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The presence of ion nanoclusters or aggregates in electrolytes strongly impacts the electrolyte physical

and chemical properties. Herein, we investigate the nature of ion nanoclusters in aqueous zinc sulfate

electrolytes for zinc-ion batteries, specifically their size distribution, composition and lifetime, and sub-

sequent influence on transport properties. Using a combination of X-ray scattering, molecular dynamics

(MD) simulations and forward scattering calculations, we reveal the presence of free ions and a distri-

bution of nanoclusters composed of solvent-separated ion pairs, whose size distributions are concen-

tration-independent. Transient interactions between sulfate ions and long-lived hydrated zinc ions

produce nanoclusters with varying sizes, compositions and geometries. Pair distribution functions calcu-

lated from MD simulations show strong agreement with experimental X-ray total scattering measure-

ments. Nanoclusters were identified from MD simulations and used to forward simulate small-angle X-ray

scattering (SAXS) of these nanoclusters. By fitting our measured SAXS using these forward simulations, we

determine the distribution of nanocluster sizes in the electrolyte. Transport calculations from MD simu-

lations and experimental measurements show that while nanoclusters hinder ion transport, their short-

lived and dynamic nature enables efficient ion diffusion. Determining the nature of these nanoclusters is

essential for understanding their impact on transport, solvation, and interfacial chemistry, and guiding the

rational design of electrolytes for energy storage, chemical separations and environmental science.

Broader context
Electrolytes are essential to batteries, fuel cells, electrochemical separations, and environmental remediation technologies, where their solvation structure and nano-
scale organization dictate key properties such as ion mobility and interfacial reactivity. While traditional models describe electrolytes as collections of free ions or
simple ion pairs, recent studies suggest the presence of nanoclusters—ion aggregates that play a significant role in electrolyte behavior. Understanding these struc-
tures is critical for designing next-generation electrolytes with enhanced performance across energy and environmental remediation. In this work, we investigate
nanocluster formation in aqueous ZnSO4 electrolytes, which are relevant for aqueous zinc batteries, a sustainable, low-cost, and safe alternative to lithium-ion bat-
teries. Using a new multi-modal approach that integrates X-ray scattering, molecular dynamics simulations, forward scattering calculations, and transport measure-
ments, we provide a quantitative understanding of nanocluster size, composition, and structure and their influence on ion transport. Our findings reveal a highly
polydisperse system of nanoclusters with diverse sizes, compositions, and structures, introducing short-range correlations that reduce ionic conductivity. Yet, their
transient and dynamic nature enables continuous reorganization, enabling facile transport. These insights introduce a new framework for electrolyte design,
offering a pathway to improved energy storage systems and electrochemical technologies critical for clean energy and sustainability.

aMaterials Science and Engineering, University of Colorado at Boulder, Boulder, CO

80303, USA. E-mail: Michael.Toney@colorado.edu,

emma.antonio12@imperial.ac.uk
bDepartment of Chemical Engineering, Imperial College London, London, SW7 2AZ,

UK
cDepartment of Chemical and Biological Engineering, University of Colorado

Boulder, Boulder, CO 80303, USA
dElectrochemical Energy Systems Laboratory, Department of Mechanical and Process

Engineering, ETH Zurich, 8092 Zurich, Switzerland
eDepartment of Chemical and Biomolecular Engineering, University of Notre Dame,

Notre Dame, Indiana 46556, USA
fNSF’s ChemMatCARS, Pritzker School of Molecular Engineering, University of

Chicago, Chicago, Illinois 60637, USA

gJoint Center for Energy Storage Research, Pacific Northwest National Laboratory,

Richland, WA 99354, USA
hMaterial, Physical and Chemical Sciences Center, Sandia National Laboratories,

Albuquerque, NM 87185, USA
iMaterials Science Division, Argonne National Laboratory, Lemont, Illinois 60439,

USA
jRenewable and Sustainable Energy Institute (RASEI), University of Colorado at

Boulder, Boulder, CO 80303, USA

†Electronic supplementary information (ESI) available. See DOI: https://doi.org/
10.1039/d5eb00119f

‡These authors contributed equally to this work.

© 2025 The Author(s). Published by the Royal Society of Chemistry EES Batteries

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 3

0 
Ju

ne
 2

02
5.

 D
ow

nl
oa

de
d 

on
 7

/2
9/

20
25

 5
:5

3:
16

 P
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
View Journal

http://rsc.li/EESBatteries
http://orcid.org/0000-0003-3249-4837
http://orcid.org/0000-0002-9292-4416
http://orcid.org/0000-0002-8123-7215
http://orcid.org/0000-0002-3535-1818
http://orcid.org/0000-0001-6187-4068
http://orcid.org/0000-0003-0151-8832
http://orcid.org/0000-0002-6309-1347
http://orcid.org/0000-0003-3988-5961
http://orcid.org/0000-0002-7513-1166
https://doi.org/10.1039/d5eb00119f
https://doi.org/10.1039/d5eb00119f
https://doi.org/10.1039/d5eb00119f
http://crossmark.crossref.org/dialog/?doi=10.1039/d5eb00119f&domain=pdf&date_stamp=2025-07-03
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5eb00119f
https://pubs.rsc.org/en/journals/journal/EB


Introduction

Electrolytes play a crucial role in energy storage, catalysis, separ-
ation, and environmental remediation, influencing properties
such as ionic transport and interfacial reactions. The design of
electrolytes with specific properties is vital for numerous appli-
cations, including electrochemical energy storage in batteries,1–4

water treatment,5,6 electrocatalysis,7,8 electroplating,9,10 and
extraction processes, such as electrowinning/
electroextraction.11,12 The intricate balance between solute–
solute and solvent–solute interactions—including electrostatic,
hydrogen bonding and solvophobic interactions as well as steric
exclusion—dictates much of the properties of electrolytes. Our
ability to design better electrolytes relies on a deeper under-
standing of these interactions. Electrolyte properties have been
related to thermodynamic principles using activities as well as
nanoscale interactions using ion pairing models.13 Ion pairs,
including solvent-separated ion pairs (SSIPs) and contact ion
pairs (CIPs), are based on electrostatic interactions, in contrast
to complexes which form via covalent interactions. Ion pair for-
mation is proposed to depend on the nature of the electrolyte,
the charge of ionic species, the salt concentration, the dielectric
constant, chelating properties of the solvent, and the tempera-
ture.14 Recently, larger ion aggregates with sizes greater than
1 nm were predicted in some electrolytes.1,14 Despite advances
in simulations and experimental techniques, a detailed under-
standing of the solution structures resulting from ion inter-
actions, as well as their effect on electrolyte properties, such as
transport and stability, remains elusive.

Metal sulfate electrolytes are crucial in a range of fields,
including energy storage, electroplating, and water treatment.
Here we focus on the local solvation in aqueous ZnSO4 electro-
lytes, which are a low cost and safe option for zinc-based bat-
teries with zinc metal anodes.15,16 Zinc-ion batteries have high
volumetric capacity (5851 mAh cm−3), low redox potential
(−0.76 V vs. SHE) and use widely available materials, making
them attractive for grid-scale energy storage.17–19

Understanding nanoclusters in battery electrolytes is impor-
tant due to their proposed effect on electronic properties, and
thus redox properties; transport (deviations from transport
predictions due to strong ionic correlations); and/or surface
interactions including the electrical double layer, desolvation
processes and interfacial reactions.1,14 These phenomena are
particularly relevant for multivalent-ion-based electrolytes,
including other battery chemistries such as calcium and
magnesium.20–22

Gaining a comprehensive understanding of ion pairs and
nanoclusters is challenging due to limitations in experimental
and computational techniques. Experimental methods that
probe ion pairs and nm-scale structures and chemistries
include total scattering (or X-ray pair distribution function
(XPDF)), Fourier-transform infrared spectroscopy (FTIR),
Raman spectroscopy, X-ray absorption spectroscopy (XAS),
nuclear magnetic resonance (NMR), and dielectric relaxation
spectroscopy (DRS). Small-angle neutron and X-ray scattering
(SANS/SAXS) probe more extended >1 nm sizes. Computational

studies, mainly based on molecular dynamics (MD) simu-
lations and density functional theory (DFT), have provided
structural information and insight into the driving forces for
cluster and ion pair formation. While the limitations of each
of these methods are outside the scope of this work; here we
only note that the time scales probed will impact the results.

Nanometric clusters in aqueous ZnSO4 have been hypoth-
esized based on self-diffusion and conductance measurements
showing positive cation–cation and anion–anion correlations,
even at low concentrations (0.05 M).23 More recently, an experi-
mental study using DRS revealed the presence of CIPs and
SSIP,24 with both free ions and ion pairs being strongly
hydrated (>1 hydration shells).24 The mean activity coefficient
of 1 M ZnSO4 was reported to be 0.042 (where the mean
activity coefficient for each component in an ideal solution =
1), demonstrating deviations from ideal solution behavior, due
to significant molecular interactions.25 There are several
studies suggesting the presence of nanometric clusters for
sulfate anions and other divalent metals including
magnesium26–30 and calcium.31 However, further studies are
required to understand the extent of nanocluster formation,
the nature of nanoclusters (including their composition, size,
polydispersity, charge, geometry and lifetimes) and their
impact on ion transport within these electrolytes.

In this study, as summarized in Fig. 1, we synergistically
integrate experimental measurements with computational
modeling to unravel the nature of nanoclusters in aqueous
ZnSO4 electrolytes. Utilizing SAXS and XPDF analyses along-
side MD calculations and forward scattering simulations, we
achieve detailed characterization of the size, structure, compo-
sition, and distribution of nanoclusters. We then determine
the transport from MD and compare it to diffusivity and con-
ductivity measurements, using pulse-field gradient nuclear
magnetic resonance spectroscopy (PFG-NMR) and electro-
chemical impedance spectroscopy (EIS), respectively. We relate
the transport measurements to the cluster size distributions
determined by X-ray scattering techniques. Our findings reveal
a highly polydisperse system of transient nanoclusters com-
posed of hydrated zinc ions and sulfate ions that reduces the
ionic conductivity. This combined approach provides a novel
method of interrogating electrolyte properties and yields valu-
able insights for the rational design of electrolytes for sustain-
able energy storage and other complex liquid systems.

Results & discussion
Characterizing nanoclusters composed of Zn(H2O)6 and SO4

The presence of nanoclusters in aqueous ZnSO4 electrolytes
was measured using SAXS, as shown in Fig. 2a by the shoulder
position (gray arrow), which approximately corresponds to
electron density variations (nanoclusters in this work) with a
size of π/qshoulder where qshoulder is the scattering vector value
at the shoulder. Historically these data are fitted to an analyti-
cal model to obtain a single size or size distribution based on
a series of assumptions such as the shape (form factor). The
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similarity in shoulder position between the concentrations
measured (0.1–1 M) indicates that the average sizes of the
nanoclusters are unchanged by concentration. Qualitatively,
these measurements are consistent with previous SAXS
measurements of calcium sulfate salts (0.05–0.15 M) which
revealed clusters of a similar size.31,32 To understand these
clusters, Benning and coworkers fit these data to an analytical
expression for a cylindrical form factor,31 and later a surface
fractal structure factor and a shape-independent Guiner
approximation to capture the radius of gyration for primary
cylindrical particles.32 However, more advanced and nuanced
approaches are needed to accurately interpret cluster size dis-
tributions and relate them to specific chemistry and local
structure (e.g., solvation shells, ion pairs) and the resulting
electrolyte properties. Furthermore, for a wide range of electro-
lytes, a distribution of cluster sizes and cluster net charges is
expected; for example, DFT calculations of MgSO4 predict the
formation of a variety of linear clusters, or ‘contact ion chains’,
containing up to 8 ions.33

Herein, we use the term nanocluster to describe the
measured microheterogeneities in electron density observed
by SAXS. These microheterogeneities represent deviations

from ideal solution behavior and have historically been
referred to as ‘ion pairing’. These microheterogeneities encom-
pass various forms of ion associations, including SSIPs, where
cations and anions are connected by solvent molecules; CIPs,
where cations and anions are directly connected without inter-
vening solvent; and larger ion clusters (also referred to as
nanometric aggregates) that form more complicated structures
involving cations, anions, and solvent molecules. As discussed
below, we find clusters to be composed of sulfate ions (SO4

2−)
and zinc ions hydrated by 6 water molecules (Zn(H2O)6); a
coordination number of six is widely accepted in the
literature.26,34–38 For clarity, here we define nanocluster ‘size’
as the ion count which is the number of ions within a nano-
cluster (as opposed to dimension which is dependent on the
geometry) with the expression (Zn(H2O)6)x(SO4)y used to
describe a cluster containing x hydrated zinc units and y
sulfate ions (cluster size = x + y ions). For simplicity, we do not
include sulfate’s flexible hydration shell.39–46

To understand the local structure of these nanoclusters, we
performed XPDF and MD simulations, obtaining the reduced
pair distribution function, G(r), which are shown in Fig. 2b
and c. We observe good agreement between the experimental

Fig. 1 Schematic summarizing the framework and findings of this work whereby the SAXS data was interpreted using a linear combination of
forward simulated SAXS profiles for clusters of different sized that were identified from the molecular dynamics simulations using a clustering algor-
ithm. We report the presence of both free ions and clusters, composed of sulfate and hydrated zinc ions (solvent-separated), that form transiently a
distribution of cluster sizes, charges and geometries. Here, nanoclusters are highlighted by turquoise regions, with zinc and sulfate ions represented
by grey and red circles respectively. Zinc’s hydration shell (first solvation shell) is shown in blue.
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G(r) with MD simulations, shown in Fig. 2b for 0.5 M ZnSO4,
where the MD simulations capture the main peak positions
and relative intensities found in the measurement, validating
the short-range correlations from the MD model. Slight differ-
ences in the relative intensities and peak positions may be
attributed to the MD force field not perfectly representing the
interatomic potentials and/or experimental error for intensi-
ties. A clearer understanding of the local structural changes
with concentration can be obtained from the differential pair
distribution function (dG(r)), shown in Fig. 2d, where the G(r)
of a lower concentration solution is subtracted from a higher
concentration ZnSO4 solution. The dG(r) highlights changes in
the local structure with increasing concentration and is valu-
able for assessing local cluster structure. Fig. 2d shows good
agreement between the differential XPDF for the experimental
measurements and MD simulations for 0.5–0.1 M.
Correlations identified by the MD simulations are given in
more detail in Table S1.†

As expected, the correlations associated with sulfate ion
and hydrated zinc increase with increased salt concentration
(Fig. 2c and d); specifically the intensity of the correlations

associated with the sulfur–oxygen bond within the sulfate ion
at approximately 1.54 Å (S–O(SO4)) and zinc–oxygen interaction
at 2.1 Å (Zn–O(H2O)), where the subscript refers to the mole-
cule/ion where the element is located. The Zn–O(H2O) corre-
lation distance (position) does not change with increasing salt
concentration (Fig. 2c); six water molecules were found in the
first solvation shell by MD at all concentrations (0.1–1 M) con-
sistent with the literature where zinc is widely accepted to have
six water molecules tightly bound in its first solvation shell in
an octahedral geometry.26,34–38 With increasing concentration,
the peak at 2.8 Å, related to the hydrogen bonding network in
pure water (O–O bond), decreases (Fig. 2c).47 Based on MD
simulations, the broad but well-defined peak between 4 and
5 Å (Fig. 2b and c) is due to the second solvation shell of Zn2+

cations which has contributions from both H2O and SO4
2−

anions. In Fig. 2d, the dG(r) shows peaks around 4.2, 5 (black
arrow) and 5.8 Å. Using the MD to understand these data, we
find that the peak at 4.2 Å primarily arises from correlations
between oxygen atoms of water molecules solvating Zn2+

(O(H2O)–Zn–O(H2O)). The correlations around 4.2 and 5.0 Å
are attributed to Zn–SO4 solvent-separated ion pairs, both as

Fig. 2 (a) Small angle X-ray scattering data of ZnSO4 in water. The gray arrow shows the q value of the shoulder (qshoulder). (b) Comparison of
experimental X-ray pair distribution function, G(r), with the MD simulations for 0.5 M ZnSO4 solution. The G(r) provides local structure information
based on the relative frequency of atom pairs at certain distances. (c) X-ray pair distribution function of ZnSO4 concentrations (0.1–0.5 M). (d)
Differential pair distribution function (dG(r)), comparing experimental data and MD simulations. The dG(r) is calculated by subtracting the G(r) of a
lower concentration ZnSO4 solution from that of a higher concentration ZnSO4 solution (0.5–0.1 M for both the experimental and computational
data). The black arrow indicates the small peak at 5 Å.
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isolated pairs and within larger nanoclusters. The broad corre-
lations around 5.8 Å and subtle correlations above 7 Å are
attributed to the ordering of water, perhaps enhanced by the
polarizing nature of zinc (Fig. S1 and S2†).36,38 Although Zn–
SO4, Zn–water, and SO4–water correlations extend to distances
beyond ∼5.5 Å, these nanocluster correlations are relatively
weak; MD simulations show that for distances above ∼5.5 Å
the G(r) is dominated by water–water interactions (Fig. S1†).
Aside from a larger mean S–O bond distance measured by
XPDF compared to the MD (Fig. 2b and d), we observed excel-
lent agreement between MD and experiment. Comparison to
the SAXS data, which is unchanged with concentration,
suggests that more nanoclusters form as opposed to larger
nanoclusters at higher concentrations.

The agreement between experimental and simulated G(r)
and dG(r) demonstrates that the MD simulations effectively
capture the short-range (here up to ∼8 Å) structural features of
(Zn(H2O)6)x(SO4)y nanoclusters and water ordering. As seen in
Fig. 2, above 8 Å there are no observable correlations in G(r).
Building on this very good agreement between the simulations
and measurements, we employ this understanding to investi-
gate the longer-range correlations (above 8 Å) probed by SAXS
and gain insights that were previously inaccessible.

Nanocluster composition from molecular dynamics

As the short-range correlations measured by XPDF and calcu-
lated using MD show good agreement, we can use the MD to
quantitatively investigate the composition and size distri-
bution of these nanoclusters. Some examples of 2–4 ion clus-
ters present in the MD simulations are shown in Fig. 3a–c.
These clusters were identified using our algorithm which stat-
istically analyzes the MD simulations (explained below in
detail). Despite variations in their spatial arrangements and
sizes, these clusters share common structural features: the for-
mation of solvent-separated ion pairs (SSIPs), where the hydro-
gens in the water molecules within the zinc solvation shell
interact with oxygen on the sulfate, as shown by the dashed
lines in Fig. 3a–c.

To gain a quantitative understanding of ZnSO4 nano-
clusters, we developed a clustering algorithm that identifies
ion nanoclusters based only on distance thresholds within
each MD snapshot. To ensure that our statistical analysis is
representative, we analyzed 1400 snapshots over a 14 ns trajec-
tory from the 1 M ZnSO4 MD simulation (each containing 70
Zn and 70 SO4 ions). The size distribution and composition of
these nanoclusters determined by this algorithm are shown in
Fig. 3d. The analysis reveals a highly polydisperse distribution
of nanoclusters from isolated ions up to 22-ion nanoclusters.
In Fig. 3d, the number fraction of ions with a particular cluster
size (isolated ions are defined as cluster size of 1), with the
ratio of ions that belong to Zn-rich, SO4-rich and balanced
nanoclusters shown by the colors. The average charge per
cluster size are shown in Fig. S8,† assuming a formal charge of
+2e for the Zn and −2e for SO4 ions. There is a higher number
of free Zn ions compared to SO4 ions (Fig. 3d). Even-numbered
clusters generally exhibit a balanced ratio of Zn to SO4 ions,

tending towards charge neutrality. Odd-numbered clusters and
larger clusters tend to be SO4-rich with an increasingly average
negative charge. Sulfate-rich nanoclusters are anticipated from
the literature due to sulfate’s flexible solvation shell and its
ability to form clusters through different mechanisms, such as
the equilibrium between bisulfate and sulfate.39–46

The clustering algorithm begins by selecting a zinc ion or
the central sulfur atom of a sulfate ion as the starting point
and identifying all neighboring zinc and sulfur within the
specified distance thresholds (vide infra). These ions are
grouped to form the initial cluster. For each ion added to the
cluster, the algorithm searches for the newly added ion’s
neighbors within the distance threshold and incorporates
these into the cluster. This process is repeated iteratively for
each newly added ion, expanding the cluster to include all con-
nected ions, and the algorithm terminates when no additional
neighbors are within the distance thresholds. After defining
the cluster with the zinc ions and sulfur atoms from SO4

2−

ions, solvating water molecules surrounding the zinc ions and
the oxygen atoms bonded to the sulfur atoms are incorporated
into the cluster. The distance thresholds are Zn–S (6.4 Å), S–S
(7.5 Å), Zn–Zn (6.6 Å), Zn–O(H2O) (3.1 Å) and S–O (1.51 Å) and
were chosen as the first minimum between the first two peaks
of their partial pair distribution functions of the MD simu-
lations (Fig. S3–S7†).48 The use of the first solvation shell as
the distance threshold is rooted in capturing the most signifi-
cant and relevant atomic correlations without overestimating
cluster connectivity, which might lead to unrealistic cluster
sizes. Importantly, variations (±0.3 Å) in these thresholds do
not significantly affect the results, demonstrating the robust-
ness of the algorithm. Note that for Zn–S the first peak (CIPs)
is not used for distance threshold as the coordination number
(0.01) is very small, indicative of negligible CIPs. Using the
first solvation shell as the distance threshold ensures that all
correlations within the range of significant atomic proximity
are included, even those that are transient or less enthalpically
favorable. We note this algorithm includes transient clusters
formed either through electrostatic or stochastic fluctuations.
Despite repulsive forces, the probability of finding a zinc-to-
zinc or sulfate-to-sulfate correlation within the defined dis-
tance threshold is non-zero, highlighting the role of entropy in
forming short-lived ion clusters.

While our work concludes that the majority of ions are in
clusters, previous studies using DRS found the majority of
ions were free; a comparison is provided in Table S2.†
Interestingly, these authors also reported CIPs, however, they
stated that the CIP fraction was an unresolved mixture of CIPs
and dynamically-retarded (‘slow’) water.24 The difference
between our conclusions and those of the DRS likely arise
because of differences in time scales probed. Dielectric spec-
troscopy probes ion dynamics in the 0.1–100 GHz regime,
corresponding to ∼10 ps to 10 ns timescales, while SAXS and
XPDF probes near-instantaneous (fs) structure, time- and
space-averaged over the measurement time and probed
volume. The nanoclusters observed with SAXS and character-
ized in our MD simulations have lifetimes much shorter than
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ns, therefore DRS is insensitive to the nanoclusters described
here. Furthermore, even if these nanoclusters are long-lived,
they could rotate too slowly and/or have a net dipole that is too
small to be detected by DRS.

Forward-simulating SAXS from clusters identified in MD

Compared with methods to interpret SAXS data that rely on
simple form factor models (shapes), here we used the atomic
positions within the nanoclusters identified from the MD
simulations to forward simulate the SAXS data. Initially we
forward simulated the SAXS profiles for isolated ions and each
nanocluster identified in the MD simulations (Fig. S10†). We
then compared the sum of the SAXS profiles calculated for all
ions/clusters in the MD simulations with the experimental
data, however we did not obtain a good agreement as shown in
Fig. 3e. The MD-derived nanocluster size distribution overesti-
mated the cluster sizes resulting in a shoulder at lower q
values in the SAXS profiles (Fig. 3e). Possible causes for this
discrepancy are the accuracy of the force field used in the MD
simulations or limitations in the nanoclustering algorithm.

As the experimental XPDF results (Fig. 2) align well with the
MD results, we are confident of the reliability of the nano-
cluster’s short-range structure. Therefore, the MD nanocluster
configurations provide an exciting opportunity to interpret the
SAXS data without the need of a model requiring assumptions
regarding the shape, polydispersity or atomic positions of
atoms within nanoclusters. To better understand how clusters
of each size contribute to the SAXS data, we created average
scattering curves for nanoclusters of the same ion count. We
note that a wide range of nanocluster sizes are present, which
could be defined by a variety of parameters such as correlation
length, volume, geometry or radius of gyration; therefore, we
define nanoclusters by their ion count for simplicity. Note, we
report the size range (electron weighted radius of gyration) for
different cluster ion counts based on the atomic positions
determined by the MD in Table S3.†

Here we first forward-simulate the SAXS for each unique
nanocluster configuration obtained from the MD simulation
from the nanocluster’s specific arrangement of atoms. Then,
these individual SAXS profiles were averaged for nanoclusters

Fig. 3 Schematic showing a few examples of (a) 2-ion Zn(H2O)6SO4, (b) 3-ion (Zn(H2O)6)2SO4, (c) 4-ion (Zn(H2O)6)2(SO4)2 clusters. Dark gray
spheres represent zinc ions, orange spheres represent sulfur ions, red spheres represent oxygen atoms, and light pink spheres represent hydrogen
atoms. Dashed lines show interactions of oxygen on the sulfate with hydrogens in water molecules in the zinc solvation shell. (d) Statistical analysis
of simulated clusters in 1 M ZnSO4 solution using our clustering algorithm based on distance thresholds. The x-axis is the cluster size (number of
ions in each cluster) while the y-axis represents the normalized probability of finding a Zn or SO4 ions in each cluster size. This normalization is cal-
culated by dividing the number of ions in clusters of a specific size by the total number of ions in all clusters, thereby reflecting the relative abun-
dance of each cluster size. Gray, orange, and purple bars indicate the fraction of ions that belong to clusters rich in Zn2+, rich in SO4

2−, and charge-
balanced, respectively. Another representation of these data is given in Fig. S9.† (e) Small-angle X-ray scattering data of 1 M ZnSO4 in water com-
pared with the forward simulated SAXS profile calculated from the sum of all nanoclusters from the MD simulations (d) with a scaling factor
accounted for the total number of scatters in the probed volume. This poor agreement motivated the method described below.
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with the same ion count to generate an ensemble SAXS pattern
for that ion count (Fig. S10†). Examples of the calculated SAXS
profiles are given in Fig. 4, where the intensity of these simu-
lations has been scaled to the experimental SAXS data. This
qualitative analysis reveals that smaller nanoclusters, specifi-
cally those with three ions, model the high-q region (corres-
ponding to small cluster sizes) reasonably well but inade-
quately model the low-q region (corresponding to larger cluster
sizes) of the experimental SAXS profile. Similarly, larger nano-
clusters agree with the low-q region but do not adequately rep-
resent the high-q region. Nanoclusters containing four ions
exhibit excellent agreement with the experimental data across
a broader q range, with some deviation at higher q. Whilst
nanoclusters with an ion count of 4 can adequately fit the
experimental data, this overlooks the broader complexity
inherent in the system. This simplification can lead to incom-
plete conclusions about the nature of the interactions and

structures present, which in turn can inhibit our ability to
understand and thus predict behavior.

To best relate the experimental SAXS to the cluster size dis-
tribution, we fitted the experimental data using a weighted
sum of these average SAXS profiles for each cluster size
(Fig. S10†). In SAXS, the intensity of a scattering curve is pro-
portional to the number density of scatterers. Thus, the fitted
weight of each SAXS profile is proportional to the number
density of nanoclusters of the corresponding size within the
experimental ZnSO4 solution. At first, the distribution of
weights was constrained in the fit to a predetermined Schulz-
Zimm distribution (Fig. S11†). However, a variety of nano-
cluster distributions may result in good fits. To better explore
the parameter space and account for many possible fits, we
employed a Monte Carlo Markov Chain (MCMC) method
implemented via the Differential Evolution Adaptive
Metropolis (DREAM) algorithm. This MCMC method enabled

Fig. 4 Average SAXS forward simulations from the SAXS profiles of each cluster configuration identified in the MD containing (a) 3, (b) 4, (c) 5, (d) 6,
(e) 7, and (f ) 8 ions. The pink markers represent the experimental SAXS profile for 1 M ZnSO4 solution, the green dashed line represents the forward
simulated average SAXS profile for each cluster ion count, the gray dotted line represents the fitted constant background and the black line rep-
resents the overall fit (cluster + background). Note that small clusters, such as clusters with ion count of 3 fit the high q region well, and larger clus-
ters with ion count more or equal to 5 fit the low q region well, highlighting that a distribution of cluster sizes is necessary to capture the experi-
mental data. (As q is roughly inversely proportional to the cluster size, the low and high q region correspond to large and small clusters respectively.)
The radius of gyration for each cluster ion count as well as the standard deviation is given in Table S3.†
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us to sample from a variety of cluster size distributions that
may fit the experimental SAXS data.49,50 In this MCMC
method, the weight of each cluster size’s average scattering
profile was allowed to independently vary, and the MD-derived
cluster size distribution served as an initial distribution of
weights to initialize each Markov chain. This approach pro-
duced a well-converged posterior distribution with excellent
agreement with the experimental SAXS data, as shown in
Fig. 5a. Note that the MCMC forward simulation was done
with 120 MD snapshots rather than with 1400 snapshots for
efficiency. However, the distribution of the 120 snapshots is
representative of the 1400 snapshots (Fig. S12†).

As seen in Fig. 5 and Fig. S11,† we consistently observed a
wide distribution of nanoclusters and the absence of large
nanoclusters (>10-ion clusters), irrespective of the approach
used to fit the SAXS data. In Fig. S11,† we explored different
fitting methods, including Levenberg-Marquardt optimization
with weights derived from a Schulz-Zimm distribution
model,51–53 and a direct fitting approach based on a modified
MD cluster size distribution. While these approaches provided
excellent fits, the MCMC method demonstrated greater flexi-
bility by accounting for a broader range of possibilities,
offering a statistically robust distribution of solutions. Based
on this, we consider the MCMC method implemented through
DREAM to be a reliable approach for exploring potential fits to
SAXS data that may not be uniquely described by a single
model such as directly using the MD or a Schulz-Zimm distri-
bution. We encourage the independent validation of our meth-
odology on other systems.

The shaded region in Fig. 5b indicates the posterior distri-
bution of probable fits, illustrating that multiple ion cluster
distributions can adequately fit the SAXS data, especially for

nanoclusters smaller than 6 ions where the possibilities/error
bars are relatively wide. Despite variations between the MD
and the resulting distribution of fitted weights from the
DREAM analysis (Fig. 5b and Fig. S13†), the distribution deter-
mined by MD generally falls within the posterior distribution
for nanocluster sizes up to 6 (Fig. 5b). While MD simulations
predict the presence of large nanoclusters, the experimental
SAXS data (low q region) show that these nanoclusters are un-
likely to form in significant quantities, shown in Fig. 5b.
Meanwhile, nanoclusters with ion counts of 3 and 4 are the
most common nanocluster size, as evidenced by their larger
probabilities in the posterior distribution (Fig. 5b), suggesting
that these configurations may be energetically favorable.
Further investigation into the thermodynamics of nanocluster
formation is needed to fully understand the preferential for-
mation of certain nanocluster sizes.

In addition, we forward-simulated the G(r) for both the
MCMC and MD cluster size distributions. As shown in Fig. S14,†
G(r) is not sensitive to differences in these two different cluster
size distributions. This insensitivity explains why determining
cluster size distributions solely based on MD and experimental
G(r) is challenging. The variety of size distributions that ade-
quately fit the experimental data highlights the inherent com-
plexity in modeling solutions with polydisperse nanoclusters—
dynamic arrangements exhibiting a wide range of sizes, geome-
tries, and compositions. This polydispersity arises from thermo-
dynamic and kinetic factors driving the formation of diverse
nanocluster populations, emphasizing the inadequacy of sim-
plistic models that assume uniformity in nanocluster character-
istics. Importantly, based in the MD these nanoclusters are
short-lived, existing transiently on ∼picosecond timescales,
further underscoring the dynamic nature of these systems.

Fig. 5 (a) Small angle X-ray scattering data of 1 M ZnSO4 in water (shown in pink), overlaid with the fitted SAXS profile (black line). The fit was gener-
ated through a weighted sum of averaged simulated SAXS curves for each cluster size. Weights were fitted using a Monte Carlo Markov-chain algor-
ithm (25 chains, 50 000 steps). (b) Comparison of the cluster size distribution (number of zinc and sulfate ions in each cluster) obtained from MD
simulations and most probable cluster size distribution from fitting the SAXS data using the Monte Carlo Markov-chain algorithm. The shaded region
indicates the range of the posterior distribution of probable fits. Here, we do not show clusters with ion counts above 10; the full distribution is
shown in Fig. S13.†
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(Zn(H2O)6)x(SO4)y ion clusters modify the transport properties

Nanoclusters have a direct effect on the liquid’s properties,
especially ionic conductivity.1 In a previous study, we found
that local ion pair interactions in ionic systems can be quanti-
tatively correlated to macroscopic properties such as ionic con-
ductivity and self-diffusion coefficient.54 To understand the
effect of ion correlations on transport, we calculated the ionic
conductivity, diffusivity, and inverse Haven ratio from the MD
simulations. The ionic conductivity of a 1 M solution was cal-
culated using both the Nernst-Einstein (sNE) and Einstein (sE)
relations:

σNE ¼ e2

kBT

XN
i¼1

ρiqi
2Di ð1Þ

σE ¼ 1
6kBTV

lim
t!1

d
dt

Xni
i¼1

Xnj
j¼1

qiqj ½riðtÞ � rið0Þ�½rjðtÞ � rjð0Þ�
* +

ð2Þ

where e is the elementary charge, kB is the Boltzmann
constant, T is the temperature, N is the number of different
species in the mixture, ρi, qi, and Di are the number density,
charge and diffusivity of ion species i, V is the system
volume, and ri(t ) is the center of mass position of species i at
time t. The diffusivity can be calculated using the Einstein
relation:

Di ¼ 1
6
lim
t!1

d
dt

1
ni

Xni
i¼1

riðtÞ � rið0Þj j2 ð3Þ

where ni is the number of individual species i.
Based on MD simulations, the diffusivity was found to be

6.4 × 10−10 and 9.1 × 10−10 m2 s−1 for Zn and SO4 ions, respect-
ively. The system size correction was applied using the Yeh
and Hummer method55,56 with the calculated viscosity. Using
these values, sNE was found to be 23.2 S m−1. When the
Einstein relation is used, which includes ion correlations, the
sE was found to be 18.7 S m−1, lower than sNE by about 20%.
These values are higher than the experimental conductivity of
4.42 S m−1, obtained using EIS (Fig. S15†). The experimental
conductivity is consistent with previously reported values in
the literature.57,58 This discrepancy between MD and experi-
mental results is similar to our prior studies, where the diffu-
sivity (probed experimentally over smaller length scales) shows
good agreement but the conductivity (probed experimentally
over larger length scales) was found to be overestimated in
simulations.59 Further studies to validate the force field with
experimental transport measurements, such as viscosity and
NMR diffusion studies, will shed further light on whether this
discrepancy is a physical effect, such as solvation drag effects.
The ratio sE/sNE is called inverse Haven ratio (or ‘degree of
uncorrelated ion motion’), which is a measure of the ionicity
of the electrolyte. For an ideal electrolyte without any ion corre-
lation the inverse Haven ratio equals one, while for the 1 M
ZnSO4 solution the inverse Haven number was found to be
0.81, indicating that ion correlations decrease conductivity but
not dramatically. Furthermore, the apparent transference

numbers were determined from the MD to be 0.41 for Zn2+

and 0.59 for SO4
2−, reflecting their relative contributions to

ionic transport in the electrolyte.
Experimentally, the diffusivity of Zn2+ measured using

PFG-NMR was slightly lower, at 4.24 × 10−10 m2 s−1, compared
to the MD-calculated value (6.4 × 10−10 m2 s−1). This difference
may be due to more clusters or longer-lived transient clusters
in the real system, therefore restricting ion mobility. This
interpretation could be connected to higher probability of
smaller clusters observed experimentally via SAXS compared to
calculated in the MD simulations (Fig. 3e). The difference in
diffusivity between experiment and simulations, combined
with the difference between calculated sNE and sE, suggests
that the ions are weakly correlated, and the clusters are rela-
tively short-lived. Rather than a purely hopping mechanism,
ion transport in zinc sulfate electrolytes involves a combi-
nation of vehicular and hopping motion. While zinc ions move
with their hydration shell (first solvation shell containing 6
water molecules) via vehicular motion, the interactions
between zinc and it’s second solvation shell are transient,
similar to the hopping mechanism proposed for sulfate ions.
This interplay allows for efficient ion migration, where ions
dynamically migrate between transient clusters, preserving
high conductivity.

As shown in our previous studies, sE can be divided into
contributions from different correlations.60,61 The same ana-
lyses were carried out in the current study and the results are
shown in Table 1. As indicated by the Einstein relation and
illustrated in Fig. 6a to aid interpretation, for ions with like
charges, an overall negative or positive contribution to the
Einstein relation corresponds to the motions of these ions
being anticorrelated or correlated, respectively. Here we find a
negative contribution for the zinc ions (Zn–Zn); this may be
due to coulombic repulsion of like ions. Meanwhile we hypoth-
esize that the small positive contribution to the Einstein
relation observed for the sulfate ions (SO4–SO4) may be due to
the lower coulombic repulsion between sulfate ions due to
their delocalized charge and therefore weaker interactions
and less specific correlations and/or sulfate’s ability to form
transient clusters with protons. We observe a negative contri-
bution to the Einstein relation for ions with opposing charges
(Zn–SO4).

As shown in Fig. 3d and 6b, the results of our transport
measurements and calculations can be explained by our obser-
vation of the formation of nanoclusters which on average tend
to be sulfate-rich together with some isolated zinc ions.

Table 1 Calculated contribution to Einstein ionic conductivity relation
sE for 1 M ZnSO4 solution based on MD simulation

Contribution to σE (S m−1) Motion type

Zn 9.573
SO4 13.573
Zn–Zn −3.227 Anticorrelated
Zn–SO4 −1.673 Correlated
SO4–SO4 0.490 Correlated
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Overall, the negative contributions to the ionic conductivity
suggest that the Zn–Zn and Zn–SO4 correlations reduce the
number of free, independently moving charge carriers, thereby
lowering the overall ionic conductivity.

The residence times of ions/molecules in the first and
second solvation shell of zinc and sulfate ions provide insights
into overall transport processes. The results are summarized in
Table 2 and illustrated in Fig. 6c. Consistent with our model of
hydrated zinc and sulfate units forming nanoclusters, we
observe long residence times for zinc’s first solvation shell

containing water as well as zinc’s second solvation shell con-
taining sulfate ions. For water molecules in zinc’s first sol-
vation shell, the residence time correlation function almost
does not decay during the simulation time scale, indicative of
a strong and stable hydration shell around Zn2+ containing 6
water molecules; this structure has been widely
reported.26,34–38 Furthermore, the 2nd shell Zn–SO4 solvation
shows significant long lifetimes (∼0.2 ns) with a coordination
number of 2.4. Note, whilst the Zn–O(SO4) interaction in the
first solvation shell also shows a relatively long lifetime (∼1 ns)

Fig. 6 (a) Illustration to aid the interpretation of negative or positive contributions to the ionic conductivity determined by the Einstein relation (sE)
given in Table 1, which depends on the ion’s charge (where stripped and clear are used to represent different charges) and direction of travel
(denoted by the arrow). This schematic depicts the overall average contribution of ions in the simulation box, not individual atom pairs. (b)
Normalized probability of finding isolated or clustered zinc or sulfate ions. The normalization is calculated by dividing the number of zinc or sulfate
ions in each state by the total number of zinc and sulfate ions in the system. (c) Illustration showing the coordination number (CN), residence time (τ)
and expected motion calculated from the MD simulations and given in Table 2 for [ion] : [first solvation shell] : [second solvation shell] for [zinc] : [
water] : [water] (left), [zinc] : [water] : [sulfate] (center) and [sulfate] : [water] : [water] (right). Zinc ions, sulfate ions and water molecules are rep-
resented by gray circles, orange circles and black arrowheads (> with the apex representing the oxygen) respectively, with the water molecules
oriented within the solvation shell to represent their bonding. The turquoise gradient color represents the lifetime of interactions within the first and
second solvation shells based on the (discontinuous) scale bar. Darker turquoise corresponds to long residence times (and thus signifies strong sol-
vation and a tendency for vehicular motion) meanwhile lighter turquoise corresponds to short residence times (and weak solvation and a tendency
for hopping motion). The associated values are provided in Table 2.
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compared to other interactions, the coordination number is
very small (0.01).

Using the measured diffusivity and the calculated residence
times, the distance an ion can travel during the period of the
residence time was calculated and included in Table 2. It is
clear that Zn2+ and its first hydration shell can travel a distance
much longer than the cluster size indicated by the corres-
ponding cutoff distance before the cluster breaks, suggesting a
vehicular transport mechanism, where the ion and its
solvation shell move together through the electrolyte.60,62 On
the contrary, other interactions are more likely to transport
through a ‘hopping’ mechanism, involving frequent breaking
and reforming of interactions. We note that the SAXS reveals
these nanoclusters are present but provides no insight into
their lifetimes.

The presence of some of the ions within nanoclusters
(Fig. 6b) leads to a 20% reduction in Einstein conductivity
compared to the Nernst-Einstein conductivity, indicating that
extensive and varied nanoclusters (Fig. 5) modestly hinder ion
transport. Their transient nature prevents a significant decline
in overall conductivity. These findings further reinforce the
role of transient ion clusters in mediating ionic transport.
While the strong zinc–water interaction stabilizes the ion’s
local environment, the dynamic exchange of both hydrated
zinc and sulfates between solvation shells contributes to the
continuous evolution of clusters and enables efficient ion
transport.

Overall, this analysis reveals that the complicated clustering
structure of the ZnSO4 electrolyte introduces significant het-
erogeneity into the dynamics and transport behavior. While
transient ion clusters reduce diffusivity and ionic conductivity
compared to ideal systems, their short-lived and dynamic
nature ensures that ions retain significant mobility, enabling
effective charge transport.

Conclusions

By integrating X-ray scattering measurements (SAXS, XPDF),
MD simulations, forward scattering simulations and diffusivity
measurements, we achieve a holistic understanding of the

size, charge, composition and transport behavior of ion nano-
clusters in zinc sulfate electrolytes. We find that zinc main-
tains its hydration shell and forms a distribution of nano-
clusters with sulfate, which appears to be independent of con-
centration. These nanoclusters have a variety of sizes, compo-
sitions and geometries. The transient nature of these nano-
clusters allows efficient transport mechanism through the
breaking and forming of nanoclusters (‘hopping’ mechanism).
Our synergistic approach using measurements, simulations
and analysis enables superior insights to be obtained from the
measurements, compared to typical SAXS studies.

We envision that the approach established here will serve
as a foundation for future studies to experimentally investigate
nanocluster properties, such as dynamics or ion pairing. By
using our methodology to interrogate how the nanocluster’s
properties vary with conditions (such as concentration, temp-
erature or pH), and strategies to improve performance, such as
the use of additives, we can meaningfully understand how the
presence of nanoclusters affects battery performance, such as
cycling stability and overpotentials. In addition, our method-
ology is applicable to other systems where nanometric aggre-
gates are formed, for example other electrolytes or perovskite
solutions. A deeper understanding of the nature of nano-
clusters in electrolytes will facilitate more comprehensive
studies on ion transport, electronic structures, solvation pro-
cesses and interfacial mechanisms; all of which are essential
for the rational design of superior electrolytes for a wide range
of applications.

Experimental procedures
Solution preparation

Aqueous zinc sulfate solutions were prepared from dried zinc
sulfate heptahydrate (ZnSO4·7H2O, 99% and ≥99.95% metals
basis) and water (MilliporeSigma Milli-Q Direct purification)
by mass. The zinc salt was dried overnight under vacuum at
80 °C.

Table 2 Calculated cutoff distance, the distance where the corresponding G(r) shows a minimum between two maxima, coordination number
(CN), residence time (τRT) and travel distance within the residence time for molecules/ions within zinc and sulfate’s first and second solvation shells
based on MD simulations of a 1 M ZnSO4. The central element is listed first with the parent molecule of elements given by subscript. The expected
motion type is classified as either ‘vehicular’ or ‘hopping’ based on the travel distance relative to the cutoff distance. Here, we define vehicular
motion as cases where the travel distance is less than twice the cutoff distance, indicating that the ion/molecule primarily moves within its solvation
shell. In contrast, hopping motion is assigned when the travel distance exceeds twice the cutoff distance, suggesting movement between solvation
shells or transient clusters

Solvation shell Cutoff (Å) CN τRT (ns) Travel distance (Å) Motion type

Zn : O(SO4) 1st 3.1 0.01 0.989 17.74 Vehicular
2nd 5.5 2.39 0.212 8.22 Hopping

Zn : O(H2O) 1st 3.1 5.99 ≫14 ≫3.1 Vehicular
2nd 5.2 15.50 0.041 3.62 Hopping

O(SO4) : H(H2O) 1st 2.7 3.79 0.007 1.84 Hopping
2nd 4.7 24.61 0.034 4.01 Hopping
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Small angle X-ray scattering (SAXS)

SAXS measurements of the electrolyte solutions were per-
formed at the ASWAXS facility (15ID-D) of NSF’s
ChemMatCARS (Sector 15) at the Advanced Photon Source,
Argonne National Laboratory. Five measurements (exposure
time 1 s) were taken at an X-ray energy of 9.16 keV using a
Pilatus 3X 300k detector at a sample-detector-distance of
0.54 m. The electrolyte solutions were measured in 1 mm
quartz capillaries. For the background subtraction and absol-
ute scale normalization, measurements were performed of an
empty capillary tube and glassy carbon, respectively. For trans-
mission corrections, transmission values were determined
using photodiode mounted to the beamstop. The data were
corrected for transmission, sample thickness, and normalized
to give absolute intensities.

X-ray pair distribution function

X-ray total scattering of the electrolyte solutions was measured
at the Advanced Photon Source, Argonne National Laboratory
at beamline 11-ID-B. These measurements were performed at
an X-ray energy of 58.6 keV (0.2116 Å) with a PerkinElmer
XRD1620 amorphous silicon detector placed 30.1 cm from the
sample. The electrolyte solutions were measured in sealed
2 mm quartz or glass capillaries for a total exposure time of
1800 s per sample under ambient temperature and pressure. A
diode mounted on the beamstop was used to measure the
X-ray transmission, which was corrected for dark current.
Samples were monitored for beam damage by alternating
measurement positions and exposure times. Polarization and
geometric corrections were applied to the raw data, which was
reduced using the pyFAI package.63 The scattering from the
empty capillary was subtracted from the sample measure-
ments. PDFGetX264 was used to obtain the S(q) and pair distri-
bution function in G(r) space, with corrections for sample self-
absorption, detector oblique incidence, and Compton and
Laue scattering.

SAXS forward simulation

Forward scattering simulations of isolated clusters was carried
out using the IsoScatter code available on github (https://
github.com/tchaney97/IsoScatter). This code uses the Debye
equation to calculate scattering intensity:65

ISAXSðqÞ ¼
Xn
i

Xn
j

fifj
sinðqrijÞ

qrij
ð4Þ

where n is the number of atoms in the cluster, f is the q-depen-
dent atomic form factor, q is the magnitude of the scattering
vector, and rij is the interatomic distance. Atomic form factors
were calculated from tabulated values.66 Derivation of the
Debye equation can be found in literature.67 We note that the
Debye equation assumes isotropy of the system which is valid
in our solution phase measurements. SAXS scattering curves
of individual clusters was arbitrarily scaled to best fit the
experimental data. For later fitting, all clusters of a given size
(defined by the total number of Zn2+ and SO4

2− ions within

the cluster) were forward simulated and the average I(q) profile
was generated for each cluster ion count.

X-ray pair distribution function forward simulation

XPDF simulations of isolated clusters was also carried out
using the IsoScatter code. We again calculate the scattering
intensity I(q) using the Debye equation up to 30 Å−1. Then we
normalize the I(q) by the Laue scattering to obtain the struc-
ture function S(q):

SðqÞ ¼ IðqÞ
N fh i2 �

f 2h i � fh i2
fh i2 ð5Þ

where N is the number of atoms, f is the q-dependent atomic
form factor, 〈f2〉 is the square of the average form factor, and
〈f2〉 is the average of the squared form factor.

To calculate the reduced pair distribution function G(r), we
do the sine Fourier transform of the reduced structure
function:

GðrÞ ¼ 2
π

ðqmax

0
q½SðqÞ � 1�LðqÞ sinðqrÞdq ð6Þ

Here qmax is the maximum q value and we used 30 Å−1, and
L(q) is the Lorch function to account for termination effects:

LðqÞ ¼
sin qπ

qmax

� �
qπ
qmax

ð7Þ

Fitting of SAXS data with Monte Carlo Markov Chain (MCMC)
method

In order to explore the full parameter space of cluster size dis-
tributions that could produce the observed SAXS data, we
employed an MCMC approach using the DREAM (Differential
Evolution Adaptive Metropolis) algorithm implemented in the
pyDREAM package.49,50 Weights for each cluster size were initi-
alized as independent variables with a prior distribution
defined by a log–normal centered about the number of clusters
found in the MD simulations. Additionally, a constant back-
ground offset was included as a free parameter. The likelihood
function was defined as the probability of each I(q) point pro-
duced by the weighted sum of simulated SAXS curves falling
within a normal distribution of intensity with sigma = 1 × 10−4

cm−1 about each experimental I(q) point. The DREAM algor-
ithm was run with 25 chains taking 50 000 steps. All chains
showed excellent convergence, as indicated by a Gelman-
Rubin statistic of 1.001. A burn-in period defined as the first
20% of steps was discarded and the remaining posterior distri-
bution was then used for analysis.

Pulsed-field gradient nuclear magnetic resonance (PFG-NMR)
diffusion measurements

The 1H and 67Zn PFG-NMR was performed at 25 °C on a
600 MHz NMR spectrometer equipped with a 5 mm liquid-
NMR probe (Doty Scientific, USA) at Larmor frequencies of 2π
× 599.782 and 2π × 37.527 rad MHz, respectively, with a
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bipolar gradient stimulated echo sequence (Dbppste sequence
in VNMRJ, Agilent, USA). The gradient length (δ) was fixed
4 ms for all measurements and the diffusion delay (Δ) for 1H
was 50 ms while it was 5 ms for 67Zn due to the fast nuclear
relaxation of 67Zn nucleus. Diffusion coefficient (D) was deter-
mined by fitting the PFG-echo profile obtained with 16 equal
steps as a function of gradient strength with the Stejskal-
Tanner equation

IðgÞ ¼ Ið0Þ �DðγδgÞ2 Δ� δ

3

� �� �
ð8Þ

where I(g) and I(0) are the echo height, i.e. integrated area at
the gradient strength of g and 0, respectively. γ, δ, and Δ are
gyromagnetic ratio of observing nucleus, gradient length, and
the distance between the two bipolar-gradient pairs.

Electrochemical impedance spectroscopy

Ionic conductivity was measured at room temperature using
electrochemical impedance spectroscopy (EIS) within a custom
glass cell containing two Pt electrodes. The cell constant was
measured using 0.1 M and 0.01 M KCl solutions. EIS was
measured from 100 kHz to 10 Hz, and the solution resistance
was extracted from high-frequency intercept of the Nyquist
plot.

Modeling

All the MD simulation in this work was performed using the
package LAMMPS.68 Three species are included in the simu-
lation system: zinc (Zn2+), sulfate (SO4

2−) and water. The force
field of Zn2+ were taken from the literature which were opti-
mized for aqueous solution simulation.69 The force field of
sulfate ions are based on Sadra Kashefolgheta’s work.70 Its
Lennard-Jones potential parameters are optimized against
experimental hydration free energies. Electronic structure cal-
culations at the B3LYP/aug-cc-pvdz level were carried out using
Gaussian software71 on an isolated SO4

2−. The electrostatic
potential surface of the optimized structure from quantum
mechanics was fitted using the restrained electrostatic poten-
tial (RESP) method72 and the atomic partial charges were
derived for MD simulation. The SPC/Fw water model73 was
applied for water molecules. These force field models were
validated in our previous publications on the same or similar
systems.74,75

Three salt concentrations, 0.1 M, 0.5 M and 1 M, respect-
ively, were studied. The box compositions are shown in
Table 3. Periodic boundary conditions were applied in all three
dimensions. The long-range electrostatic interactions, with a
real space cutoff of 12 Å, were calculated based on the par-
ticle–particle particle–mesh (PPPM) method.76 The same
cutoff was used for van der Waals interactions and a tail cor-
rection was applied.77 The systems were first simulated for 2
ns in the isothermal-isobaric (NPT) ensemble at 1 atm
pressure (isotropic volume fluctuations) and 298 K. The equili-
brated simulation boxes were simulated for 14 ns as the pro-
duction simulation in the canonical (NVT) ensemble at the

same temperature. The Nose–Hoover thermostat78 and the
extended Lagrangian approach79 were applied to control the
temperature and pressure, respectively. Five independent tra-
jectories were generated using different initial atomic vel-
ocities. The time step for all the simulation was 1 fs and snap-
shots were saved every 1000 steps.
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