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Uncovering collaboration and knowledge areas in
lithium-ion battery recycling†

Simon Schlehuber, *a André Hemmelder a and Stephan von Delft a,b

The ongoing adoption of lithium-ion batteries (LIBs) in electric vehicles (EVs) and portable electronics has

created an urgent need to address the looming challenge of managing the drastic increase in end-of-life

batteries through effective recycling solutions. However, the battery recycling landscape remains

complex due to the lack of a dominant recycling solution, primarily attributed to differences in battery

chemistries and designs. This study contributes a comprehensive patent analysis in this field to track the

evolving technological landscape across three time periods, spanning from 1990 to 2024, identify emer-

ging trends and guide strategic decision-making in the rapidly growing battery recycling market. The

patent analysis is structured as follows: first, a co-occurrence network analysis of patent assignees is per-

formed to elucidate collaboration in the field. Second, key knowledge areas in LIB recycling are identified

through clustering and subsequent natural language processing of co-occurring Cooperative Patent

Classification (CPC) class networks. Third, these results are consolidated into two-mode networks to link

each patent assignee to its knowledge stocks. The findings reveal a notable lack of international collabor-

ation, which is particularly problematic for Western countries that currently hold minimal presence in the

patent landscape. The results also assist in pinpointing the knowledge stocks of different patent assignees

and may facilitate the discovery of new research topics and potential collaborators or competitors.

Broader context
In the face of climate challenges, lithium-ion batteries (LIBs) emerge as a pivotal technology for advancing clean energy solutions and accelerating the tran-
sition to sustainable economies. As global demand for LIBs soars, the environmental and economic implications of their end-of-life management pose sub-
stantial challenges. The ability to effectively recycle LIBs is not only crucial for mitigating resource scarcity and pollution but also for ensuring a resilient
supply chain. Despite the essential role of recycling, the current landscape lacks comprehensive strategies that integrate technological, economical and colla-
borative dimensions. In this context, data science has become indispensable for sustainable battery management: it offers practical approaches to track tech-
nological developments, monitors how materials are managed across the battery lifecycle, and highlights areas where incremental improvements in recycling
or policy could be most effective. By combining data science methods with patents – a rich yet underutilised source of information – this study reveals critical
insights into LIB recycling trends and innovations. By mapping global collaboration networks and pinpointing key areas of expertise, our research uncovers
opportunities to foster international partnerships and drive forward-thinking policies. This holistic approach is essential for bridging the gap between
current practices and future needs, ultimately paving the way for effective and sustainable battery lifecycle management. These insights hold potential for pol-
icymakers, industry leaders and researchers committed to the sustainable transformation of the transport sector.

1. Introduction

Anthropogenic climate change is widely recognised as one of
the most urgent challenges of our time and its consequences
are already affecting ecosystems, economies and societies
around the world.1,2 Its direct impacts, such as extended

droughts, record-breaking floods, destructive forest fires and
rapidly melting ice caps, underscore the need for immediate
action.3 In response, governments all over the world have com-
mitted to ambitious goals, including limiting the global temp-
erature increase to below 2 °C compared to pre-industrial
levels,4,5 achieving net-zero emissions by utilising clean
energy,6–8 implementing carbon taxes9–11 and transitioning
from a linear to circular economy.12–14

Battery energy storage, particularly the use of lithium-ion
batteries (LIBs), is a critical technology that can accelerate the
realisation of these goals.15 Different types of LIBs are key for
decarbonising important sectors such as mobility, stationary
storage and portable electronics due to their efficiency and
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scalability.16–18 As a result, demand for LIBs is growing
rapidly, with projections estimating a significant increase in
global demand to up to 3500 GWh by 2030.19,20 However, this
surge presents both opportunities and challenges.

Upstream, the growing demand for LIBs is putting
immense pressure on the supply chains for critical raw
materials such as lithium, cobalt and nickel.21,22 Although
global lithium reserves are abundant,23 the exploration and
construction of new mines is trailing behind demand due to
lengthy regulatory processes and environmental concerns.24 In
addition, geopolitical conflicts like those affecting nickel
supplies from Russia25 and ethical issues, such as child labour
in some cobalt mines in the Democratic Republic of
Congo,26,27 further complicate the stability of the supply
chain. The International Energy Agency (IEA) estimates that
approximately 50 new lithium mines, 60 nickel mines and 17
cobalt mines would need to be established worldwide to meet
projected demand by 2030.28

Downstream, the disposal and recycling of LIBs pose sub-
stantial environmental and economic challenges.29,30 It is pro-
jected that more than 11 million tons of spent LIBs will
accumulate worldwide by 2030, representing a major source of
pollution and a potential threat to public health.31 Addressing
this issue is critical to minimising the negative impacts of
battery waste and promoting sustainability.

Given these complex upstream and downstream challenges,
LIB recycling emerges as a pivotal solution for addressing the
environmental impact of battery waste. Efficient recycling of
LIBs can alleviate raw material shortages, reduce pollution and
improve supply chain resilience by decreasing resource depen-
dencies. This aligns with the broader goals of a circular
economy, supporting climate action goals effectively.32–36

Consequently, research on LIB recycling has gained momen-
tum in academic, industry and policymaking, underscoring
the need for innovative and comprehensive strategies to
manage the full lifecycle of batteries in a sustainable way.
Prior research has focused on incrementally improving specific
steps in the value chain of important recycling technologies
(e.g. hydrometallurgical, pyrometallurgical or direct
recycling),37–41 designing LIBs for recycling from the get-go,42

or reviews focused on summarising major current
findings.43–46 However, patents have hardly been considered in
LIB recycling research. This is a problem because patents, as a
major source of information on technological development
and a common proxy for innovation activity, hold huge poten-
tial for providing insights into emerging trends, identifying
key technological advancements and uncovering competitive
dynamics within the industry.47 Applying data science
methods to this rich patent landscape provides a systematic
and scalable approach to reveal such insights and better
inform the sustainable management of battery technologies.

To address this gap and support stakeholders in the battery
recycling landscape in their decision-making, this study ana-
lyses the extensive data from LIB recycling patents using a mul-
tidimensional approach. By examining global patent data
spanning over three decades, this research aims to uncover

critical insights into the evolution of LIB recycling, including
key knowledge areas, the collaboration between different
organisations and the specific knowledge stocks of patent
assignees involved in this field. This study claims three contri-
butions: first, it reveals the evolving landscape of LIB recycling
over different time periods, focusing on the distribution of
patents by country or region, key patent assignees and major
Cooperative Patent Classification (CPC) classes. Second, a tem-
poral analysis of patent assignee co-occurrence networks,
broken down by country and type of patent assignee (public
vs. private), sheds light on the intricacies of collaboration in
this sector. This will allow practitioners to better understand
the collaboration dynamics in the field and more specifically,
pinpoint key collaborators. Third, a temporal co-occurrence
network analysis of CPC classes is performed, followed by an
established clustering methodology to find central clusters. By
generating a set of central descriptive keywords using a natural
language processing method and then interpreting them
manually, this study identifies key knowledge areas in LIB re-
cycling. These findings provide an accessible overview of past
and present research foci and assist in decisions about future
battery recycling. Fourth, a temporal analysis of two-mode net-
works, linking major patent assignees to the knowledge clus-
ters they are most active in, offers insights into players’ techno-
logical priorities and strategic positioning. This may assist
battery researchers in academia and industry with finding
potential partners and identifying knowledge areas that are
currently overlooked.

2. Patent insights and technological
aspects of LIB recycling
2.1. Importance of patents in technological innovation and
research

Technological innovation is a key driver for social welfare and
long-term economic growth.48,49 In competitive market
environments, companies and universities seek to secure their
innovations, typically through safeguarding their intellectual
property.47 The patent system, established to encourage
research and development, enables this protection by granting
inventors exclusive and prohibitive rights to their inventions
for up to 20 years.50 Because patent rights are typically nation-
specific (with some pathways for streamlined international
protection, such as European patents or the Patent
Cooperation Treaty), companies and universities often file
patents in multiple countries to protect their inventions in the
relevant key markets.51,52 To avoid duplication bias, the
patents representing the same invention are grouped into
patent families.53

Notably, patents protect inventions rather than innovations,
as they only become innovations once applied and adopted – a
step that is not always achieved.54 In return for providing
monopolistic rights, patent systems require that patents are
openly published, making previously undisclosed intellectual
property accessible to the public.50 For this reason, some cor-
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porations may refrain from filing for patents, keeping their
intellectual property as trade secrets.55 Nevertheless, patents
remain an accessible and somewhat structured resource,
offering a unique opportunity for data collection and analysis.
Their rich information can inform decision-making for govern-
ments and other organisations by providing insights into tech-
nological trends and patterns.47 Although patents may not
capture all research and development activities in a field, they
still form a solid foundation for academic research.56 In fact,
around 80% of technical information on newly published
inventions is only available in patents.57

Various approaches to utilise and analyse the data ‘hidden’
in patents exist. Basic analyses often examine the trajectory of
patent applications in a field, key patent assignees, leading
countries, or the most important CPC classes.58 More
advanced approaches use methods such as co-citation analysis
(sometimes combined with link prediction),59 technological
impact factors,60 or natural language processing.61 Because
CPC classes form the foundation of this study, they are dis-
cussed in more detail in the following section.

2.2. Relevance of CPC classes in patent categorisation

Patents vary substantially in length, sub-structure and com-
plexity. The latter often arises due to the detailed nature of the
invention described in the claims.62 However, it can also be a
deliberate strategy to obscure information, preventing competi-
tors from fully understanding the patent and extracting valu-
able intellectual property for their own use.63 Additionally,
patents are frequently written in broad terms to encompass
and protect as much intellectual property as possible.64

To address this complexity and improve accessibility for a
broader audience, several classification systems have been
introduced to categorise patent documents based on their
technical field.65 The most notable of these are the
International Patent Classification (IPC) and the CPC. The
CPC system can be seen as an evolution of the IPC system and
was introduced jointly by the European Patent Office (EPO)
and the United States Patent and Trademark Office. Its goal
was to create a unified and internationally compatible system
for classifying technical documents.66

Due to their standardised and global applicability, CPC
classes provide an excellent basis for patent analyses.
They offer a consistent and concise framework for categorising
patents, making them particularly useful for techniques such
as co-occurrence network analysis and natural language
processing. This structured approach delivers valuable
insights into emerging and underexplored fields, such as LIB
recycling.

2.3 LIB technology and its recycling methods

To effectively interpret results from any patent analysis, it is
essential to first understand the technology under investi-
gation. This is particularly important for LIBs because of their
wide range of possible cell chemistries, use cases and recycling
methods.

At their core, all LIBs consist of two electrodes into which
lithium cations (Li+) can reversibly be inserted. Each electrode
is connected to a current collector to allow the flow of elec-
trons. Li+-ions move through the electrolyte, typically a mixture
of an organic solvent (e.g. ethylene carbonate–dimethyl car-
bonate mixture) and a lithium salt (e.g. LiPF6). To prevent
short circuits, enhance mechanical strength and provide
thermal stability, LIB cells also require a porous separator.
During discharge, Li+-ions are extracted from the negative elec-
trode (e.g. graphite) and inserted into the positive electrode
(e.g. LiFePO4 or Li(NixMnyCo1−x−y)O2). The process is reversed
during charging, with Li+-ions migrating from the positive
electrode back to the negative electrode, where they are
reinserted.29 In addition to the widely used cathode active
materials like lithium iron phosphate and lithium nickel cobalt
manganese oxide, other options include lithium cobalt oxide,
lithium manganese oxide and lithium nickel cobalt aluminium
oxide.67

Depending on the application, LIB cells are integrated into
complex systems, ranging from mobile phones to
electric vehicles.45 This variability in design makes uniform re-
cycling at the end-of-life particularly challenging, as battery
cells first need to be separated from other components before
critical materials such as lithium, nickel, or cobalt can be
recovered. Larger applications, such as those used in
electric vehicles, are often the most complex, as battery cells
are part of modules or packs that vary strongly across
manufacturers.68

There are three main types of LIB recycling technologies:
hydrometallurgical, pyrometallurgical and direct recycling.21

Due to the economic importance of cathode materials, re-
cycling efforts typically focus on these components.69 In hydro-
metallurgical recycling, end-of-life batteries must first be
mechanically pre-treated, which can include sorting, disassem-
bly and shredding.70 Due to the variety of battery designs, this
step can be quite complex.21 The battery materials are then
separated using a wet-chemical process, usually including
leaching, separation and purification.45 This process offers the
advantage of selectively extracting high-value metals with rela-
tively low energy consumption, although the chemicals
involved can pose substantial environmental risks.45 In pyro-
metallurgical recycling, the battery materials are melted at
high temperatures and reduced to extract metals such as
nickel and cobalt from the matte made up of alloys.44

However, in this process, lithium extraction is often challen-
ging.35 While pyrometallurgy is relatively straightforward and
less sensitive to variations in battery design, it is energy-inten-
sive and produces lower-purity metals.45 In contrast to other
recycling methods, direct recycling seeks to recover the
cathode material without reducing the metals, aiming to pre-
serve the structural integrity of the existing cathode material to
the highest possible extent. While this approach requires cus-
tomised processes for different cell chemistries, direct re-
cycling represents a promising alternative that could possibly
allow economically viable recycling of lower-value cathode or
even anode materials.33,36
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Each of these established recycling technologies has its
advantages and disadvantages and none of them can handle
all types of batteries or materials. It is therefore pertinent to
continue research and development of recycling technologies.

2.4. Patent analyses of LIB recycling

Recent years have seen a growing number of studies applying
patent analytics to the battery recycling field, varying in scope,
methodology, and the specific aspects of LIB recycling they
address. Some studies examine battery recycling more broadly,
while others focus specifically on LIBs. To facilitate clear meth-
odological comparison and highlight the unique contributions
of the present study, an overview of the reviewed literature is
provided in Table 1.

Lee71 provides a patent analysis on battery recycling techno-
logies, focusing on China, South Korea and the United States,
with an emphasis on corporate patent trends. His study ident-
ifies the technological priorities of each country by analysing
each country’s top five patent assignees, using measures such as
top IPCs, citations per patent, patent impact index, technology
strength and patent family size. Baum et al.72 conducted a big
data analysis focused on both patents and journal articles to
provide an overview of techniques and trends for LIB recycling.
Their study analyses the types of LIB materials recycled, reviews

environmental and economic perspectives and provides an over-
view of established and planned recycling facilities as well as
their planned capacities. Lim and Sohn73 aim to identify future
technological convergence of batteries via link prediction of mul-
tiplex networks based on battery patents. They first modelled
three-layered multiplex co-occurrence networks representing
combinations of battery recycling, storage and safety, utilising
four established network models. After determining the best per-
forming multiplex network model, the corresponding network is
subjected to link prediction based on the exponentially weighted
moving average of pair similarities. New links are then clustered
via the Louvain clustering algorithm to characterise potential
technological convergence between different technological areas
represented by IPCs. Davis and Demopoulos74 review hydrome-
tallurgical recycling technologies for lithium nickel manganese
cobalt oxide battery cathodes, incorporating selected patents
alongside scientific literature. They conclude that hydrometallur-
gical recycling will be crucial moving forward, while emphasis-
ing the need to further develop direct recycling as a greener
alternative. Lin et al.75 offer a bibliometrics-based analysis of
emerging publishing and research trends in journal articles and
patents on the recycling of rechargeable batteries. In their study,
they provide several quantitative overviews, such as the most
influential authors, the highest cited journal articles and an

Table 1 Overview of core literature on patent data and LIB recycling

Source Aim of the study
Focus
on LIB?

Big
data?

Patent
focus? Methodology

Lee (2024)71 Analyses national and corporate patent
trends in battery recycling across Korea,
China, and the US

No Yes Yes Quantitative analysis of company patents using
IPC classification and statistical tools to map
trends in battery recycling by country

Baum et al.
(2022)72

Examines LIB material recycling trends
and facilities using patent and
publication data

Yes Yes No Bibliometric analysis of patents and
publications; categorisation by recycling method;
assessment of efficiency, economic/
environmental impact, and facility data

Lim and Sohn
(2024)73

Predicts technological convergence in Li-
based batteries through multiplex patent
network analysis

Yes Yes Yes USPTO patent data modeled as three-layer
multiplex IPC networks, with temporal
snapshots; network embeddings, link prediction,
and Louvain clustering for convergence analysis

Davis and
Demopoulos
(2023)74

Reviews recycling methods for NMC LIBs,
focusing on hydrometallurgical processes

Yes No No Systematic review of patents and industry news;
extraction and comparative analysis of technical
details for current hydrometallurgical recycling
of NMC cathodes

Lin et al. (2022)75 Conducts bibliometric analysis of global
rechargeable battery recycling research

No Yes No Bibliometric analysis of patents and articles on
battery recycling; classified by battery type/
source; trend and policy correlation analysis

Martins et al.
(2021)76

Reviews EV battery recycling impacts,
future waste, and recycling pathways

Yes No No Statistical trend analysis of global EV/HEV
markets plus literature/patent review of recycling
methods

Metzger et al.
(2023)77

Assesses the evolution and circularity of
the global battery patent landscape

No Yes Yes Analysis of secondary battery patent families; IPC
categorisation, temporal/geographic aggregation,
and text mining for circular economy terms.

Piątek et al.
(2021)29

Critically reviews LIB recycling
technologies from a sustainability
perspective

Yes No No Systematic review of literature and patents with
experimental details; compares conventional and
sustainable LIB recycling approaches

Dong et al.
(2024)78

Maps global trends and innovation
hotspots in LIB recycling patents

Yes Yes Yes Systematic patent retrieval; manual denoising;
quantitative analysis of patent trends and
innovation fields

This study Maps global LIB recycling patents over
time, analysing collaboration, CPC
clusters, and assignee knowledge stocks

Yes Yes Yes Temporal network analysis of LIB recycling
patents, mapping collaborations, CPC co-
occurrence clusters, NLP-based keyword
extraction, and assignee–knowledge links
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analysis of battery recycling literature by cell chemistry. Martins
et al.76 review the global demand for electric car batteries and
their recycling approaches based on journal articles and patent
literature, identifying key companies within the battery recycling
sector and providing guidelines for future perspectives. Metzger
et al.77 conduct a large-scale patent analysis comprising over
90 000 battery patents to gain potential insights on current devel-
opments of batteries related to the circular economy. After pro-
viding a descriptive overview of the patent dataset, they employ
k-means clustering to identify which countries are active in
which type of battery chemistry research. Furthermore, they use
n-grams to identify important current research avenues and
examine the occurrence of circularity terms in battery patent
titles and abstracts. In their review, Piątek et al.29 take a holistic
look at the chemistry and recycling of LIBs, critically assessing
current LIB recycling technologies from a sustainable perspec-
tive to determine whether they can truly be considered “green”.
Dong et al.78 apply patent analysis to systematically identify
global trends in LIB recycling development, the main players
and key fields in LIB recycling.

While prior research has leveraged a variety of patent ana-
lytics tools, approaches such as temporal network analysis of
assignee collaborations, dynamic clustering of CPC codes, and
two-mode mapping of assignees to knowledge areas have not
yet been integrated within a single, unified framework (see
Table 1). By combining these methodological advances, the
present study addresses key analytical gaps in the literature.

3. Methodology
3.1. Data collection and clean-up

Relevant patent data was extracted from the curated Derwent
World Patents Index,79 a patent database managed by Clarivate
Analytics. This subscription-based database offers translation
services, enabling the inclusion of patents in multiple languages
and features revised titles and abstracts that more accurately
reflect the content of each patent. This improvement in data
quality is particularly valuable, as patent abstracts are often low
in informational value.80 While utilising a subscription-based
patent database poses barriers to reproducibility and accessibil-
ity, there are free alternatives like Espacenet81 or Patentscope.82

Given the high-quality data, a keyword search approach tar-
geting revised titles, abstracts and claims (the “CTB” field in
Derwent), with no language restrictions due to the presence of
reliable translations, was selected. The search was not
restricted to primary CPC classes in LIB recycling to avoid bias
in subsequent CPC class analyses. Keywords were derived from
a bibliometric analysis of scientific literature on recycling
methods of spent LIBs.83 After adjusting the keywords with
wildcard truncations (“*”) to capture alternate word forms and
manually standardising selected terms (e.g. li-ion and lithium-
ion) to ensure consistency, the search focused on lithium-ion
batteries (and synonyms) and recycling (including synonyms
and relevant descriptions), and filtered for inventions dated
from January 1st, 1990 onward. In total, 63 109 patent families

were identified through this process. Hereafter, all references
to patent numbers denote patent families. The complete list of
keywords along with a more detailed explanation on patent
extraction is available in Table S1 of the ESI.†

Further data processing and analysis were conducted using
Python (v. 3.11) within the Spyder (v. 5.5.5) environment. Data
clean-up was performed via a documented Python script
(see shared Zenodo repository), which included removing
duplicates based on application number, excluding patents
with incomplete entries in core data fields, and normalising
text to lowercase. To finalise data pre-processing, the number
of patent families was substantially reduced to include only
those relevant to LIB recycling, by retaining patents containing
the term “recycl” in the revised title, abstract, or claims – cap-
turing all forms (e.g. “recycle”, “recycling”, etc.) via Python sub-
string matching. This yielded a final set of 1233 patent
families that served as the data foundation for all subsequent
analyses.

3.2. Temporal data analysis

A temporal analysis approach was employed by dividing the
data into three periods: 1990–2004, 2005–2014 and 2015–2024.
This established methodology58,84,85 facilitates the identifi-
cation of trends over time when it is combined with various
analytical tools. The specific tools used for this analysis are
detailed in the subsequent sections.

3.2.1. Network analysis
Methodological background. Network analysis is a powerful

tool for data analysis and visualisation, widely applied across
various scientific fields. Originating in the social sciences,86

its purpose is to connect interacting actors (displayed as
nodes) within a network, forming a web of connections that
reveals otherwise hidden relationships. In its simplest form,
network analysis involves a single class of nodes (also known
as mode), where all nodes share similar characteristics.87

Networks that feature only one type of node are therefore
referred to as one-mode networks.

A typical network is constructed as follows: all nodes within
the network are represented with varying sizes.88,89 The size of
each node can correspond to different characteristics, such as
weight or degree. In this study, node size represents the weight,
which indicates how often a specific node appears in the
network. For example, in patent analysis, this could be the
number of times a patent assignee has filed for a patent or the
number of times a particular CPC class has been used to cat-
egorise patents. Degree, in contrast, measures how many other
nodes a particular node is connected to.89 Nodes are con-
nected by edges if they interact within the dataset. In patent
analysis, this would mean connecting two patent assignees if
they have filed for a patent together or linking two CPC classes
if they have appeared in the same patent. Similar to nodes,
edge size represents the weight of the connection; a thicker
edge indicates a stronger connection between nodes.88

Adding a second node type (or mode) creates a two-mode
network, in which nodes, per definition, can only be con-
nected to nodes of the opposite mode.90,91 Therefore, charac-
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teristics like node weight and edge weight stay the same, while
the interconnectedness of nodes changes. This added com-
plexity allows for deeper analysis. In patent analysis, for
instance, one mode could represent patent assignees (mode 1)
and the other could represent CPC classes (mode 2). In such a
network, it becomes possible to determine which patent
assignees are active in specific areas of research, as rep-
resented by CPC classes. Additionally, indirect connections
between two assignees through a shared CPC class can indi-
cate overlapping research interests.

This methodology, involving weighted nodes and edges
with one or multiple modes, allows for the visualisation of
complex interconnections. Network analysis, thus, aids in
understanding technological linkages and uncovering trends
over different time periods. An overview of the basic structure
of one- and two-mode networks is provided in Fig. S1 of the
ESI.† All networks in this study were constructed using the
Python library networkx and visualised with the software Gephi
(v. 0.10).92

Types of networks used in this study. This work features two
types of one-mode networks. The first is a co-occurrence
network of CPC classes, where nodes representing CPC classes
are linked if they appear together in the same patent. The
second is a co-occurrence network of patent assignees, where
assignee nodes are interconnected if they have jointly filed a
patent. To add further detail, node shapes (squares or circles)
indicate the type of patent assignee, while node colours rep-
resent the assignee’s country of origin.

Additionally, a two-mode network was constructed. In this
network, patent assignees (mode 1) are linked to key knowl-
edge areas in LIB recycling (mode 2). Connections in this two-
mode network are based on whether the assignees have filed
for patents categorised under CPC classes relevant to these
specific knowledge areas.

3.2.2. Leiden clustering. In network analysis, grouping
specific nodes into densely connected subgroups – known as
communities or clusters – can simplify interpretation and
reveal additional insights.93 Consequently, various automatic
clustering methods using algorithms94,95 have been intro-
duced to enable quick and efficient analysis of huge amounts
of data. Depending on the use case and goal of analysis, the
specific choice of algorithm must be taken seriously since it
will lead to different results.96 One well-known unsupervised
algorithm that can quickly cluster nodes in large networks is
the Louvain algorithm.96 However, Louvain can generate com-
munities that are internally disconnected or contain weakly
connected components, potentially leading to misleading
cluster assignments. To address this limitation, the Leiden
algorithm was developed as an improved alternative.97

Leiden was chosen for this study because its refinement
phase ensures that communities remain internally connected,
reducing the risk of fragmented or misleading clusters that
can arise with other community detection methods, such as
Louvain.97 This advantage is particularly valuable for captur-
ing coherent knowledge areas in large CPC co-occurrence net-
works, where clear community structure is essential for mean-

ingful interpretation. Furthermore, Leiden’s computational
efficiency enables practical analysis of large patent datasets,
and its increasing adoption in recent literature supports its
reliability and robustness as a state-of-the-art community
detection method.98–100

Like the Louvain algorithm, the Leiden algorithm tries to
maximise the modularity quality function to find an optimal
number of clusters.97 In this context, modularity is defined by
comparing the actual number of edges within clusters to the
number of edges that would be expected in a randomised
network.101 Via integration in Python, the library leidenalg
uses eqn (1) to calculate the modularity of the weighted patent
networks.102

Q ¼ 1
2m

X
ij

Aij � kikj
2m

� �
δ σi; σj
� � ð1Þ

Here, m represents the total edge weight of the graph, Aij is
the adjacency matrix of nodes i and j, k is the weighted degree
of a node and σ is the specific cluster to which a node belongs
to. The delta function δ returns a value of 0 if nodes i and j are
in different clusters and 1 if they are in the same cluster.

The Leiden algorithm involves three phases:97 after initially
placing all nodes into their own clusters, it iteratively moves
individual nodes from one cluster to another to improve mod-
ularity. Then, a refining step is carried out to make sure that
clusters are internally connected. Finally, the algorithm creates
an aggregated network based on the refined partition. In the
aggregated network, nodes are assigned to different clusters
based on the non-refined partition. These phases are repeated
until no further improvements in modularity can be made.

In this study, Leiden clustering is carried out for the CPC
co-occurrence networks, where CPC classifications categorise
patents by knowledge areas, resulting in clusters termed “key
knowledge areas” of LIB recycling. To create representative
descriptions for each knowledge area, the following section
introduces an established methodology for finding important
keywords within bodies of text.

3.2.3. Term frequency-inverse document frequency. To
efficiently handle large text datasets, different automated
natural language processing methods have been developed,
ranging from simpler methods like term frequency-inverse
document frequency (TF-IDF) to more sophisticated algor-
ithms or artificial intelligence.103,104 The goal of this study is
to utilise the uncomplicated and structured descriptions of
CPC classes to extract fitting keywords for the CPC-clusters
identified as described above. This makes TF-IDF a fitting
option for analysis.

In essence, TF-IDF combines the two measures term fre-
quency and inverse document frequency. These are multiplied
to assign each word a score that ranks its relevance within a
document compared to all documents in a dataset.105 Term
frequency is calculated by dividing the number of times a term
appears in the document by the total number of terms in the
document.106 Thus, terms that appear more often are ranked
higher. Contrary to this, inverse document frequency is com-
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puted as the logarithm of the ratio of total documents in the
dataset to the number of documents containing the term.107

This leads to a ranking system that ranks terms higher if they
appear in only a small number of documents. Finally, by mul-
tiplying these two measures, the TF-IDF score is received
which emphasises terms that occur frequently but are con-
fined to a limited number of documents.

In this study, the TfidfVectorizer module from the scikit-
learn library108 is used to conduct a TF-IDF analysis for CPC
class descriptions within clusters across three distinct periods.
All hyperparameters of the module, including ngram range,
document frequency thresholds, and normalisation, were left
at their default values (see Table S3 and section S4 of the ESI†
for a detailed discussion). Prior to TF-IDF vectorisation, stop-
words were removed during preprocessing using the nltk
library. To clarify, one TF-IDF analysis was performed per
period, with clusters of each period representing one docu-
ment each. Preparations for analysis included downloading
official CPC descriptions in XML format from the Cooperative
Patent Classification website,109 importing them into Python
and matching them with CPC symbols in the patent dataset.
With clusters already established for CPC classes, it was
straightforward to assign descriptions to clusters. Cluster
descriptions were tokenised and to account for varying fre-
quency, were weighted according to the corresponding CPC
class’s node weight in the network.

The TF-IDF analysis then extracted the top ten keywords for
each cluster, serving as the foundation for concise manual
summaries of the top ten clusters in each period. The resulting
TF-IDF keyword lists were assessed for interpretability by the
expert reviewers during this process, with preliminary iter-
ations used to refine preprocessing and stopword lists to opti-
mise output quality. To enhance the accuracy and objectivity
of these summaries, two independent experts each generated
brief descriptions for every cluster. In most cases, the experts’
summaries were consistent. When discrepancies did arise,
they were resolved through collaborative discussion, during
which both experts compared rationales, clarified interpret-
ations, and jointly arrived at consensus descriptions that best
captured the essence of each cluster. This iterative process
ensured that the final summaries of the clusters were both
accurate and comprehensive. An overview of the workflow dis-
cussed in this chapter is provided in Fig. 1.

4. Results and discussion
4.1. Descriptive analysis of patent dataset

The number of patent families related to LIB recycling has
grown exponentially over the past decade (Fig. 2), mirroring
trends in overall LIB patent filings and reflecting the technol-
ogy’s increasing importance.71,75,77 The dip in 2023 and 2024
results from the typical 18-month delay between patent filing
and publication.58,110

As illustrated in Fig. 3, China dominates LIB recycling
patent filings, with the US and Japan following, while

European countries lag significantly. Analysis across three
periods (see Fig. 4) shows China’s leadership has intensified:
while the US and Japan led prior to 2004, China rapidly over-
took them between 2005–2014 and now holds a pronounced
lead. The US maintains steady growth, Japan’s pace is moder-
ate, and Europe continues to trail, underscoring the strategic
need for Europe to bolster LIB recycling research investment.

The most frequent CPC classes (see Fig. 5) correspond to core
themes in LIB recycling, with all major classes showing marked
increases since 2015. The top three, including Y02W 30/84 (re-
cycling of batteries or fuel cells), H01M 10/54 (reclaiming service-
able parts of waste accumulators) and Y02E 60/10 (energy

Fig. 1 Overview of the research methodology.

Fig. 2 Number of LIB recycling patents published per year.
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storage using batteries), reflect the focus of the keyword-based
search operator on battery recycling. Additional CPC classes like
H01M 10/0525, C22B 26/12, or H01M 10/052 (see Table S2 in the
ESI† for full descriptions) confirm the lithium-based focus of
the dataset. Taken together, the diversity of CPC classes ranging
from obtaining raw materials and specific lithium oxides to wet
processes, analytical methods and recycling, captures the com-
plexity of the entire LIB value chain and provides first insights
into possible key knowledge areas.

The final descriptive analysis (see Fig. 6) identifies the top
20 patent assignees, showing continued growth and reinfor-
cing China’s dominance with leading institutions such as the
Chinese Academy of Science, Central South University, and
Contemporary Amperex Technology (CATL). There is a near-
equal distribution of patents between state-run universities
and private firms, indicating the field’s research-driven charac-
ter and strong governmental engagement. Leading multina-

Fig. 3 Geographical distribution of filed LIB recycling patents.

Fig. 4 Number of LIB recycling patents published per country and period. (a) 1990 to 2004, (b) 2005 to 2014, and (c) 2015 to 2024. Entries in the
red boxes show the number of patents per region or country that are not marked within the world map (EP: European patent; WO: International
patent application (under the PCT); SG: Singaporean patent).
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tional corporations like Toyota, BYD, and BASF also feature
among top assignees.

4.2. International collaboration dynamics in LIB recycling
patents

To better understand the national and international collabor-
ations of patent assignees, a co-occurrence network analysis
was conducted for three distinct time periods (Fig. 7). In these
networks, node shape distinguishes universities from other
organisations, node size represents each assignee’s patent
count, node colour indicates country of origin, and connec-
tions denote shared patent filings, signifying collaboration.

From 1990 to 2004, collaborations were limited, reflecting
the overall low patent counts. Most collaborating entities origi-
nated in the corporate sector, with only two university partici-
pants. During this period, Japan, South Korea, and Italy were
the most prominent countries, and some international collab-
orations are observable.

In 2005 to 2014, the number of collaborators increased to
about 2.5 times the previous period and non-university assign-
ees continued to predominate. The data reveal the first signs
of China’s growing presence, as more Chinese assignees began
to participate and lay the foundation for the substantial role
China would later assume. Japan remained a key player.
Notably, international collaboration declined proportionally,
with most co-filed patents originating from assignees within
the same country.

The final period from 2015 to 2024 shows a more extensive
and complex collaboration network, predominantly consisting
of Chinese players. This undeniable presence can be attributed
to several factors. China has been particularly proactive in
implementing coordinated government policies and funding
mechanisms (e.g. the “Electric vehicle battery recycling techno-
logy policy” (2016) or “Recovery of traction battery used in elec-
tric vehicle” (2024))111 to support LIB recycling, resulting in a
robust regulatory framework. In contrast, the US and Europe
have only recently begun to introduce comparable policies (e.g.
the European “New batteries regulation” (2023) and the
“Critical raw materials act” (2023) or the American “Inflation
Reduction Act” (2022) and “Lithium Battery Recycling
Regulatory Status and Frequently asked questions”
(2023)).111,112 Due to less centralised governmental structures
in Europe and the US, policy implementation and impact can
be slower and more fragmented. Moreover, with 1.1 million
tons per year, China’s LIB recycling capacity far exceeds that of
North America (144 000 tons per year) and Europe (200 000
tons per year).111 Combined with extensive expertise across the
established Chinese LIB value chain, this provides access to a
large pool of skilled professionals and further strengthens
China’s competitive advantage.21,111–113 Furthermore, China is
rapidly developing competencies in battery research and devel-
opment for future battery technologies and corresponding
waste management (e.g. in defective material recycling).112,114

Instead of smaller, isolated clusters of up to three assignees,
this network features larger sub-networks. Some of these sub-
networks are composed of multiple patent assignees with
similar influence (e.g. University of Montpellier and the
University of Rouen), while others center around a dominant
player, such as the Chinese Academy of Science or Central
South University, with numerous smaller connections. These
central assignees can be expected to hold the most knowledge
in the field and might even play a central role in creating
knowledge spillovers.115,116 This type of information could
help battery researchers identify potential partners for future
projects. Another clear trend is the further reduction of inter-
national collaboration. In this period, almost all collaborations
take place between patent assignees of the same country, a
trend that might not have been expected in times of globalisa-
tion. While collaboration is often encouraged, there are several
reasons why stakeholders may hesitate to engage internation-
ally. These include organisational and cultural differences,
high administrative costs, misaligned objectives, and competi-
tive concerns – such as the fear of unintentionally aiding
potential rivals in technological development.117 Similar

Fig. 5 Distribution of top 20 overall most frequent classification codes
in LIB recycling patents by period. See Table S2 in the ESI† for more
information.

Fig. 6 Distribution of top 20 overall most frequent patent assignees in
LIB recycling by period.
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trends have been reported in a global value chain analysis of
LIBs, which found that the largest players tend to focus on
independent innovation, while smaller or less dominant
countries are more likely to seek international partnerships.118

As a result, the concentration of patents among a few domi-
nant Chinese institutions may accelerate national technologi-
cal development but could also limit global diffusion of new
recycling solutions if not accompanied by greater international
engagement.

In summary, the evolution of the collaboration networks
illustrates strong growth in both patent activity and the con-
centration of innovation within specific countries, particularly
China. This trend, also reflected in the geographical split
shown in Fig. 4, has been shaped by early and targeted policy
interventions, large-scale investment, and the development of

comprehensive expertise along the LIB value chain. However,
despite the increasing number of active assignees, inter-
national collaboration remains limited – especially among
dominant stakeholders – due to institutional, strategic, and
competitive factors. Overcoming these barriers will be crucial
to accelerate technological advancement and to ensure pro-
gress towards global sustainability and climate targets.

4.3. Key knowledge areas of LIB recycling

4.3.1. CPC co-occurrence networks. CPC classes, with their
concise and standardised descriptions, provide an effective
data source for identifying specific knowledge areas within a
field of interest. The first step in this process involves con-
structing CPC co-occurrence networks in which co-occurring
CPC classes are connected to each other. The resulting net-

Fig. 7 Overview of full patent assignee co-occurrence networks over three periods. Only the 10 nodes with the highest weights are labelled.
*Despite not ranking in the top 10, the universities of Rouen and Montpellier are labelled for clarity due to their discussion in the text.
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works across the three time periods are illustrated in Fig. 8. To
reduce clutter and complexity, network visualisations display
only nodes with a weight of five or more, thereby highlighting
the most prominent CPC classes. This threshold is applied
solely at the visualisation stage and does not affect any prior
analyses. The full, unfiltered networks are available in Fig. S5
of the ESI† for reference and reproducibility.

The trends seen in earlier analyses continue: the first
period (1990–2004) features a limited number of relevant CPC
classes and a small network, but network size and diversity
increase sharply in subsequent periods. During 2015–2024, a
broader range of CPC classes emerges, and node weights for
many of these classes increase compared to previous years.
The most prevalent CPC classes throughout all periods – Y02W

30/84, H01M 10/54, and Y02E 60/10 – align with prior findings
(see Fig. 5). By exploring the network structure, it is possible to
identify frequently co-occurring motifs that highlight relevant
fields of knowledge. For instance, from 2015 to 2024, a strong
connection appears between H01M 10/54 (reclaiming service-
able parts of waste accumulators) and H01M 4/505 (of mixed
oxides or hydroxides containing manganese for inserting or
intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy), indicat-
ing that this type of battery material has likely been examined
for recycling.

4.3.2. Leiden clustering of CPC co-occurrence networks.
Leiden clustering is an efficient method for grouping related
nodes, reducing complex networks into a smaller number of
clusters where nodes share similar characteristics. Fig. 9 pre-

Fig. 8 Overview of CPC co-occurrence networks for three periods. Only nodes with weight ≥5 are shown. Only the 10 nodes with the highest
weights are labelled. *To increase readability, edges with weights below five are filtered out.
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sents the clustering results for all periods, showing only nodes
with a weight of five or more to improve clarity (full results are
shown in Fig. S7 of the ESI†).

The network structure is unchanged from the previous CPC
co-occurrence analysis, with no new connections observed and
no impact on co-occurrence patterns or their interpretation.
Visual differences stem mainly from changes in network orien-
tation and slight repositioning of nodes, due to the Gephi
layout algorithm. The main difference here is the colouring of
each node, now indicating its cluster affiliation.

The number of clusters has increased over time, reflecting
the rising diversity of CPC classes: 29 clusters were identified
for 1990 to 2004, 38 for 2005 to 2014, and 44 for 2015 to 2024.
The uniform colouring in each network demonstrates that the
algorithm grouped nodes effectively by modularity, a measure
derived from edge connectedness. Outliers in these visualisa-
tions are attributable to the layout algorithm, not the cluster-
ing process itself.

Although manual inspection of clusters could provide further
detail, at this stage, the clusters mostly indicate node affiliation.
To extract broader insights and generate descriptive labels for
each cluster, thereby linking them to specific knowledge areas, a
TF-IDF analysis is conducted in the following section.

4.3.3. TF-IDF analysis of CPC clusters. TF-IDF is a natural
language processing technique used to identify key keywords
within a set of documents. Here, each cluster acts as a docu-
ment and keywords are drawn from the weighted CPC descrip-
tions. Interpreting these keywords allows for the identification
of knowledge areas within LIB recycling.

Because clusters are ordered by size and therefore impor-
tance, the top clusters are analysed in detail. Tables 2–4
present the top ten clusters per period, along with manual
summaries, while comprehensive keyword extraction results
for all clusters are included in Tables S3–S5 of the ESI.†

From 1990 to 2004, the top knowledge areas focus on topics
related to batteries, including oxide manufacturing, intercala-

Fig. 9 Overview of clustered CPC co-occurrence networks for three periods. Only nodes with weight ≥5 are shown. Only the 10 nodes with the
highest weights are labelled. *To increase readability, edges with weights below five are filtered out.
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tion and inorganic electrolyte manufacturing. LIB recycling
features prominently, as expected due to the search operator.
Other knowledge areas, such as chemical substances and com-
ponent separation, are broader and less specific – a limitation

often seen in natural language processing, which may overlook
semantic nuances.119

For 2005 to 2014, LIB recycling remains the top area. More
specific knowledge areas emerge, including battery manage-

Table 2 Matching of clusters to central keywords received from TF-IDF for the period 1990 to 2004. A manual summary for the top 10 clusters is
based on the independent evaluations of two experts

Cluster-Id Central keywords Manual summary

0 [‘oxides’, ‘thereof’, ‘salts’, ‘oxide’, ‘final’, ‘manufactured’, ‘nanometer’, ‘manufacturing’, ‘production’, ‘product’] Oxide manufacturing
1 [‘batteries’, ‘energy’, ‘storage’, ‘oxides’, ‘electrodes’, ‘hydroxides’, ‘mixed’, ‘inserting’, ‘intercalating’,

‘intercalation’]
Batteries,
intercalation

2 [‘catalysts’, ‘plates’, ‘catalytically’, ‘step’, ‘product’, ‘fuel’, ‘gases’, ‘feed’, ‘active’, ‘cells’] Catalysts
3 [‘ligands’, ‘groups’, ‘containing’, ‘carbon’, ‘separation’, ‘hydroxy’, ‘including’, ‘bonds’, ‘comprising’, ‘catalysts’] Chemical complexes
4 [‘recycling’, ‘cells’, ‘batteries’, ‘fuel’, ‘accumulators’, ‘reclaiming’, ‘serviceable’, ‘waste’, ‘parts’, ‘processes’] LIB recycling
5 [‘joined’, ‘joining’, ‘several’, ‘parts’, ‘form’, ‘articles’, ‘least’, ‘ir’, ‘reciprocating’, ‘welding’] Joining parts
6 [‘work’, ‘film’, ‘separating’, ‘apparatus’, ‘plastics’, ‘single’, ‘subclass’, ‘part’, ‘recycling’, ‘means’] Separating parts
7 [‘manufacture’, ‘processes’, ‘inorganic’, ‘diluents’, ‘nanobatteries’, ‘electrolytes’, ‘impregnation’, ‘solution’,

‘paste’, ‘electrode’]
Inorganic electrolyte
manufacturing

8 [‘meth’, ‘acrylate’, ‘containing’, ‘polyethylene’, ‘glycol’, ‘moiety’, ‘alcohol’, ‘treatment’, ‘methoxy’, ‘acrylic’] Chemical substances/
treatments

9 [‘filter’, ‘ultraviolet’, ‘filtrate’, ‘measuring’, ‘flow’, ‘devices’, ‘membrane’, ‘filters’, ‘rate’, ‘irradiation’] Filtering

Table 3 Matching of clusters to central keywords received from TF-IDF for the period 2005 to 2014. A manual summary for the top 10 clusters is
based on the independent evaluations of two experts

Cluster-Id Central keywords Manual summary

0 [‘batteries’, ‘recycling’, ‘fuel’, ‘cells’, ‘reclaiming’, ‘serviceable’, ‘waste’, ‘lithium’, ‘hydroxides’, ‘parts’] LIB recycling
1 [‘storage’, ‘batteries’, ‘energy’, ‘active’, ‘phosphates’, ‘silicates’, ‘polyanionic’, ‘borates’, ‘oxygenated’,

‘metallic’]
Battery materials

2 [‘final’, ‘manufactured’, ‘product’, ‘manufacturing’, ‘processes’, ‘characterised’, ‘production’,
‘manufacture’, ‘electrodes’, ‘form’]

Product manufacturing
(electrodes)

3 [‘batteries’, ‘battery’, ‘controller’, ‘systems’, ‘data’, ‘state’, ‘electromobility’, ‘transfer’, ‘several’,
‘sequentially’]

Battery management
system

4 [‘alloys’, ‘si’, ‘based’, ‘electrodes’, ‘metals’, ‘silicon’, ‘solutes’, ‘making’, ‘battery’, ‘electrolyte’] Electrodes, silicon
5 [‘gasification’, ‘removing’, ‘carbon’, ‘water’, ‘recovery’, ‘cogeneration’, ‘pressure’, ‘dioxide’,

‘distributors’, ‘electrolysis’]
Gasification, carbon
removal

6 [‘hydroxy’, ‘aromatic’, ‘amino’, ‘carbon’, ‘groups’, ‘ring’, ‘rings’, ‘bound’, ‘skeleton’, ‘atom’] Aromatic, hydroxy, amino
7 [‘nitrogen’, ‘ligands’, ‘atom’, ‘complexing’, ‘least’, ‘one’, ‘ring’, ‘comprising’, ‘ruthenium’, ‘complexes’] Chemical complexes
8 [‘treatment’, ‘biological’, ‘waste’, ‘anaerobic’, ‘sewage’, ‘processes’, ‘water’, ‘temperature’, ‘alcohol’, ‘sludge’] Biological waste treatment
9 [‘portion’, ‘mould’, ‘moulding’, ‘preform’, ‘runner’, ‘injected’, ‘flange’, ‘variable’, ‘components’, ‘two’] Molding process

Table 4 Matching of clusters to central keywords received from TF-IDF for the period 2015 to 2024. A manual summary for the top 10 clusters is
based on the independent evaluations of two experts

Cluster-Id Central keywords Manual summary

0 [‘recycling’, ‘serviceable’, ‘reclaiming’, ‘fuel’, ‘batteries’, ‘accumulators’, ‘cells’, ‘parts’, ‘waste’,
‘obtaining’]

LIB recycling

1 [‘batteries’, ‘electrodes’, ‘hydroxides’, ‘oxides’, ‘inserting’, ‘intercalating’, ‘mixed’, ‘intercalation’,
‘insertion’, ‘lithium’]

Electrode intercalation

2 [‘batteries’, ‘storage’, ‘energy’, ‘cells’, ‘battery’, ‘testing’, ‘systems’, ‘measuring’, ‘circuits’,
‘arrangements’]

Battery testing systems

3 [‘solutions’, ‘inorganic’, ‘salt’, ‘processes’, ‘hydroxides’, ‘oxides’, ‘filtration’, ‘generated’, ‘extraction’,
‘exchangers’]

Inorganic solutions,
extraction processes

4 [‘li’, ‘diagram’, ‘sem’, ‘electric’, ‘two’, ‘obtained’, ‘properties’, ‘type’, ‘oxides’, ‘hydroxides’] Material characterisation
5 [‘manufactured’, ‘micrometer’, ‘compositional’, ‘purity’, ‘final’, ‘product’, ‘manufacturing’,

‘production’, ‘metal’, ‘characterised’]
Micrometre scale
production

6 [‘catalysts’, ‘one’, ‘least’, ‘atoms’, ‘compounds’, ‘type’, ‘hydroxy’, ‘ring’, ‘addition’, ‘groups’] Catalysts
7 [‘electrolysis’, ‘water’, ‘sources’, ‘production’, ‘hydrogen’, ‘gases’, ‘hydride’, ‘catalysts’, ‘containing’,

‘carbon’]
Water electrolysis

8 [‘screens’, ‘separator’, ‘devices’, ‘screen’, ‘denying’, ‘egress’, ‘oversize’, ‘disintegrating’, ‘mechanisms’,
‘screening’]

Filtering using separators

9 [‘diaphragms’, ‘membranes’, ‘characterised’, ‘material’, ‘separators’, ‘waste’, ‘processing’,
‘separation’, ‘choice’, ‘metal’]

Filtering using membranes/
diaphragms
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ment systems, (silicon) electrodes, battery materials, and
certain chemical compounds.

In 2015 to 2024, LIB recycling continues as the central
knowledge area. Additional topics, including electrode interca-
lation, battery testing systems, and separators, are closely tied
to battery technology, while broader domains like inorganic
solutions, material characterization, and micrometre-scale pro-
duction are evident.

Overall, the extracted knowledge areas reflect critical
aspects of the LIB recycling value chain. While these knowl-
edge areas often align with policy priorities (such as material
recovery or advanced battery management) and evolving indus-
trial strategies, they represent broad research domains rather
than specific scientific or technical challenges (e.g. lithium
recovery efficiency or environmental trade-offs). This constraint
arises from the limited granularity of CPC-based clustering
and keyword analysis, which is well suited to reveal overarch-
ing trends but not to resolve individual technical bottlenecks.

Other methodological limitations also warrant consideration.
Although meaningful descriptions were assigned to the clusters,
they may not fully capture each cluster’s multifaceted nature.
Additionally, the analysis assumes consistent interpretation of
keywords, which may not always reflect the underlying data com-
plexity. The predetermined limit of 10 keywords per cluster may
also influence results. Despite these limitations, the analysis
yields valuable insights into the LIB recycling patent landscape
and is particularly effective when paired with patent assignee
data, as explored in the following section. Furthermore, this
approach is highly efficient, substantially simplifying the ana-
lysis of complex, multidimensional research domains.

4.4. Key knowledge stocks of important patent assignees

Building on previous results, this section connects patent assign-
ees to knowledge areas using two-mode networks, enabling
identification of key knowledge stocks for each assignee, a criti-
cal insight for policymakers, researchers, and competitors. The
resulting two-mode networks, filtered to only include nodes with
a weight of two or more for improved clarity are shown in
Fig. 10. Full networks can be found in Fig. S9 in the ESI.†

These networks capture multidimensional patterns: node
shapes differentiate “clusters” (knowledge areas) from “patent
assignees”, node size reflects weight, edge thickness shows the
frequency of an assignee publishing in a particular knowledge
area, and node colour indicates assignee country. Since clus-
ters typically contain several CPC classes and many assignees
fall below the node weight threshold, some clusters appear
without linked assignees in the filtered networks – a pattern
not seen in the unfiltered versions.

In 1990–2004, the filtered network contains few patent
assignees, reflecting the field’s early stage. Countries are rep-
resented evenly, with no single country leading. One primary
subnetwork links patent assignees and clusters indirectly,
suggesting similarity among those with shared knowledge
areas. Among the more active companies, Hydro-Quebec stands
out for activity across several clusters (“oxide manufacturing”,
“batteries, intercalation”, “inorganic electrolyte manufactur-

ing”), indicating early diversification. Rhodia S.A., not tied to
the main subnetwork, is linked to two related knowledge areas
which may be a sign of diverse chemical research interests.

The 2005–2014 network is much larger and more intercon-
nected, pointing to increased patenting and overlapping
knowledge stocks. China, Japan, and the US dominate in
assignee count. The most connected knowledge areas are
broader battery-specific clusters, such as Cluster 0 (“LIB re-
cycling”, 23 connections) and Cluster 1 (“battery materials”, 30
connections), followed by more specialized fields like Cluster 4
(“electrodes, silicon”, 7 connections). Toyota appears under
two entities (Toyota Industries Corporation and Toyota Motor
Corp) and is linked to six knowledge areas (including Clusters
0, 1, 2 (“product manufacturing (electrodes)”), 3 (“battery man-
agement system”), 4 and 14 (“inorganic electrode com-
pounds”)), highlighting its focus on electrode materials,
especially in recycling. Other strongly connected patent assign-
ees include Panasonic, the French Alternative Energies and
Atomic Energy Commission and LG Chem.

The 2015–2024 two-mode network is the largest and most
interconnected, involving numerous industry and academic
players and many links to knowledge areas. Again, some clusters
lack connections due to the node weight threshold. China now
leads overwhelmingly both in number of assignees and publi-
cation counts. The most strongly connected knowledge areas are
Cluster 0 (“LIB recycling”, 136 connections), Cluster 1 (“electrode
intercalation”, 87 connections) and Cluster 2 (“battery testing
systems”, 77 connections). The Chinese Academy of Science
(weight: 35), Central South University (weight: 29) and Lilac
Solutions (weight: 18) have published the most patents and
maintain strong connections to multiple knowledge areas. The
Chinese Academy of Science is linked to the seven Clusters 0, 1,
2, 3 (“inorganic solutions, extraction processes”), 4 (“material
characterisation”), 5 (“micrometre scale production”) and 7
(“water electrolysis”), depicting its wide range of competencies.
Central South University shares this cluster linkage, indicating a
similar knowledge base. Meanwhile, Lilac Solutions is connected
to Clusters 0, 2, 3 and 5.

In summary, the two-mode network analysis provides crucial
insights: it helps identify central companies across time periods,
uncovering both newcomers and established players, which
could be valuable for other fields, particularly due to its high
degree of automation. Additionally, it highlights similar patent
assignees, easing the selection of collaboration partners based
on network proximity and research portfolios indicated by their
knowledge areas. Existing knowledge areas can also guide com-
petitors and researchers toward underdeveloped research topics
within the field. While this methodology offers numerous advan-
tages, it has limitations and room for improvement. As dis-
cussed earlier, knowledge areas may occasionally be vague or
nonspecific and results depend heavily on the natural language
processing technique employed. Future analyses could benefit
from using more advanced models, like Latent Dirichlet
Allocation120 based on patent abstracts, to enhance outcomes.
Nevertheless, this analysis serves as a robust starting point due
to its simplicity and the lack of comparable studies.
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Fig. 10 Overview of two mode networks (knowledge areas and patent assignees) over three periods. To improve readability, only nodes with a
weight of two or more are displayed, and only the top 10 patent assignees by weight are labelled. *Despite not ranking in the top 10, LG Chem and
Toyota Industries Corp. are labelled for clarity due to their discussion in the text.
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5. Conclusion

With the expected end-of-life volume of spent LIBs exceeding
11 million tons by 2030, effective recycling of these batteries is
crucial for meeting international climate goals.31 To aid with
this endeavour, this study provides a comprehensive, large-
scale patent analysis on LIB recycling across three time
periods, aiming to understand both historical developments
and potential future trends.

The insights of this study are as follows: first, the analysis
confirms China’s overwhelming presence in LIB recycling
research and indicates that a significant portion of this work is
still carried out by universities, suggesting that the technology
is in its early development stages.

Second, our analysis highlights that international collabor-
ation in LIB recycling remains limited, with expertise concen-
trated in regions like China while Europe remains compara-
tively underrepresented. Policymakers could address this by
incentivising transnational research alliances – such as the
EU’s Battery 2030+ (ref. 121) or the Global Battery Alliance122 –
through targeted grants, tax benefits, or streamlined regu-
lations for cross-border projects. For industry, forming
joint ventures or international consortia can accelerate knowl-
edge exchange, as seen in recent collaborative initiatives
between Asian and European firms (e.g. joint venture
announcements between CATL and Stellantis,123 or Orano and
XTC New Energy124). However, policy incentives that have
proven effective in China may require adaptation in other
regions due to differing market conditions and regulatory
environments.

Third, the combination of Leiden clustering and TF-IDF
analysis applied to CPC co-occurrence networks enabled the
identification of meaningful knowledge areas that reflect past
and current research trends. Our results show that LIB re-
cycling research is organised around both established
domains, such as material recovery and battery testing, as well
as evolving areas like advanced electrode design and process
optimisation. The presence of distinct clusters focused on
material characterisation and production at finer scales
suggests that industry and academia are increasingly empha-
sising quality, purity, and efficiency throughout the recycling
process. For policymakers and industry leaders, this indicates
the necessity of supporting a range of innovations: from ensur-
ing robust testing standards for recycled batteries to encoura-
ging investment in new material processing methods that can
enable higher-value recovery and extend battery lifecycles.

Finally, by mapping knowledge areas to patent assignees,
this study highlights the specific technological strengths and
strategic focus areas of leading organisations across the LIB re-
cycling landscape. This transparency allows policymakers to
better target incentives or support mechanisms toward emer-
ging or underrepresented fields and to encourage collabor-
ation between organisations with complementary expertise.
For industry and academia, these insights facilitate more
informed decisions when identifying potential partners for
joint development, benchmarking competitors, or exploring

gaps where new research and innovation could have the great-
est impact.

Ultimately, fostering stronger international collaboration by
reducing existing barriers and encouraging more cross-border
partnerships, will be essential to unlock the full global poten-
tial of LIB recycling innovation and to achieve international
sustainability and climate objectives.

Building on this study, future research could address meth-
odological limitations to achieve deeper insights into LIB re-
cycling. Employing advanced natural language processing
techniques could enhance the precision and detail of identi-
fied knowledge areas, especially when analysing patent
abstracts rather than CPC descriptions. Additionally, because
patent co-ownership does not capture all forms of inter-
national collaboration, as many partnerships may not result in
jointly filed patents and ownership may be solely assigned to
companies for contractual reasons, future research could
complement patent analysis with alternative indicators of col-
laboration. Addressing shorter time periods may also reveal
more nuanced insights into knowledge shifts within LIB re-
cycling. Incorporating patent quality assessments, alongside
quantity, would allow for more nuanced analysis by highlight-
ing the impact of patents.
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