Densely packed spherical zinc deposition by cation buffer strategy enabled high-rate alkaline zinc batteries with lean electrolyte

Abstract

Zinc (Zn) anode stability poses a critical challenge in alkaline electrolytes due to the unstable electrode/electrolyte interface. In particular, Zn dendrite growth is induced by uneven nucleation and fast diffusion of zincates ([Zn(OH)4]2-), which leads to severe passivation and spontaneous hydrogen evolution reaction (HER). To tackle these problems, a cation buffer strategy is designed to realize the unique dendrite-free spherical Zn deposition by initiating a new ‘fast nucleation-slow growth’ mode, which separates the Zn nucleation and growth process using poly-(dimethyl diallyl ammonium chloride) (PDDA) additive. The cation-rich chains with strong affinity at the electrode/electrolyte interface, can effectively concentrate the near-electrode [Zn(OH)4]2- and slow down the migration of bulk phase [Zn(OH)4]2-. Moreover, preferentially adsorbed PDDA also suppresses HER, and reduces corrosion and electrically inert ZnO by-products. The PDDA-modified electrolyte improves the durability of Zn anode in long-term plating/stripping cycles with higher utilization of both Zn and electrolyte. The symmetric cell with PDDA sustains over 450 hours at 20 mA cm-2 and 10 mAh cm-2. Finally, we demonstrate the practical implications of our findings through aqueous alkaline Zn-Air and Zn-Nickel batteries with extremely stable performance at high-rate and lean electrolyte conditions.

Supplementary files

Article information

Article type
Paper
Accepted
25 Feb 2025
First published
27 Feb 2025

Energy Environ. Sci., 2025, Accepted Manuscript

Densely packed spherical zinc deposition by cation buffer strategy enabled high-rate alkaline zinc batteries with lean electrolyte

Y. Zhang, S. Shen, Z. Kang, N. Gao, D. Yin, L. Zhao, B. Wen, T. Deng, K. Xi, Y. Su, H. Zhao and S. Ding, Energy Environ. Sci., 2025, Accepted Manuscript , DOI: 10.1039/D5EE00703H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements