions

| 5501 compounds |

£
oxidation reaction condition: 1x 102Pa < p,, < 32
1= 108Paand 150 K<T<1700 K I< 5

‘ 2216 compounds |

Able to undergo solid single phaseto
single phase redox reactions

0,
o

’ 292 compounds |

o
o
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Fig 2. (a) Screening workflow by Lau et al.%”, plotted based on the description in the manuscript and SI
data; (b) Overview of the key results from screening the Materials Project database for compounds that
undergo redox reactions.®”’” The predicted reduction temperature at Pg, =2.1x10* Pa for each reaction is
plotted against AH,.quction (upper panel) and O, gravimetric capacity (lower panel). Fig. 2b adapted from
ref” with permission from the Royal Society of Chemistry, copyright 2017.

Although the Materials Project database is highly useful, the accuracy of thermodynamic
parameters for some oxide compounds of interest are limited. Wang et al. developed a
systematic workflow (Fig. 3a), in conjunction with high throughput DFT calculations, to select
perovskite oxides with a general formulation of SryA.Fe,B,.,035 (A =Ca, K, Y, Ba, La, Sm;
B = Ti, Ni, Mn, Mg, Cu, Co) for CLAS applications.” A cubic SrFeOs_; parent structure was
chosen due to its high symmetry and ease of simulation. The DFT simulation covered
more than two thousand distinct cation compositions. These results were then used to
develop a machine learning model to predict the redox properties of over 200,000
perovskite oxides with general compositions of Sr(A/A’)Fe (B/B’).,035. Fig. 3a

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.
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summarizes the generalized simulation workflow whereas Fig. 3b illustrates the machine
learning (ML) procedure. The DFT simulations, which can predict the enthalpy and entropy
changes related to oxygen vacancy creation at varying, discretized vacancy concentration
levels, can project the equilibrium oxygen chemical potential (or equivalently oxygen partial
pressure) as a function of perovskite oxide composition and its vacancy concentration level. As
such, by comparing the predicted oxygen chemical potential ranges with the desirable ranges
for CLAS, potentially suitable perovskite oxide compositions can be determined. The DFT
simulation results can then be used to train the ML model to significantly expand the material
design space with higher computational efficiency.
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Fig. 3. High throughput materials screening and experimental validations.” (a) DFT model
construction, high-throughput calculations, and materials screening. (b) ML steps for the training,
evaluation, and prediction of perovskite datasets. Heatmap of the screened candidates for (c) CLAS
at 700 °C within the 6 range of 0.3125 ~ 0.4375. (d) Experimental oxygen capacity, recovery, and
usable capacity of the samples tested for CLAS. Squares and circles represent DFT and ML
predicted samples, respectively.’ Fig. 3 adapted from ref’* with permission from the Royal Society of
Chemistry, copyright 2021.

Of'the 113 CLAS materials predicted by DFT (Fig. 3¢), 11 compositions with similar structures
have been validated in prior experimental studies and shown outstanding performance. Building
on these predictions, the authors prepared and experimentally evaluated 12 new compositions
based on DFT predictions, along with 3 materials identified through machine learning (ML)
models. All 15 samples were assessed using a standardized experimental procedure, with
SrFeOj; serving as the reference material. As illustrated in Fig. 3d, a substantial portion of the
computationally predicted materials demonstrated satisfactory CLAS performance: 13 of the
15 experimentally tested samples outperformed SrFeOs, and 10 exhibited more than a 50%
increase in oxygen capacity compared to SrFeO;. Notably, some compositions, such as
Sr0.875K0.125F€0.75C00.125N10.12503.5, represent new discoveries without direct counterparts in the
existing literature. These unique compositions would have been unlikely to emerge using
traditional heuristic or empirical approaches, underscoring the transformative potential of the
high-throughput methodology. Despite its effectiveness in identifying promising oxygen carrier
compositions, the computational strategy developed in this study is nevertheless subjected to
limitations due to the compromise between computational accuracy and efficiency considering

5
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the complexity of perovskite oxides. As such, a number of simplifying assumptions were figed-© '
in carrying out this study, as detailed in the manuscript.”*

Duan and co-workers also adopted a high-throughput DFT screening approach to identify
promising SrFeO;_s-based perovskite materials for chemical looping, in particular CLAS and
chemical looping with oxygen uncoupling.®® They evaluated more than 1,100 perovskite
compositions by considering various dopant conditions and substitution patterns and calculated
the oxygen vacancy formation energies (with an incremental Ad of 0.0625) and Gibbs free
energies of the candidate structures across a temperature range of 298-1200 K. These DFT
results were then used to train various ML models, with the best-performing model (ALL-KNN)
achieving an R? of 0.95 and RMSE of 37 kJ/mol on test data. This ML model enabled rapid
prediction of Gibbs free energies for new compositions, facilitating the identification of
promising oxygen carrier materials. The authors validated their computational predictions
through thermogravimetric analysis of oxygen storage capacity and O,-temperature-
programmed desorption. Their approach identified known high-performance materials (e.g.,
Sri«Ca,Fe;(Ni,03.5) and predicted a new potential system (Sr;.Ba.Fe;,CuyOs.s).

Singstock et al.”> screened 13,763 compounds from the Materials Project database to identify
suitable materials for CLC and CL sulfur oxidation (CLSO) process. A systematic 5-step
workflow was adopted (Fig. 2), considering the material stability, thermodynamic feasibility,
and reaction performance. In terms of CLC, they highlighted 13 promising materials combining
high oxygen storage capacity with low cost. They also demonstrated the method's broader
applicability by using it to discover materials for a SO, production process, identifying 12
viable sulfate/sulfide pairs. Related to sulfur based chemical looping, Tolstova et al. reported a
high-throughput computational screening approach, again using Materials Project database, to
identify promising materials for chemical looping elemental H,S decomposition.”¢

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

Although the studies discussed above can greatly accelerate the development of oxygen
carriers, these thermodynamic based predictions can have limited utility when the carrier
performance is kinetically limited. Moreover, formation of metastable phases and side reactions
can also affect the usefulness of the thermodynamic-based parameters, which are typically
calculated based on idealized overall reactions. Moreover, computational simulations face their
own challenges, particularly when the structures undergo significant lattice and symmetry
changes after heteroatom doping. It is also difficult to model arbitrary doping concentrations
and accurately describe the energetics and local structures of defect formation and clustering.
Additionally, various DFT parameters, including hybrid functionals, Hubbard U values, van
der Waals interactions, and spin momentum, require careful calibration and validation before
implementing high-throughput workflows, increasing both complexity and computational cost.
These limitations highlight the notable gap between experimental results and computational
predictions, ultimately affecting the accuracy of high-throughput calculations.

Open Access Article. Published on 15 October 2025. Downloaded on 10/30/2025 4:07:56 AM.
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2.1.2  CO; or water-splitting

In this section, we first discuss chemical looping CO, and water splitting facilitated by methane
partial oxidation, which also is also known as chemical looping dry reforming of methane
(CLDRM) or steam-methane reforming (CLSMR). The mechanism is shown in Fig. 4a. It is
noted that the reaction scheme of CLDRM is different from traditional thermochemical CO, or

6
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water splitting where no carbon-based fuels are involved in the reduction step. The workfloty: o

shown in Fig. 3 computationally predicts the redox properties and equilibrium oxygen
chemical potentials of over 200,000 perovskite oxides. Using this data, oxygen carrier
materials suitable for chemical looping CO, or water-splitting coupled with methane
reforming were identified (Fig. 4a). In this process, the oxygen carrier is first reduced by
methane to produce a syngas product suitable for Fischer-Tropsch or methanol synthesis. This
is followed by CO, or water splitting to generate CO or H,. Similar to the findings in CLAS,
the DFT prediction of suitable CLDRM materials (Fig. 4b) was largely validated by
experimental results (Fig. 4c). 85 materials were predicted by DFT, and 4 of them have similar
compositions and demonstrated excellent activity.””-7® Of the ten samples the authors prepared
and evaluated, all 7 samples predicted by DFT achieved over 80% syngas yield and more than
85% CO, conversion, while all three samples predicted by machine learning achieved over 70%
syngas yield and more than 80% CO, conversion. It is noted that perovskite materials show
promise for achieving higher lattice oxygen capacities than CeO, s due to their structural
flexibility and tunable composition. While many newly discovered materials may not
immediately surpass established benchmarks,
applicability of computationally discovered materials under industrially relevant conditions and
their potential for scale-up’®, providing valuable insights for rational materials design and
optimization.

recent studies have demonstrated the

a b
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Fig. 4. a) Scheme for chemical looping CO, or water-splitting on ABO;_; perovskite oxide structures. (b) A
heatmap of the screened promising candidates for CL CO,/H,O splitting at 950 °C within the J range of

0.3125-0.4375. (c) Experimental syngas yield and CO, conversion of the samples tested for CL CO, splitting.

Squares and circles represent the DFT and ML predicted samples, respectively. Figure b and c are
reproduced from ref’. Fig. 4b, 4c adapted from ref’* with permission from the Royal Society of Chemistry,
copyright 2021.

In addition to methane assisted CO, and water splitting processes, solar-thermal driven water
and CO, splitting can also benefit from high-throughput computational screening approaches.
Emery et al. conducted a comprehensive DFT study of 5,329 perovskite (ABO3) compounds”
to identify promising candidates for thermochemical water splitting. Their two-step screening
process evaluated both thermodynamic stability and oxygen vacancy formation energies within
specific ranges (2.5-5.0 eV/atom) suitable for water splitting applications. They identified 139
stable perovskites with favorable properties, including several previously unexplored materials
like CeCoO; and BiVOs;. The researchers also demonstrated that traditional geometric criteria
for perovskite stability (such as tolerance factors) are necessary but insufficient predictors of
actual stability and performance.
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7 View Article Online
2.1.3 Thermochemical energy storage 0L 101058 bamEs e

Besides CLAS and CLDRM, the high-throughput screening combined with DFT calculations
on SrFeO;_s-based perovskites can be readily adopted to design materials for thermochemical
energy storage (TCES).”*-3% A typical TCES scheme is shown in Fig. 5. In this case, the material
selection criteria focus on identifying materials with near zero AG (feasible for releasing and
replenishing gaseous oxygen) but high AH within desirable temperature and pressure swing
windows (e.g. 400 — 800 °C, 0.01 — 0.2 atm). Based on DFT predictions, 61 promising TCES
candidates were identified, with 45 materials featuring pure perovskite phases undergone
detailed evaluation. The experimental findings confirmed the high-throughput approach's
effectiveness in determining the oxygen capacity and oxidation enthalpy of perovskite oxides.
Many of the screened materials showed excellent performance under practical operating
conditions: Srg75Bag2sFeO55 achieved a chemical energy storage density of 85 klJ/kg
calculated from ABOj; structure in an isobaric environment with air between 400°C and 800°C,
while Sry 125Cag g75F€9.25Mng 75055 demonstrated an energy density of 157 kJ/kg ABO; between
400°C at 0.2 atm and 1100°C at 0.01 atm of O, (see Fig. 6). Integration of the experimental
findings has in turn facilitated the development of an improved set of optimization criteria (Fig.
6¢).

Qpiear OUtput - «I AHgpem release

O, depleted gas O, rich gas

—— - g s

Fig. 5. The typical operating scheme of perovskite-based TCES. Fig. 5 adapted from ref’ with permission
from Wiley-VCH GmbH, copyright 2023.
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Fig. 6. (a) Thermochemical energy storage density of the screened materials between 400 °C/0.2 atm O, and
800 °C/0.2 atm O,; (b) energy density between 400 °C/0.2 atm O, and 1100 °C/0.01 atm; (¢) improved
workflow based on experimental findings for high throughput combinatorial screening of perovskite oxides
for TCES. Fig. 6 adapted from ref’ with permission from Wiley-VCH GmbH, copyright 2023.
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2.2 Nitrogen carriers

Besides mixed oxides, high-throughput screening for chemical looping materials can also be
applied to identify nitrogen carriers in the context of chemical looping ammonia synthesis, as
illustrated in Fig. 7a. Musgrave and colleagues screened 1,148 metal nitride/metal oxide pairs
by combining data from the Materials Project with a statistically learned descriptor for
temperature-dependent Gibbs energies.? They retrieved formation enthalpies for binary
nitrides and oxides with < 20 atoms per formula unit, excluding unstable compounds like azides
and peroxides. Using their descriptor model and Gibbs energy minimization calculations, they
assessed the thermodynamic viability of each reaction step in the solar thermochemical
ammonia synthesis (STAS) cycle. They identified promising new materials based on B, V, Fe,
and Ce and discovered that only 5 out of 1,148 pairs exhibited yields >0.01 mol NHj; per cycle
(likely on a per mole of carrier basis) across all required reactions. When considering excess
hydrogen feed to shift equilibrium, additional promising candidates based on Cr, Mo, Mn and
W emerged. The reaction system and the Gibbs energy distribution are shown in Fig. 7. This
work highlighted that the metal must bind nitrogen with a suitable strength. The proposed
volcano relationship between oxide and nitride formation energies explains why finding viable
materials for the complete cycle is challenging.
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Fig. 7. (a) Solar thermochemical ammonia synthesis (STAS) reaction scheme. (b) Volcano
dependence of STAS energetics. Limiting reaction plot for three-step STAS (top) and two-step
STAS (bottom). The maximum allowable temperature swing is set to be 600 — 1800 K. AGyis
reported at 0 K to present the target formation enthalpies for each reactant, which determines the
minimum point of the volcano. Fig. 7 adapted from ref** with permission from American Chemical
Society, copyright 2019.

Similar to the aforementioned work, Hu and co-workers used Materials Project database and
screened 2,515 nitride materials, evaluating their equilibrium nitrogen pressures and nitrogen
exchange capacities.?? This screening work identified 111 nitrides that can theoretically achieve
sufficiently high ammonia yields to compete with the Haber-Bosch process. However, the
uncertainties associated with these materials’ thermodynamic properties make it difficult to
confidently identify viable materials. A related study in thermochemical ammonia synthesis by
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Steinfeld’s group also used materials’ property data from Materials Project for, screefitié
nitrides.?! When comparing to experimental literature data, the predicted performance often
differ significantly from experimental results. The authors conclude that improvements in both
theoretical predictions and experimental validation are necessary to effectively identify suitable
nitrogen carriers for chemical looping NH; synthesis.

Using machine learning (ML) methods and ML-driven interatomic potentials offers an
interesting approach to generating additional thermodynamic data. Fan et al. conducted a
computational screening of 1,699 bicationic redox pairs for chemical looping ammonia
synthesis.?! They employed several machine learning approaches, including a Gibbs energy
descriptor for thermodynamic predictions, the BOWSR algorithm for structure optimization,
and MEGNet for formation energy calculations. They expanded the chemical space for metal
hydride chemical looping by generating over 500,000 hypothetical compounds through
elemental substitution. Their analysis revealed that three-step H,O-CL showed the most
promise particularly when combining alkali/alkaline earth metals with transition metals. Such
a process offers stronger thermodynamic driving forces compared to the H,O-CL process
between a metal oxide and nitride redox pair (M,0,/MNy), and the H,-CL process between
two nitrides (M,Npg/M,N,). Notably, they introduced a new metric (A) to evaluate "cooperative
enhancement" between bicationic compounds and their simpler monocationic counterparts,
finding that only about 17% of bicationic pairs showed genuine cooperative benefits. This
challenges the assumption that more complex materials automatically perform better. Several
promising new material combinations were identified, especially those containing Ni/Mn/Mo
paired with alkali/alkaline earth metals.?!- 82 For example, Gao et al. reported that NH; can be
produced via a two-step chemical looping process mediated by BaH,/BaNH pair and Ni (for
kinetic acceleration) at 100 °C and atmospheric pressure. '

While computational screening approaches have provided valuable insights into potential
nitrogen carriers for chemical looping applications, their practical impact remains limited.
High-throughput computational studies face challenges including uncertainties in calculated
thermodynamic properties, difficulties in modeling complex reaction mechanisms, and limited
validation against experimental data. This explains the relatively low number of viable
candidates identified despite screening thousands of materials. Nevertheless, this remains an
active research area with complementary approaches being pursued. Experimental studies
focusing on systematic testing of selected material families, such as alkali and alkaline earth
metal imides?!, are providing crucial validation data, while more detailed and targeted
computational investigations can greatly improve prediction accuracy.®® These parallel efforts
are potentially able to bridging the gap between theoretical predictions and experimental
performance.

2.3 Synergistic multielement carriers

The thermodynamic information for the mixed oxides generated from computational models,
such as those presented in Section 2.1, can be quite useful to design and optimize oxide
materials beyond redox based chemical looping processes. In a recent study, Cai et al. addressed
several inherent limitations of CaO based CO, sorbent in the context of sorption enhanced
reforming and gasification processes.?*87 These limitations include: (1) the need for large
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temperature increases to drive the de-carbonation or calcination reaction; (2) deactiyation oyet:s e
repeated carbonation-calcination cycles; (3) limited sorbent operating temperature for the CO,

uptake step, which limits the kinetics for gasification or reforming reactions.

To tackle these challenges, the authors proposed that perovskite-structured materials, which can
readily incorporate alkali earth cations at the A-site and transition metal cations at the B-site,
are among the mixed oxide options that meet the needed criteria.”® 8% 3 Using the computed
SryAi«Fe,B1.yOs.5 enthalpy and entropy values coupled with tabulated thermodynamic
parameters for simple oxides, the thermodynamic feasibility for the oxide formation
(synthesizability), sorption, and desorption reactions can be calculated based on the following
solid state reactions:

ST 1-x -
Synthesizability: xSrO+7 A0, +12} Fe,0, +Ty BO, +70, >Si, A Fe B O, (D
Sorption Rxn: $¢ A, Fe B, 0, +C0, +2,H, —-xStCO, +1_7x A CO, +§Fe,203 +1_Ty BO, +2,H,0 )
Desorption Rxn: xSrCO, +%AmCO3 +:; Fe,0, +1_Ty BO,+2z0, St A, Fe B 0, +C0, 3)

Using the procedure depicted in Fig. 8a, the authors assessed 1,225 perovskite structures for
their thermodynamic feasibility to reversibly and isothermally absorb and release CO,. The aim
was to identify materials that can achieve a high CO, sorption capacity without requiring the
thermal swings needed for conventional sorbents. Through this screening, STMnQOj5_5 and related
compounds were identified as promising candidates. These materials achieved CO, sorption
capacities of up to 78% in TGA experiments, significantly surpassing the levels needed for
practical applications (Fig. 8b). Their uniquely adaptable structure enables the reversible
incorporation and release of lattice oxygen, which is essential for maintaining the redox cycle
required for effective CO, capture and release.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

Additionally, this study identified a correlation between thermodynamic parameters and
sorption capacity, providing a useful descriptor for optimizing sorbents.”” Among the screened
candidates, StMnO; demonstrated significant promise, particularly for biomass gasification and
methane/biogas reforming, yielding green hydrogen and hydrogen-enriched syngas. The
experimental results, summarized in Fig. 8b and 8c, validate the computational predictions and
highlight the material's potential for practical applications.
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the SrMnO; sorbent for isothermal gasification of various biomass feedstocks and reforming of methane
and biogas. All the experiments were conducted isothermally at 850°C; (c) conversion of biogas with 2:1
ratio of CH,: CO,. Reforming reaction is performed at 850°C and 2:1 steam to carbon ratio. Fig. 8
reproduced from ref.”’ with permission from the Royal Society of Chemistry, copyright 2024.

3 Summary and outlook

The urgent need to mitigate global climate change demands transformative technologies that
can decarbonize power generation and heavy manufacturing. Chemical looping strategies, with
their intrinsic ability to integrate chemical transformation, energy conversion, and simultaneous
feedstock/product separation, offer unique opportunities to simplify industrial processes,
improve energy efficiency, and lower CO, emissions. Realization of this potential hinges upon
the discovery and optimization of high-performance carrier materials, e.g. oxygen or nitrogen
carriers, for these looping systems. Computational screening approaches, particularly high-
throughput density functional theory (DFT) calculations combined with data-driven analysis,
are now reshaping the development of these carrier materials for chemical looping beyond
combustion. Even with simplifying assumptions (for example, modeling random distributions
of dopants and focusing on equilibrium thermodynamics over kinetics), these methods have
proven powerful in accelerating materials discovery. Indeed, they have uncovered new oxygen
and nitrogen carrier compositions that would likely not have emerged from traditional trial-
and-error experimentation.
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However, current computational models still face important limitations. Table 1 symmarizesia:s e
few key areas requiring focused development, along with corresponding emerging solutions.
Computational accuracy and realistic modeling assumptions remain critical bottlenecks. Mixed
metal compounds present numerous possible cation distributions, yet current calculations
struggle to account for potential cation ordering or defect clustering that may occur in real
materials. The complexity intensifies with multi-valency transition metals, where defect and
vacancy structures significantly impact the calculation results. Conventional DFT studies can
only explore limited structural variants and disorder patterns, leading to substantial errors in
entropy and free energy predictions. Additionally, commonly used Hubbard U parameters from
general databases require system-specific calibration for accurate results.”®-°! Recent advances
in system-specific benchmarking protocols and explicit defect ordering models show promise
for addressing these limitations. Moving forward, continued advances in computational
materials science will be pivotal for overcoming these challenges. In particular, expanding the
availability of high-fidelity training data, via both more accurate theoretical calculations and
high-throughput experiments, will improve machine learning models, making their predictions
more robust and interpretable. Integrating emerging explainable artificial intelligence (XAI)
techniques can further elucidate the fundamental structure—property relationships that govern
reactive performance, guiding rational and effective design of oxygen and nitrogen carrier
materials.

We also note that material stability and synthesizability present intertwined challenges for CL
carrier discovery. Most screening studies rely on thermodynamic criteria, such as the energy
above hull (E£y,,;) which analyzes the thermodynamic stability of a material relative to other
stable products from its constituents.”> Ep,; provides a straightforward way to evaluate
structural stability. However, as mentioned above, defect and vacancy structures in the
materials of interest can be highly complex and evolve dynamically during chemical looping
cycles. Current DFT approaches can only sample limited structural configurations, leading to
uncertainties in both enthalpic and entropic contributions to free energy calculations. Phonopy-
based entropy calculations, while widely used, may not capture the full complexity of
vibrational modes in disordered oxide systems. These computational limitations would
compound when attempting to predict synthesizability, as kinetic barriers and metastable
intermediate phases are often inadequately represented in equilibrium-based screening
approaches.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.
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Beyond thermodynamic stability, CL materials must maintain cyclic stability through
reversible phase transitions and defect creation/annihilation processes under harsh operating
conditions. The dynamic nature of these structural changes, such as ion migration, nucleation,
and phase segregation, requires simulation methods that can capture both thermodynamic and
kinetic effects across multiple length and time scales. Machine learning force fields (MLFFs)
trained on high-fidelity DFT data offer a promising approach for modeling these phenomena in
larger, more realistic systems. Kinetic Monte Carlo simulations excel at capturing rare events
and long-timescale evolution, while phase field modeling and multiscale coupling approaches
provide complementary insights into mesoscale structural evolution during chemical looping
operation.

Target phase formation and reaction pathway determination historically relied on trial-and-error
approaches. Traditional thermodynamic stability analysis using formation energies and convex
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hull methods provides the foundation for identifying potentially stable phases, but these
equilibrium-based approaches have inherent limitations. While convex hull analysis can predict
the most thermodynamically favorable products, it cannot account for kinetic barriers that may
prevent formation of the predicted phases or lead to metastable intermediates during synthesis.
To address these limitations, Persson's group integrated convex hull concept and developed
cellular automaton simulation frameworks that enable prediction of time-dependent phase
evolution during solid-state reactions.”® They also developed graph-based reaction networks
using path-finding algorithms that can suggest likely synthesis routes by mapping
thermodynamic relationships between materials and identifying low-energy reaction
pathways.”* These integrated approaches provide systematic methods to identify viable
synthesis recipes and predict both target phase formation and potential impurity phases that
may compete during synthesis.

Table 1. Challenges and solutions in high-throughput chemical looping carrier discovery

Challenges Possible Solutions / Available Tools Ref
Computational inaccuracy System-specific calibration and benchmarking; explicit
and realistic modeling defect/dopant ordering models; advanced or hybrid exchange- ~ °%°!
assumptions correlation functionals

Machine learning force fields (MLFFs); kinetic Monte Carlo
(KMC) simulations; phase field modeling; multiscale coupling -8
approaches

Material stability during CL
conditions

Target phase formation and
reaction pathway
determination

Cellular automaton simulation frameworks; graph-based
reaction network analysis; ML-predicted synthesis routes

93,94

Stochastic surface walking global optimization combined with
global neural network potential, Reaction Mechanism 99-103
Generator

Reaction simulation under
CL conditions

Standardized workflows and . . . 104-
. S Digital twin frameworks; self-driving labs; 0
experimental validation 7

Reaction simulation under chemical looping conditions represents a critical frontier for
mechanistic understanding. CL processes involve complex phase transition reactions at solid-
solid and solid-gas interfaces, where detailed reaction mechanisms often are poorly understood.
Stochastic surface walking global optimization combined with global neural network potentials
offers a promising approach for exploring these complex reaction landscapes. This method has
successfully revealed mechanistic insights in related catalytic systems, such as silver surface
oxide formation during ethene epoxidation.!” Additionally, the Reaction Mechanism
Generator (RMG)'%% 193 and similar automated network generation tools show promise for
identifying key elementary steps and reaction pathways in gas-phase and surface processes. A
similar approach may be adopted/expanded to chemical looping reactions.

Lastly, current computational workflows lack standardization, making it difficult to
systematically integrate experimental feedback to refine theoretical predictions and screening
criteria. The emergence of self-driving laboratories could provide a powerful new paradigm on
materials discovery. These autonomous research systems integrate automated synthesis, high-
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throughput characterization, and machine learning—driven decision-making into a ¢losed-logp- s o
workflow. In such a system, computational models propose candidate materials; automated
synthesis robots prepare and process those candidates; high-throughput experiments then test
their properties; and machine learning algorithms analyze the results in real time to refine the
models’ predictions. Digital twin frameworks that mirror experimental conditions can further
enhance this integration by providing virtual testbeds for optimization before physical
synthesis. This combination of physics-based simulation, data-driven prediction, and
autonomous experimentation can significantly reduce the time and cost associated with

identifying optimal new redox materials.

By harnessing the synergy among advanced computation, data-driven modeling, and automated
experimentation, we can envision an accelerated discovery pipeline for chemical looping
materials. In this framework, high-throughput computational screening serves as an initial filter
to map the vast chemical space of possible candidate compounds. Machine learning models
then rank and prioritize these candidates through multi-objective optimization (balancing
factors such as redox capacity, stability over cycling, productivity, and cost). Finally,
autonomous laboratories rapidly synthesize and evaluate the top-ranked candidates, feeding
experimental feedback to continually refine the computational models and design criteria. Such
an iterative, hybrid approach could reveal entirely new families of redox-active materials,
optimize reactor operating conditions, and even guide the discovery of novel reaction pathways
or mechanisms that would remain inaccessible with conventional trial-and-error methods.
Ultimately, integrating advanced computation, data science, and autonomous experimentation
holds great promise for transforming the landscape of chemical looping technology and
significantly accelerating the development of the next generation of materials vital to global
decarbonization.
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