Biomimetic bone hydrogel enables a seamless interface for aqueous battery and human/machine interaction

Abstract

Hydrogels offer promising avenues for developing advanced aqueous battery technology for sustainable energy storage and wearable electronic devices in future human/machine interactions. However, an excessively large liquid-phase region in the hydrogel often results in parasitic reactions, modulus mismatch, and low strength. Therefore, it is crucial to develop a new hydrogel system with denser structures that enable reduced water content and better-matched modulus. Herein, inspired by the bionic principles of mammalian joint structures, an ultra-dense (3.26% of porosity) and highly robust (30.82 MPa of tensile strength) biomimetic bone hydrogel (BBH) system was designed through a biomimetic densification process. Notably, the robust ‘bone/collagen’ and flexible ‘collagen/synovial fluid’-like interactions not only ensure excellent mechanical properties but also disrupted the strong crystallization tendency to realize a seamless and fast ion transfer process. BBH displayed an expanded electrochemical window of 3.26 V and superior cycling in aqueous batteries with a practical cathode loading of 33.8 mg cm−2 (N/P = 2.46), indicating its suitability for application as an electrode/electrolyte interface. Moreover, its application as a seamless human/machine interface for on-skin physiological monitoring with high fidelity was demonstrated. Overall, this biomimetic densification design provides a new direction for the development of advanced hydrogels for next-generation energy storage and interactive devices.

Graphical abstract: Biomimetic bone hydrogel enables a seamless interface for aqueous battery and human/machine interaction

Supplementary files

Article information

Article type
Paper
Submitted
30 Oct 2024
Accepted
16 Dec 2024
First published
04 Feb 2025

Energy Environ. Sci., 2025, Advance Article

Biomimetic bone hydrogel enables a seamless interface for aqueous battery and human/machine interaction

L. Yao, Y. Wang, L. Jiang, G. Wang, X. Chi and Y. Liu, Energy Environ. Sci., 2025, Advance Article , DOI: 10.1039/D4EE05066E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements