Energy &
Environmental
Science

¥® ROYAL SOCIETY
PP OF CHEMISTRY

View Article Online

View Journal | View Issue

Degradation path prediction of lithium-ion

’ '.) Check for updates ‘
batteries under dynamic operating sequencest

Cite this: Energy Environ. Sci.,

2025, 18, 3784

@ Hyunjae Kim, £22° Seongha An,?® Jihoon Oh, (2%° Minsoo Kim®°

*ab

Inwoo Kim,
and Jang Wook Choi

Reliable battery management requires the degradation of lithium-ion batteries (LIBs) under variable
usage patterns to be accurately and continuously monitored and predicted. However, the chemically
entangled internal states and the nonlinear accumulation of degradation mechanisms pose challenges
to establishing these management processes. Here we present our comprehensive analysis of the
degradation path for different operating sequences. The analysis is based on a dataset we constructed
using measurements from 72 commercial battery cells operated according to 24 dynamic operating
sequences and by employing a periodic diagnostic protocol to quantify the kinetic degradation at
various states of charge. By incorporating the path-dependent characteristics of battery degradation into
deep learning approaches, we developed a framework capable of predicting future health states from
the state at a single time-point without historical information. Our predictive framework achieves test
average percent errors of 0.76% and 0.81% for the degradation paths and capacity trajectories,
respectively. The proposed battery management schemes offer high prediction reliability and accuracy
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Broader context

for dynamic operation and are anticipated to be useful for extending the operational lifetime of LIBs.

The extensive use of lithium-ion batteries across various applications and end-user groups results in multiple degradation pathways depending on their diverse

usage patterns. Amidst these complex real-world usage dynamics, the need to closely track and predict the future evolution of degradation has become more
crucial than ever to ensure the reliability of battery management systems. However, a reliable method that can universally predict future degradation behaviors

based on upcoming dynamic usage scenarios has yet to be established. In response to this challenge, we developed a deep learning-based framework that
leverages the path-dependent characteristics of battery degradation. The framework enables the future degradation path to be forecasted by linking internal
degradation trends with future usage plans. To this end, the kinetic parameters that depend on the state-of-charge of the battery are used as features for the
robust and generalized prediction of the nonlinear cumulative degradation, even under complex usage patterns. The principle presented in this paper can serve

as a foundational basis for ultimately realizing a healthy and sustainable battery ecosystem.

Introduction

Lithium-ion batteries (LIBs) are renowned for their high per-
formance and cost-effectiveness, which have resulted in their
widespread utilization across a broad spectrum of applications
ranging from personal electronic devices and electric vehicles
(EVs) to energy storage systems (ESS).' As their adoption
expands among various groups of end-users, even identically
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manufactured cells experience diverse usage scenarios, which
result in numerous degradation pathways.*® In this context,
the ability to exactly monitor and predict the degradation
processes of batteries operated according to various patterns
offers unprecedented opportunities and advantages for both
the end-users and suppliers of battery cells. For example, end-
users’ trust in the safety of their batteries in use could be
enhanced and, by actively adjusting their usage patterns, they
could warrant their convenience and lifetime in a balanced
fashion.””® Furthermore, suppliers could utilize customer data
to further optimize their battery manufacturing processes as
well as to more precisely evaluate the residual value of used
cells for a healthy and sustainable used-battery ecosystem.’'°
An accurate understanding of battery degradation and quanti-
fication of the residual value under varied usage patterns are

This journal is © The Royal Society of Chemistry 2025
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expected to play an increasingly critical role as the uptake of
LIBs continues to rapidly proliferate in our daily lives and in
industry. However, the chemically intricate internal states,
stemming from various sequential and parallel reactions, and
the associated nonlinear degradation pathways pose significant
difficulties for the accurate diagnosis of LIB cells."'™**
Attempts to address this issue have involved the ongoing
advancement of battery management systems (BMSs) by utilizing
extensive datasets and sophisticated predictive models based on
data accumulated from various studies.”'> For instance, public
datasets provide a robust foundation for conducting in-depth
analyses of battery degradation across diverse operating condi-
tions, chemical compositions, and cell types.'®™® Likewise, var-
ious predictive models developed to forecast capacity trajectories,
the cycle life, and the remaining useful life (RUL) aim to enhance
the accuracy by utilizing data-driven approaches that minimize
the need for feature engineering.'®>° Despite the remarkable
progress, the accurate prediction of the future degradation
behavior of batteries under diverse usage scenarios remains a
formidable challenge. The majority of studies that have been
reported to date have developed predictive models based on cycle
data following fixed protocols, which makes it difficult to apply
these models to real-world scenarios in which various cycling
conditions are dynamically combined.'® Although some studies
have developed predictive models using datasets that consider
uncertain future operating conditions,”’® the realization of
continuous prognostics and the comprehensive reflection of
multi-dimensional degradation modes remain in their infancy.
Moreover, the prediction of superficial indicators such as the
capacity or RUL is insufficient to fully capture the complex, multi-
scaled internal degradation of batteries.***> Thus, novel
approaches that function on the basis of more in-depth
degradation-related indicators are urgently needed. In this regard,
precisely designed periodic diagnostic protocols can effectively
extract physicochemical degradation information, and enable the
degradation behavior to be closely tracked at any specific points in
time.?®?® These approaches aim to maximize the utility of single
time-point data and stand in fundamental contrast with data-
driven methods that require extensive long-term historical data.”
Many previous studies have clearly demonstrated that bat-
tery degradation exhibits path-dependent behavior,'*?%?
wherein the current state of the battery is determined by its
usage history, and that the effects of future operating condi-
tions depend on this current state. Consequently, under
dynamic operating scenarios, future degradation is signifi-
cantly influenced by both the current state and forthcoming
usage patterns. Meanwhile, as changes in battery cycle data
accumulate over time, many studies have developed time-series
models, including statistical, machine learning, and deep learn-
ing approaches.”®?**® In particular, deep learning models are
promising tools due to their ability to learn complex nonlinear
relationships and effectively handle high-dimensional data.*”
However, there remains considerable room for further improve-
ment as predictions from fixed or randomly varied protocol
datasets are made without understanding the underlying sequen-
tial degradation mechanisms. Therefore, the combination of
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degradation path datasets that were collected through periodic
diagnostic protocols with time-series deep learning models offers
a useful opportunity to predict future degradation paths based on
the path dependence of battery degradation under dynamic
operating patterns. This methodology enables the fundamental
health state of a battery to be precisely reflected, thereby allowing
for reliable predictions even under complex usage patterns.

In this work, we developed a framework that leverages an
in-depth understanding of the path-dependent degradation of
LIBs to predict future degradation pathways in dynamic oper-
ating sequences using single time-point diagnostic data. We
constructed a dataset by acquiring data from 72 commercial
high-nickel lithium nickel manganese cobalt oxide (NMC)/
graphite-silicon composite (Gr-SiO,) cells across 24 dynamic
operating sequences. By introducing a periodic diagnostic
protocol to quantify the kinetic degradation at various states
of charge (SOCs), we systematically tracked and analyzed the
extent to which the degradation mechanisms dynamically vary
over individual sequences. Our framework achieves a predic-
tion error of 0.76% for future degradation paths at all cycle
points, using only information on the single time-point state
and future operating conditions. Furthermore, using the pre-
dicted future degradation paths, we achieve prediction errors of
0.81% for future capacity trajectories at all cycle points. These
results clearly demonstrate the effectiveness of our predictive
framework based on the SOC-dependent kinetic features and
their path dependence during battery degradation under
dynamic usage scenarios.

Results and discussion

The framework for predicting future degradation paths is
schematically depicted in Fig. 1. Each cell exhibits a unique
degradation path and corresponding capacity trajectory due to
variations in its internal state or operating pattern. The health
state of a cell evolves continuously as degradation occurs
during use, and this complicates the precise prediction of state
changes based on future usage scenarios. However, systematic
prediction becomes feasible by considering the path depen-
dence of battery degradation, where future degradation is
influenced by the current health state and anticipated usage
patterns.

The current health state of the battery can be quantified
through an information-rich diagnostic protocol, while future
usage patterns can be interpreted as a series of cumulative
impacts on the degradation path, which is influenced by each
operating condition within the usage sequence. Accordingly,
the degradation path can be forecasted by establishing the
relationship between internal degradation and future usage
plans, with the current health state of the cell serving as a
reference. Therefore, future health states can be predicted
under dynamic operating sequences via a single time-point
diagnosis of the current health state. Furthermore, because the
extractable capacity is determined as a result of internal degra-
dation, the capacity trajectory can also be estimated.
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Fig. 1 Schematic of the future degradation path prediction framework under dynamic operating sequences. (upper box) Various possible future
operating sequences from the same current health state. (lower box) Dependence of the variation in future degradation paths and capacity trajectories

on future operating sequences.

This comprehensive framework can utilize insights into the
evolution of the degradation for battery life extension and opera-
tional optimization in real-world applications such as EVs and ESS.
In particular, considering detailed degradation patterns is crucial,
as variations in usage habits and seasonal temperature fluctua-
tions can alter the sequence of degradation accumulation.®®
Building on this concept, a prediction model based on such
path-dependent data can provide customized usage guidelines
optimized for the current health state of the cells. In a related
line, it enables the accurate assessment of the residual value of a
battery in the context of specific usage scenarios.

Design of operating conditions with distinct degradation
characteristics

Our objective was to experimentally demonstrate various degra-
dation paths and assess the impact of each condition within
the operating sequences on these pathways. To this end, we
designed operating conditions commensurate with distinct
degradation mechanisms. Previous studies have shown that

3786 | Energy Environ. Sci., 2025, 18, 3784-3794

the predominant degradation mechanisms largely vary accord-
ing to the SOC ranges and charging C-rates.>"**° Therefore, we
cycled commercial NMC811/Gr-SiO,, cells under four distinct
operating conditions, as outlined in Fig. 2a. The operating
protocols are designed as follows: low SOC (L), medium SOC
(M), and high SOC (H) conditions are defined by their respec-
tive cycling SOC ranges, all of which were cycled at 0.5C charge.
The fast charging (F) condition shares the same cycling SOC
range as condition M, but with cycling at 2C charge. Under all
conditions, cells were cycled at 2C discharge and a fixed
capacity corresponding to an SOC range of 35%. Considering
that the operating conditions span partial SOC ranges in each
cycle, the capacity was estimated for the full SOC range during
the reference performance tests (RPTs) that were conducted
every 25 cycles. Hereafter, the points at which RPTs were
conducted are referred to as cycle points (Fig. S1, ESIT).
During the aging test, conducted over 600 cycles for each
operating condition, a significant difference in capacity reten-
tion was observed (Fig. 2b). The capacity trajectory corresponds

This journal is © The Royal Society of Chemistry 2025
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Fig. 2 Designing operating conditions and tracking degradation paths in dynamic operating sequences. (a) Four distinct operating conditions defined by

the charging C-rates and SOC ranges. (b) Discharge capacity and (c) results

of IC analysis for each operating condition. The data shown are the average

values from three cells. (d) Diagnostic protocol for collecting AVR data from 10 SOC points, referred to as the degradation index (DI). (e) and (f) An
example of a dynamic operating sequence: (e) trends in the discharge capacity and DI. Measurements were taken in intervals of 25 cycles. DI was plotted

by adjusting the initial data point of each feature to 0 V. (f) Schematic illustra
colored features highlighting the degradation characteristic of each stage.

to the change in the extractable capacity (determined by the
internal state at each cycle point), and underscores that each
condition induces distinct primary degradation mechanisms.
Specifically, condition M is associated with a gentle linear capacity
decay, indicating the mildest degradation at medium SOC.*
Under conditions L and F, a noticeable deviation from condition
M was observed with nonlinear decay beginning after 150 cycles.
This is attributed to lower extractable capacity due to increased
internal resistance. Particularly condition F is characterized by a
knee point near the 400th cycle, likely associated with lithium (Li)
plating as a result of fast charging.'* Under condition H, capacity
decay occurs more rapidly from the beginning compared to the
other conditions, indicating accelerated side reactions and cath-
ode loss at high SOC in the early cycling period.®*

This journal is © The Royal Society of Chemistry 2025

tion of the degradation that occurs under each operating condition, with the

Additionally, incremental capacity (IC) curves were obtained
every 150 cycles by charging at C/20 during the aging test (Fig.
S2, ESIt). The shape of IC curves is known*! to reflect electro-
chemical reactions evolving with degradation at both the
cathode and anode. Under each condition, the peak shifts
and intensity changes in the IC curves progress differently with
aging and indicate unique degradation patterns. Analysis of the
IC curves enables the degradation mode to be thermodynami-
cally quantified from changes in these curves.”*** The degrada-
tion modes are broadly divided into three types: loss of Li
inventory (LLI), loss of active material in the cathode (LAMpy),
and loss of active material in the anode (LAMyg).** LLI is
associated with the consumption of cyclable lithium, mainly
as a result of solid electrolyte interphase (SEI) growth and Li

Energy Environ. Sci., 2025, 18, 3784-3794 | 3787
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plating, whereas LAMpg and LAMyg occur due to the formation
of cracks and because the active material undergoes irreversible
phase transformations.

The differences in the degradation mechanisms between the
four conditions were also analyzed by quantifying the degrada-
tion modes of each condition at the 300th cycle by conducting
IC analysis (Fig. 2¢c and Fig. S3, ESIt). The focus was on LLI and
LAMpg, whereas LAMyg was excluded from the analysis due to
the well-known structural stability of the anode.*”* It is
noteworthy that although the capacities of conditions L, F,
and H at the 300th cycle are almost the same, the degradation
modes are clearly distinct. Compared to condition M, LLI was
more pronounced under conditions L, F, and H, and this is
correlated with the extent of by-products generated at the anode
interface, each having distinct degradation origins (Fig. S4 and
S5, ESTY).

Under condition L, LLI was driven by SEI growth, with the
pores being clogged with thickly grown SEI (Fig. S5b, ESIT).
This is attributable to continuous SEI formation caused by SEI
fracturing resulting from the large volume expansion of the
anode in low SOC range cycling.>**® The clogged pores increase
the resistance and reduce the extractable capacity. Conversely,
under condition F, LLI was driven by Li plating, which is
characterized by a large overpotential due to kinetically hin-
dered intercalation during fast charging."> Condition H gives
rise to the highest LLI, to which both SEI growth and Li plating
are significant contributors. This is associated with the promo-
tion of side reactions as the anode voltage approaches 0 V
versus Li/Li" in the highly lithiated state.’® At the same time,
severe cathode loss may occur due to the known structural
instability of the high-nickel cathode during fast charging and
high SOC cycling.”” Accordingly, cracked particles were
observed on the cathode, with LAMpg being more prominent
under the F and H conditions compared to the L and M
conditions (Fig. S6, ESIt). The electrochemical impedance
spectroscopy (EIS) analysis results obtained during the aging
tests further confirm distinct degradation behaviors for each
condition (Fig. S7, ESIt). To summarize, designing operating
conditions with different degradation mechanisms allows for
the analysis of the extent to which the degradation pathway
changes depending on the sequence of these conditions.
Furthermore, it provides a generalized understanding of the
degradation progress under dynamic operational patterns, as
the resulting aging processes could represent major degrada-
tion mechanisms of LIBs.

SOC-wise relaxation voltage as a battery degradation path
tracker

We developed a diagnostic protocol to extract the relaxation
voltages at various SOCs to assess the current health state and
monitor the degradation path by incorporating this into the
RPTs (Fig. 2d). The relaxation voltage is the voltage measured
while the system reaches electrochemical equilibrium at each
rest period. Previous studies have identified the relaxation
voltage, typically measured at fully charged or discharged states,
as a crucial indicator for diagnosing the degradation.?®>"*8

3788 | Energy Environ. Sci., 2025, 18, 3784-3794
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However, because the response to degradation varies according
to the SOC, measurement of the voltage at multiple SOC points
provides a more comprehensive understanding of the
degradation.?”! Therefore, we measured the change in voltage
during relaxation (AVR) over a 10-minute rest period in the
upper SOC range (SOC60-100) during charging and the lower
SOC range (SOC10-50) during discharging. Measurements were
recorded at 10% SOC intervals. A comparison of AVR data with
IC curves of the fresh cell revealed an opposite trend across SOC
points, confirming that SOC-wise AVR characteristics are influ-
enced by the combined phase behaviors of the cathode and
anode (Fig. S8, ESIt).

AVR is associated with the extent of overvoltage resolved
during operation, and serves as an electrochemical indicator of
the kinetic degradation of the cell.*® Thus, the current health
state of the cell can be more thoroughly quantified using AVR
data from 10 SOC intervals, collectively referred to as the
degradation index (DI). In fact, the DI in the aging test revealed
distinct primary degradation mechanisms for each condition
(Fig. S9 and S10, ESIt). Additionally, each SOC feature exhibited
different patterns for the same degradation state. This variation
is attributed to differences in the overpotential depending on
the SOC for the active material and interfaces,>**° which can
further be affected by aging characteristics.

The use of these distinct operating conditions and the DI,
which reflects the health states of the cell, enabled us to create
dynamic operating sequences and monitor the degradation
paths. For example, we analyzed the degradation path of an
operating sequence in which the L-H-F-M conditions were
alternatively used for 150 cycles each (Fig. 2e and f). As the
operating conditions change, different degradations accumu-
late based on the preceding states, thereby resulting in con-
tinuous shifts in the capacity and DI trajectories. First, under
condition L, an increase in the internal resistance due to rapid
SEI growth at the anode interface lowers the capacity and
gradually widens the DI. Next, under condition H, the capacity
decay is steeper and the SOC features in the DI become more
divergent due to continued SEI growth and Li plating seed
formation at the anode, along with increased charge transfer
resistance resulting from cathode loss.’® Then, under condition
F, the formation of a thick covering layer as a result of Li plating
at the anode, accompanied by intensified cathode loss, results
in a nonlinear knee point in the capacity and DI. Lastly, under
condition M, mild SEI growth becomes predominant to partly
alleviate the overpotential accumulated in previous operations
and soften the drastic nonlinear capacity decay. This demon-
strates that the DI can serve as a descriptor of the degradation
path by offering more detailed information about changes in
the internal state than the capacity alone under dynamic
operating sequences.

Path-dependent degradation under dynamic operating
sequences

We designed 24 dynamic operating sequences by varying the
order in which the four distinct conditions were used (Fig. 3a).
Each sequence was used for 600 cycles, divided into four stages

This journal is © The Royal Society of Chemistry 2025
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stages. Each sequence spans 600 cycles, during which all four operating conditions were used, each lasting 150 cycles. (b) Discharge capacities of 72
NMC811/Gr-SiOy cells, with three cells per sequence. The color of each curve corresponds to the final capacity at the end of the cycle test. Measurements
were taken in intervals of 25 cycles. (c) Capacity loss as a percentage at each stage of every operating sequence. The data shown are the average values from

three cells. (d) Correlation between principal component 1 of DI and capacity a

of 150 cycles, with different operating conditions assigned to
each stage. This approach allowed us to experimentally imple-
ment various degradation paths by incorporating every possible
instance where each condition appears once in the sequence.
Fig. 3b shows the capacity retention of 72 commercial NMC811/
Gr-SiO, cells across all operating sequences. Each sequence
includes three cells, with the colors representing the final
capacity at 600 cycles. The capacity measurements of each cell
are detailed in Table S1 (ESIt). Although each condition was
consistently employed once in all the sequences and all the
conditions were equally distributed over all the sequences,
various capacity trajectories emerged depending on their order,
demonstrating that cumulative degradation is influenced by
the path dependence of battery degradation.

The percentage of capacity loss for each stage in all sequences
was analyzed (Fig. 3c). The final capacity reduction was more
pronounced when the harsh F and H conditions were applied in
the later stages compared to the milder L and M conditions. This
is because the stress experienced by the battery gradually accel-
erates as degradation progresses."* Moreover, the capacity decay
at each stage varied dynamically depending not only on the
condition at the given stage but also on all preceding conditions.

This journal is © The Royal Society of Chemistry 2025

t all measured cycle points, with a Pearson correlation coefficient of r = —0.85.

For instance, a comparison of the sequences HMLF and MHLF
revealed that, positioning the M condition in the middle (i.e., as
in HMLF) had a mitigating effect such that it slowed the
degradation process. In contrast, the consecutive application of
stress-inducing conditions, as in the case of MHLF, accelerated
degradation more rapidly. IC curves and post-mortem analysis at
the end of the cycle test revealed distinct differences in aging
mechanisms between the two sequences (Fig. S11, ESIT).
Furthermore, instances of negative capacity loss indicate capa-
city recovery. This phenomenon typically occurred when transi-
tioning from the harsh F and H conditions to the mild L and M
conditions and was not observed for the opposite situation (Fig.
S12, ESIt). This trend could possibly be explained by the
increased uniformity of Li distribution within the electrode
and reactivation of trapped Li.>*> Apart from this, a shift in the
SOC from high to low may lead to capacity recovery due to the
transfer of Li from the passive area on the electrode (anode
overhang) to the active area.”® This implies that the extractable
capacity can reversibly increase or decrease depending on the
sequence of operating conditions. These findings also indicate
the chance of improving battery performance by adjusting
operating sequences that regulate degradation accumulation.

Energy Environ. Sci., 2025, 18, 3784-3794 | 3789
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Path-dependent degradation was clearly observed not only
in terms of the capacity retention but also in the DI trajectory
(Fig. S13-S16, ESIt). To verify whether the DI reflects informa-
tion on the capacity in each state, we examined the correlation
between the capacity and DI at all measured cycle points
(Fig. 3d). Because the DI consists of 10 features corresponding
to the AVR measurements across different SOC points, princi-
pal component analysis (PCA)>* was employed to reduce the
dimensionality while preserving the key characteristics. Princi-
pal component 1 (PC1) of the DI explained 92.24% of the
variance in the data, which allowed the DI to be reduced to
one dimension with minimal information loss (Fig. S17 and
S18, ESIt). The high linear correlation (Pearson correlation
coefficient of —0.85) between the capacity and PC1 of the DI
at all cycle points suggests that the DI provides a good indica-
tion of the capacity trend during cycling.

Time-series deep learning approach

We developed a framework to predict future degradation paths
and capacity trajectories by exploiting the path dependence of
battery degradation. Initially, we utilized a sequence-to-
sequence (seq2seq) model®® to capture the relationship
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between the current health state, future usage patterns, and
the resulting future degradation path of the cell. The seq2seq
model, typically used for generating sequence outputs from
sequence inputs, was adapted in this case to handle vector
inputs by leveraging its inherent flexibility. This model has
demonstrated efficacy in domains such as computer science,’®
robotics,”” and chemistry.”® For LIBs, the seq2seq model facil-
itates the prediction of future health states based on a single
current health state within time-series cycle data.®”

A flowchart of the predictive framework is presented in
Fig. 4a. The implemented seq2seq model features an enco-
der-decoder architecture, with each module processing specific
input data (Table S2, ESIT). The encoder converts information
about the current health state (capacity and DI) into a fixed-
length vector. The decoder generates ordered sequences and is
composed of gated recurrent unit (GRU) layers,>® a type of
recurrent neural network specifically designed to process time-
series data. First, the GRU layer was initialized with the vector
output received from the encoder. Subsequently, the future
operating sequence was input into the decoder and the time-
series hidden states were updated to reflect the impact of the
operating conditions at each future cycle point. These hidden
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states were then used to predict the future degradation path
that corresponds to the DI trajectory. Moreover, the predicted
degradation path allowed for the estimation of the capacity
trajectory by taking advantage of the strong correlation between
the capacity and DI. For capacity estimation, we employed a
random forest regression model® because of its effectiveness
in handling high-dimensional data. This framework therefore
enables the prediction of future health states in dynamic
operating sequences by relying solely on the accurately quanti-
fied current health state and future usage plans, without
requiring historical data. For a reliable and generalized perfor-
mance evaluation of the framework, we employed group k-fold
cross-validation®' to ensure that cells with the same operating
sequence are included in only one of the training and valida-
tion sets at each iteration. The prediction performance was
evaluated using the root-mean-squared error (RMSE) and mean
absolute percentage error (MAPE) as metrics. Further computa-
tional details are provided in the Experimental section.

Performance of the predictive framework

The performance of our framework was assessed to determine
whether it could accurately predict the degradation paths from any
given point in the cycle to the subsequent point. The framework
requires two inputs: diagnostic data about the current health state
and the future operating sequence. The use of both of these inputs
in combination is referred to as the “full” model. Remarkably, this
model consistently achieved high prediction accuracy for all SOC
features of the DI, with an RMSE of 0.63 mV and a MAPE of 0.76%
(Fig. 4b and c and Table 1). These results demonstrate the super-
iority of our approach, which leverages the path dependence of the
degradation to accurately predict future degradation paths. The
proposed model was benchmarked against three alternatives: (1)
the “naive” model, (2) the “sequence-only” model, and (3) the
“diagnosis-only” model to distinguish the influence of each
input®?* (Fig. S19-S21, ESIt). The “naive” model, which uses
the average DI at each cycle point from the training data for
predictions, served as the baseline with a MAPE of 4.77%. The
average DI herein was acquired by averaging each SOC-specific DI
feature separately from the training data. The “sequence-only”
model, which relies solely on the future operating sequence with-
out using diagnostic data about the current health state, under-
performs compared to the naive model, with a MAPE of 5.18%.
The “diagnosis-only” model, which uses only the diagnostic data
pertaining to the current health state without the future operating
sequence, outperforms the other benchmark models with a MAPE
of 1.41%. This finding suggests that the diagnostic data relating to

Table 1 Model metrics for degradation path prediction
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the current health state significantly contributes to predicting the
degradation path of the next cycle point. Moreover, the exceptional
performance of the proposed “full” model compared to the
benchmark models implies that the synergistic integration of both
inputs allows for accurate predictions of the complex degradation
path in dynamic operating sequences.

The capacity estimation performance was assessed based on
the predicted DI. To this end, we used the actual DI to first
construct a random forest regression model that reflected the
true relationship between the DI and capacity (Fig. S22, ESIf).
The predicted DI was then used as input to this regression
model to evaluate its effectiveness for capacity estimation
(Fig. 4d and Table 2). The prediction performance of the “full”
model is comparable to the actual DI, with an RMSE of
31.78 mAh and a MAPE of 0.81%. In contrast, the benchmark
models—the “naive” model, the “sequence-only” model, and
the “diagnosis-only” model—generate higher prediction errors,
with MAPEs of 1.72%, 3.14%, and 0.89%, respectively (Fig. S23,
ESIT). Although the error of the “diagnosis-only” model is
relatively low, the high DI prediction accuracy of the “full”
model improves the capacity estimation performance, consid-
ering the propagation of errors in the prediction of the degra-
dation path. These results demonstrate the potential of using
the predicted degradation paths to estimate various meaning-
ful state variables, including the capacity. The performance
comparison of the four models is visualized more clearly in Fig.
S24 and S25 (ESIT), in which the results of the degradation path
and capacity trajectory prediction for representative cells with
various final capacities are plotted.

We additionally analyzed the performance of the proposed
framework by increasing the number of prediction cycle points.
Given that the entire dataset contains data from 600 cycles,
which corresponds to 25 cycle points, increasing the number of
future cycle points to be predicted reduces the maximum
number of available cycle points. Thus, the prediction errors
of the degradation path and capacity trajectory of the “full”
model are compared for zero-to-m cycle points by varying the
forecast length (n) (Fig. 5a and b). As n is extended, the
prediction error consistently rises due to the amplified varia-
bility in degradation to reach a MAPE of 2.08% for the degrada-
tion path and 1.14% for the capacity trajectory at n = 10.
Notably, in the case of the “full” model, the small prediction
errors across all ranges of m indicate the robustness of the
proposed framework to perform stably even with heightened
data variability. The results of the benchmark models are
summarized in Fig. S26 (ESIt). Overall, the benchmark models

Table 2 Model metrics for capacity trajectory prediction

Model RMSE (mV) MAPE (%) Model RMSE (mA h) MAPE (%)
Naive 3.69 (0.62) 4.77 (0.53) Naive 68.83 (3.38) 1.72 (0.06)
Sequence-only 4.11 (0.60) 5.18 (0.26) Sequence-only 118.70 (4.20) 3.14 (0.15)
Diagnosis-only 1.34 (0.35) 1.41 (0.17) Diagnosis-only 35.46 (2.68) 0.89 (0.04)
Full 0.63 (0.11) 0.76 (0.09) Full 31.78 (1.19) 0.81 (0.03)

The values refer to the means (standard deviations) of the errors across
all iterations of the cross-validation.

This journal is © The Royal Society of Chemistry 2025
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consisting of highly dynamic operations for different n values.

gave rise to higher prediction errors as m increased for the
same n, indicating low generalizability compared to the “full”
model. Unlike the “naive” model, which consistently produced
high prediction errors across all n, the prediction errors of the
“sequence-only” model increased less significantly as n became
longer. This can be attributed to the growing importance of
information about the future operating sequence to predict the
long-term degradation. Conversely, the prediction errors of the
“diagnosis-only” model increased sharply as n increased
because the future degradation significantly deviated from
the current health state. As a result, the “naive” model, the
“sequence-only” model, and the ‘“diagnosis-only” model pro-
duced high prediction errors with MAPEs of 4.71%, 3.88%, and
3.65%, respectively, in terms of the degradation path prediction
for n = 10. In contrast, the proposed ‘““full” model manifested
strong robustness and maintained its excellent prediction
performance by effectively utilizing both the current health
state and the future operating sequence even as n was extended.

Finally, the generalizability of the framework was further
validated using additional datasets featuring highly dynamic

3792 | Energy Environ. Sci., 2025, 18, 3784-3794

operating sequences (Fig. 5c and d and Table S3, ESIt). The
additional dataset was generated using eight NMC811/Gr-SiO,
cells. The operating conditions were changed every 25 cycles,
and the four different sets of operating conditions formed a 100
cycle-long block. Six repetitions of this block yielded a total of
600 cycles. Interestingly, even under these more dynamic
operating conditions, the cells exhibited path-dependent degra-
dation behavior that reflected the varying stress conditions with
reference to their real-time states. We employed the pre-trained
parameters of the “full” model for degradation path prediction
to thoroughly assess the ability of our framework to generalize
to previously unseen data patterns. Our framework achieved a
MAPE of 2.03% for the degradation path and 1.15% for the
capacity trajectory at n = 10, thereby highlighting its superior
prediction performance by effectively utilizing both the current
health state and future operating conditions of the cell (Fig.
S27, ESIT). These results clearly demonstrate the applicability
and scalability of our framework, and emphasize the impor-
tance of considering the path-dependent battery degradation
when capturing the complexities of real-world usage scenarios.

This journal is © The Royal Society of Chemistry 2025
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Conclusion

In summary, we developed a framework for predicting the
future health states of NMC811/Gr-SiO, commercial cells based
on information about their current health state and future
usage by utilizing a dataset generated from dynamic operations.
The path-dependent degradation across different operating
sequences was monitored with the aid of a comprehensive
diagnostic protocol. Accordingly, the prediction of future degrada-
tion paths from single time-point diagnostic data was accom-
plished by modeling the path dependence of the battery
degradation. The high correlation between the diagnostic features
and extractable capacity made possible the subsequent estimation
of the capacity trajectories from the projected degradation paths.
The integration of time-series deep learning approaches and the
path-dependent characteristics of battery degradation enabled the
prediction of future dynamic aging pathways with minimal
information and small errors. In the broader context, our findings
highlight the potential, not only for maintaining LIB cells that are
currently in operation, but also for accurately evaluating used LIB
cells by leveraging their SOC-dependent degradation characteris-
tics and deep learning approaches that take path-dependent
degradation into account.
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