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Insights into chemical substitution of metal halide
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Over a long period of time, frequent safety incidents in electric vehicles and portable electronics have
raised concerns about modern energy storage devices, particularly lithium-ion batteries. However, the
emergence of solid-state electrolytes (SSEs) with good thermal stability has eliminated potential safety
hazards of conventional lithium-ion batteries, such as liquid electrolyte leakage and explosions, allowing
all-solid-state batteries to attract intensive attention. Among all types of SSEs, halide SSEs have gained
research focus owing to their high ionic conductivity, good mechanical malleability, and excellent chemi-
cal/electrochemical stability. They have risen to the forefront of SSE research within just a few years. This
paper firstly summarizes state-of-the-art halide SSEs by briefly introducing various synthesis methods of
halide SSEs and comparing their advantages and disadvantages. Secondly, it introduces the composition,
structural types, and ionic conduction mechanisms of halide SSEs, analyzing their effects on ionic trans-
port behavior mainly from three perspectives: anion polarizability, cation disorder and stacking faults.
Primarily, it not only reviews typical substitution types for current halide SSEs, explaining how each type
optimizes ion transport kinetics, but also focuses on chemical substitution strategies to improve the
inherent thermodynamic stability window of halide SSEs and the complex electrode/SSE interface.
Additionally, this work proposes potential future research directions to address the challenges in the
development of halide SSEs. Overall, the review aims to provide fundamental understanding for designing
new halide SSEs and their structural characterization.

Given the increasing global demand for clean energy and efficient energy storage technologies, the development of all-solid-state lithium-ion batteries
(ASSLBs) with excellent performance and high safety has become a hot topic in scientific research. In particular, the research on solid-state electrolytes (SSEs)
has become critical to achieve higher energy density, longer cycle life and wider operating temperature range. In recent years, halide SSEs have attracted
much attention due to their outstanding physicochemical properties. High room-temperature ionic conductivity implies fast lithium-ion transport kinetics,
and good chemical stability and mechanical strength guarantee battery safety. In this review, the current research status on halide SSEs and the diverse syn-
thesis methods are first briefly described. Next, the basic structural framework and ion transport mechanism of halide SSEs are outlined, and the factors
affecting the ion transport behavior are summarized. It then focuses on chemical substitution and explores the specific mechanisms by which it enhances

lithium-ion transport kinetics and improves the stability of the electrode/SSE interface by optimizing the electrolyte structure and composition. In addition,
this paper also proposes key breakthrough directions for future halide SSEs, which is expected to provide a more solid theoretical foundation for subsequent

research work.

1. Introduction

As the energy storage market evolves, all-solid-state lithium-ion

“School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an,
710049, China. E-mail: tangw2018@xjtu.edu.cn

bSchool of Materials Science and Engineering, Xi’an Jiaotong University, Xi’an,
710049, China

“Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont,
IL, 60439, USA. E-mail: xiaowei.wang@anl.gov

School of Energy and Environment, Southeast University, Nanjing 210096, China

364 | E£ES Batteries, 2025, 1, 364-384

batteries (ASSLBs) are gradually replacing traditional liquid
lithium-ion batteries, becoming the cornerstone of large-scale
energy storage systems. These batteries address the growing
demand for high-energy and high-power storage in power
grids and public utilities. The primary advantage of ASSLBs
lies in their potential to surpass the energy density limits of

© 2025 The Author(s). Published by the Royal Society of Chemistry
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liquid lithium-ion batteries, aiming for a high energy density
of 500 Wh kg~'."* Additionally, the use of solid-state electro-
lytes (SSEs) with strong thermal stability eliminates the safety
risks, such as thermal runaway and explosions, associated with
flammable organic electrolytes. SSEs, a critical component of
ASSLBs, have been extensively researched and come in various
forms, including polymers, oxides, sulfides and halides.
Generally, polymeric SSEs, including poly(ethylene oxide)
(PEO), poly(vinylidene fluoride) (PVDF), polyacrylonitrile
(PAN), and poly(methyl methacrylate) (PMMA), exhibit better
mechanical flexibility, lower mass density, and straightforward
synthesis methods. However, their intrinsic ionic conductivity
is slow, which is commonly addressed by incorporating
ceramic fillers, ionic liquids or metal-organic frameworks
(MOFs) to form composite polymeric SSEs.”” Oxide SSEs
provide good environmental and electrochemical oxidation
stability but require high sintering temperatures (over 1000 °C)
and lack flexibility, resulting in high fabrication costs.'®'"
Sulfide SSEs boast high ionic conductivity with excellent
mechanical machinability, but they are highly sensitive to
water, producing toxic H,S gas upon hydrolysis, which quickly
deteriorates their ionic conductivity.””™* Additionally, their
poor electrochemical oxidation stability limits compatibility
with conventional 4 V cathode materials. In contrast, halide
SSEs have garnered significant attention in ASSLBs research
owing to their high ionic conductivity (~107> S ecm™) at room
temperature (RT), wide electrochemical stability window, excel-
lent environmental tolerance and diverse synthetic routes.””™"”
These properties allow halide SSEs to overcome many limit-
ations of other SSEs.

The development of halide SSEs has undergone significant
changes, as illustrated in Fig. 1, which highlights key mile-
stones chronologically. Generally, the evolution of halide SSEs
can be divided into two phases, with a pivotal shift occurring
in 2018. Before 2018, halide SSEs were held back by their low
ionic conductivity, which limited their potential for practical
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use. At the same time, SSEs like oxides and sulfides were
advancing rapidly, causing halide SSEs to attract less interest
and resulting in minimal experimental and theoretical explora-
tion during this period. However, a breakthrough came in
2018 when Asano et al. successfully synthesized two halide
SSEs with high ionic conductivity, i.e., Li;YCl (5.1 x 107* S
em™") and LizYBre (1.7 x 107 S em™").** This marked a major
milestone in halide SSEs development, as it was the first time
their ionic conductivity surpassed the 1 x 10> S cm™
threshold. Following this discovery, research interest in halide
SSEs surged, leading to the development of various high-ionic-
conductivity halide SSEs in just five to six years, such as
LizAlFs, LizGaFs, LizInClg, LizScClg, LizErClg, LiyScy3Cly,
LizHoBrg and LizErls.>>?°"** More importantly, given that all
constituent elements of ternary halide SSEs are exchangeable,
the structure and chemical composition of the halide SSEs
family have been greatly enriched by chemical substitution of
elements, e.g., Li;_yM;_,Zr,Cls (M = Er/Y), Liy,Zr;_,Fe,Clg (0 <
x < 0.5), LizY;,In,Cls (0 < x < 1), LizYBr;Cl; and
LizInCl, gF; ,.26*8294344 These substituted halide SSEs surpris-
ingly demonstrate significantly improved ionic conductivity
compared with their original counterparts.

It is important to note that halide SSEs encounter inter-
facial challenges similar to those observed in other SSEs,
including significant interfacial side reactions, inadequate
interfacial contact and the formation of space charge layers, all
of which hinder their further advancement.*>*® To tackle
these issues, two well-established interface modification strat-
egies have been extensively explored. The first involves the
application of functional coatings (e.g., LiF, Li;PO,) onto the
surface of halide SSEs, which serves to mitigate interfacial side
reactions and lower interfacial impedance.?’~*° The other strat-
egy focuses on the design of nanostructured architectures or
the incorporation of a flexible interfacial layer on the halide
SSEs surface, effectively improving the physical contact
between halide SSEs and electrodes.’*>® Nevertheless, these

® Li;ZrCl,O, 5 with 89.5%
amorphous content
(~1.4x10 S cm™)**
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SEs Lia,(Ta/La)CI N
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Fig. 1 The development history of halide SSEs for ASSLBs with representative achievements.
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approaches fail to address the intrinsic electrochemical stabi-
lity of halide SSEs. To achieve significant interface modifi-
cation, it remains crucial to modify the surface chemistry of
halide SSEs through chemical substitution. Specifically,
anionic substitution can regulate the reactivity of the halide
SSEs’ surface, thereby facilitating the formation of a stable
interface with the electrode. Furthermore, the chemical substi-
tution strategy helps optimize the mechanical properties of
halide SSEs, thereby minimizing the formation of cracks.

The synthetic strategies of halide SSEs have also been
widely discussed in recent years. Each synthesis route features
unique operating conditions and processing parameters that
influence the crystal structure and ionic transport behavior of
halide SSEs, ultimately affecting the electrochemical properties
of ASSLBs. Currently, the most widely used synthesis method
is mechanical ball milling, which requires precise control over
milling time and speed.>'’ In this process, the mechanical
energy generated during high-energy ball milling is converted
into the activation energy needed for precursor chemical reac-
tions, resulting in metastable halide SSEs with low crystalli-
nity. Alternatively, solid-phase sintering can be used to
increase the crystallinity of halide SSEs and achieve a more
stable structure. This method involves sealing the precursor in
a vacuumed quartz tube and continuously heating it at elev-
ated temperatures (typically above 350 °C). However, both ball
milling and solid-phase sintering are energy-intensive and
time-consuming processes, often producing samples that are
not homogeneous and that can form impurity phases due to
element volatilization at high temperatures. Therefore, it is
imperative to explore the liquid phase synthesis methods with
mild reaction conditions and high-purity products. A pioneer-
ing study by Li et al. demonstrated the first aqueous synthesis
of halide SSEs through the production of Li;InCls.>*® In this
process, raw materials were dissolved in water, naturally dried
in air to form Li;InCls-H,0, and then heated in a dynamic
vacuum at 100-200 °C for 4 hours to produce high-purity
Liz;InClg. Since then, several liquid-phase synthesis methods
have been developed, such as ammonium-assisted wet chem-
istry, vacuum evaporation-assisted synthesis, ethanol-mediated
LizInCl, synthesis and freeze-drying techniques.”’**>® The
liquid-phase synthesis method, while offering significant
advantages in terms of material homogeneity, controlling the
microscopic morphology or size of SSEs, and fabricating elec-
trode sheets, is more complex and costly. More importantly, it
imposes higher requirements on the humidity tolerance of the
precursor. Therefore, current research on liquid-phase syn-
thesis primarily focuses on Liz;InCle. As such, there is still con-
siderable progress needed before this method can be widely
applied.

This review underscores the most recent progress in the
realm of halide SSEs and provides a comprehensive under-
standing of the structure-property relationship for halide SSEs
through the lens of chemical substitution. By systematically
analyzing the effects of chemical substitution on ionic conduc-
tivity and interfacial stability, it elucidates the fundamental
linkages between diverse substitution mechanisms and the
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electrochemical performance of materials, thereby establishing
a more resilient analytical framework. Moreover, this study
outlines promising avenues for future research on chemical
substitution strategies in halide SSEs, encompassing high-
throughput screening of substitutional elements and the
design of novel halide SSEs driven by machine learning. These
insights offer a forward-thinking perspective that can steer the
ongoing development and refinement of halide SSEs, with the
objective of rapidly increasing their market share in the com-
mercial landscape of ASSLBs.

2. Structure and ion transport in
halide SSEs

2.1 Structural composition

The general formula of ternary halide SSEs is Li,MX;, (M =Y,
Sc, In, La-Lu, etc., X = F, Cl, Br, I), which is a completely new
crystal structure formed by doping rare-earth element M based
on LiX structure. Since the ionic radii of the halogen elements
are larger than those of almost all rare-earth elements, so the
ternary halide SSEs take the anion close-packed sublattice as
the basic framework. Among them, the radii and polarity of
cations and anions have a remarkable effect on the crystal
structure. According to the Pauling coordination polyhedron
rule, close contact of cations and anions is the prerequisite for
the stabilization of crystal structures. Hence, Liang et al. gener-
alized the structures of all halide SSEs and innovatively pro-
posed to classify the crystal structures by using the radius ratio
of M cation to X anion (r"/77), marked as tp.””

For the currently dominant Li;MX, and Li,MX,-type SSEs, ¢
=0.732-0.414, the anion sublattice can be partitioned into hex-
agonal close packing (hcp) and cubic close packing (ccp), as
shown in the Fig. 2.°® Further refinement of these two sublat-
tices based on the ¢ values leads to two conclusions: (1) when ¢
= 0.637-0.599, the close-packed anions are stacked in ABAB
mode. Due to the different symmetric distributions of Li* and
non-Li" cations on the octahedral (Oct) sites, trigonal (space
group: P3m1) and orthorhombic (space group: Pnma) struc-
tures are formed, such as LizYClg and Li;YbCls.*%° (2) With
¢t value decreases, the close-packed anions are stacked in
ABCABC mode. Given the difference in cation occupancy,
monoclinic structures (space group: C2/m) and spinel struc-
tures (space group: Fd3m) are formed, such as LizInCls and
Li,MgCl,.**°

Furthermore, the rare-earth halide UCI; (U = La-Sm), featur-
ing a non-close-packed anion lattice, exhibits a unique and fas-
cinating structural framework.*>*>% In contrast to convention-
al halide SSEs, the metal cations in UCl,-type structures (space
group: P6;/m) adopt ninefold coordination, forming tricapped
trigonal prismatic polyhedra. This high-coordination-number
structure not only stabilizes the metal cations but also gener-
ates abundant one-dimensional Lithium-ion migration
pathways.®®®> Consequently, UCly-type materials are widely
acknowledged as promising contenders for lithium superionic

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 2 Common crystal structures of halide SSEs. (a) Trigonal structure. (b) Orthorhombic structure. Reproduced with permissions from ref. 60.
Copyright 2021, Elsevier. (c) Monoclinic structure. Reproduced with permissions from ref. 38. Copyright 2019, The Royal Society of Chemistry. (d)
Spinel structure. Reproduced with permissions from ref. 61. Copyright 2024, American Chemical Society.

conductors, holding substantial potential for advanced ASSLBs
applications.

2.2 Li" conduction mechanism

Li" migration in halide SSEs is realized by hopping motion,
and the hopping sites of Li" depend on the type of the anion
sublattice, resulting in different migration pathways.>*®® For
the hep structure, Li" hops among adjacent face-sharing Oct
sites (Oct-Oct) along the c-axis, forming rapid diffusion 1D
channels, whereas in the ab plane, there exist vast tetrahedral
(Tet) interstitial sites, which lie between the two edge-sharing
octahedra. They connect all the 1D channels (Oct-Tet-Oct)
and a 3D anisotropic diffusion network is ultimately formed
(Fig. 3a). However, Li" migration in these 1D fast channels is
prone to be blocked, resulting in ionic conductivities lower
than the theoretically calculated values. For the ccp structure,
Li" migration between different Oct sites along all directions
requires the assistance of Tet interstitial sites (Oct-Tet-Oct),
yielding a 3D isotropic diffusion network (Fig. 3b), which is
similar to the migration path along the ab plane in the hcp
structure. For the two ccp structures, the Oct sites for Li"
hopping are usually occupied by non-lithium cations in the
spinel structure, which also hinders the diffusion of Li*.'°
Therefore, the monoclinic phase structure may be the most
favorable structure for Li" migration in halide SSEs, which has
also been demonstrated by experiments and theoretical
calculations.?®>%%”

© 2025 The Author(s). Published by the Royal Society of Chemistry

In addition to the long-range diffusion characteristics,
short-range diffusion caused by defects (vacancies and intersti-
tial sites) also affects the migration behavior of Li'. The possi-
bility of carriers jumping between neighboring Octahedral
sites depends on the content of the surrounding active Li* and
vacancy concentrations. As suggested by Famprikis et al., the
diffusion mechanism mediated by vacancy clusters is the main
ionic conduction mechanism.®® Higher vacancy concentration
and lower adjacent Li* content would be more favorable for Li"
transport. Van Der Ven has calculated the migration barriers
of Li" in different close-packed lattices (Fig. 3d and e), which
confirmed the increase of vacancies number around the Tet
interstitial sites favors the reduction of the Li" migration
barrier.®® Although this migration pathway requires passing
through Tet interstitial sites, it provides the flattest energy
landscape. For Li;MXq-type, M®" replaces Li" at three Oct sites,
and two vacancies are created based on charge balance.
Among all Oct sites of the anion sublattice, the ratio of Li,
M?**, vacancies is 3 :1: 2. Therefore, the vacancies occupy 33%
of the Oct sites, providing vast available hopping sites for Li",
which is necessary to achieve high ionic conductivity.">”°

Indeed, the realization of ions’ hopping motion between
different sites requires overcoming the inter-site energy differ-
ence, which is related to the occupation of ions in the sur-
rounding sites. It should be noted that the Tetrahedral intersti-
tial sites act as the bridge in ionic conduction of halide SSEs.
When their adjacent Octahedral sites are occupied only by Li*

EES Batteries, 2025, 1, 364-384 | 367
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(a and b) The Li-ion migration pathways in hcp anion lattice and ccp anion lattice. Reproduced with permissions from ref. 66. Copyright

2019, Wiley-VCH. (c) The schematic of the “Li-rich” environment. Reproduced with permissions from ref. 71. Copyright 2022, Elsevier. (d and e) Li*
diffusion and corresponding energy barriers in close-packed anion sublattice by vacancy clusters (divacancies in the layered form). Reproduced with

permissions from ref. 69. Copyright 2012, American Chemical Society.

or vacancies, this prevents strong electrostatic interactions
between cations and narrows the energy difference between
sites.”* Then the “Li-rich” environment is formed (Fig. 3c). In
addition, differences in Li" concentration and cation configur-
ation are also responsible for the different ionic conductivity.
Mo et al. systematically studied a sequence of halide SSEs
through ab initio molecular dynamics (AIMD) simulations and
concluded that low Li" content (approximately 40-60%),
sparse cation arrangement, and low cation concentration
make ion migration easier.””

2.3 Factors affecting ion migration dynamics

In addition to the migration pathways mentioned above, ion
transport kinetics can also be affected by many factors, includ-
ing lattice dynamics, cation disorder, and stacking faults, etc.
Lattice dynamics refers to the vibrations of crystal atoms at
equilibrium positions, which affects the magnitude of the acti-
vation barriers for ion migration.’” Reduction of Li* vibrational
frequency contributes to enhancement of fast Li' transport
performance. This can be explained by the softness of the
anion structural frameworks. When the more polarized anion
is bound to Li', the binding effect of Li" during the migration
is weakened due to the longer bond lengths, ie., a lower Li"
vibrational frequency is obtained (Fig. 4a), which leads to a
higher ionic conductivity.>® Therefore, superionic conductors
tend to possess low Li" vibrational frequencies, and their dis-
tinctive structural features are expressed as softer and more
polarized anion sublattices.’®”*”* As shown in Fig. 4b, by
replacing all the anions in Li;ErCls with the more polarizable
T, the polarization of the anion sublattice was elevated, obtain-

368 | EES Batteries, 2025, 1, 364-384

ing the lower activation barrier and higher ionic conductivity.
However, with the addition of more polarizable anions, the
average vibrational frequency of the anion phonon band
centers was also degraded and the electrochemical oxidation
stability started to deteriorate (Fig. 4c).”> Muy attributed this
phenomenon to the reaction kinetics, arguing that the
reduction in vibrational frequency of the phonon band centers
diminished the anion migration enthalpy and facilitated the
oxidation reaction.”® Consequently, it is necessary to balance
the ionic conductivity and electrochemical stability when
probing new Lithium-ion conductors.

In halide SSEs systems with the same composition, cation
order-disordered arrangement can be caused by changing the
synthesis method and annealing temperature. Samples typi-
cally synthesized using mechanochemical methods have
higher cation disorder, favoring the formation of migration
channels with flat energy landscapes.””’® This was also con-
firmed by Schlem et al. on the arrangement of cation sites in
LizMClg (M = Er/Y).>* They found that Li;MClg prepared by
high-energy ball milling has the highest degree of cation dis-
order between the Er/Y sites (Fig. 4e), i.e., many M2 sites are
swapped to M3 sites. High M2-M3 disorder caused the change
of the repulsion force against the surrounding Li", prompting
Li" sublattice rearrangement (Fig. 4d), which dramatically
reduced the energy barrier for Li" migration along the c-axis.
At the same time, the reordered cation sublattices also led to
local structural distortions, which benefited the increase of the
polyhedral transition areas and the expansion of the bottle-
necks for Li* migration. A similar phenomenon was observed
in the study of Ito et al., where p-LizYCles with more disordered

© 2025 The Author(s). Published by the Royal Society of Chemistry


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5eb00010f

Open Access Article. Published on 17 March 2025. Downloaded on 2/1/2026 2:22:14 PM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

EES Batteries

View Article Online

Review

Bi% 04873 5,1o¢*E
a . . P - C) w5 _ 44 °
@) Anion-Framework Softening (b) g 3x10° © {046 o .3 © S> e
%) v i w 10+ 7 S =40
74 1044 2 - 5"
- / > E oT
©2x10° - o 104 © Q36
) LisErlg " LiErCly 10.42 ch > g : LiAlBr,0
Pt £ > v
L 040 £ {2x104 2 g 232
S 1x100 k) 3 S =
© o dl o 10388 | . T S E28 o
o 2 S ¥
= .90 2 o 20 1z 14 6 18 20
3x102  4x102  5x102 <
Debye frequency Vpeype | HZ Anion phonon band centre / meV
o Q@ o Q Q (e) S
)\ 4 o » o
JA QLR Q1R Q CHD o?o L 10040 o o 7
6h ) | > E2Q
/P WA oL 0 T leiln ® o —e,
a P o H PO (& » - v y . Er1 Es O .
4 (& ~O 5 p
6g 3 [0} p
4 y = 10} o 4
[}
0N 00N N o 5. 8
aps . . . . XRD >
Lithium reordering Diffusion channel broadening ul
& :
u"_'] PDF
1 . ;
ampoule 1h 1 min as
Erbium disorder induced synthesis subsequently annealed prepared
(f) Ball mill Stacking fault Improved Li* Q) 3 = s
H : i [|mmm Buk M1-M3
synthesis generation conduction E 00/ Stackngtaun
E I Off. Stacking fault
‘= 4001
1 }
8 00k
S o
= [
O 100}
i) [
S [

&
Migration direction

Fig. 4 Factors affecting Li-ion transport behavior. (a) The diagram of anion polarizability affecting the activation barrier by changing the ion
vibrational frequency. (b) Plots of oo, E; and ¢ as a function of the Debye frequency for LizErXe (X = CL, I). Reproduced with permissions from ref. 25.
Copyright 2020, American Chemical Society. (c) Correlation curves of the oxidative potential limit with the anion phonon band centre for LiAlX4 (X =
Cl, Br, I). Reproduced with permissions from ref. 75. Copyright 2022, The Royal Society of Chemistry. (d) Influence of cation disorder on crystal struc-
ture. (e) Change of the Er2—Er3 disorder as revealed by Rietveld refinements (open squares) and G(r) fits (open circles). Reproduced with permissions
from ref. 24. Copyright 2019, Wiley-VCH. (f) Schematic diagram of stacking faults. (g) Predicted Li* migration barriers in four model structures.
Reproduced with permissions from ref. 31. Copyright 2022, American Chemical Society.

Y?* sublattice exhibited stronger ion transport behavior com-
pared with o-Li;YCle.”® Overall, cation sites’ disorder in the
crystal structure affects the arrangement of Li' sites, volume
changes and local distortions of the polyhedral, thus modify-
ing the Li" migration path and ionic conductivity.

Consistent with most layered oxide cathodes, stacking faults
may be prevalent in halide SSEs. However, the correlation
between stacking faults and ion transport was not effectively
demonstrated until 2022, when Sebti et al first demonstrated
the presence of stacking faults in Li;YClg, by using high-resolu-
tion synchrotron X-ray diffraction and DFT calculations, which
optimized Li" conduction by generating additional interlayer
channels for Li" migration and lowering the migration barrier
(Fig. 4f).3' Specifically, these planar defects altered the distri-
bution of Y*', forming face-shared YCls*~ octahedra and other
sparse Y** distribution regions. The presence of stronger
Coulomb repulsion near these YClg®~ octahedra made the Li*
diffusion channel along the c-axis locally disconnected, whereas
these disconnected Li sites were reconnected by loops to form
the new diffusion channel with lower migration barriers. And in
the sparse Y** distribution area, Li" were subject to weakened
Coulomb repulsion by Y** and the migration barrier was

© 2025 The Author(s). Published by the Royal Society of Chemistry

reduced. Fig. 4g shows the Li" migration barriers predicted by
the four different models, and it could be found that the stack-
ing fault model had the smallest migration barriers. This pro-
vided important data support for the fact that high concen-
tration stacking faults can boost the Li* migration in LizYClg. It
is worth mentioning that samples synthesized by mechano-
chemical methods tend to exhibit both stacking faults and
cation disorder due to the lower energy required for the occur-
rence of stacking faults.5%%"

In addition, the blocking effect of M**, grain boundaries
and impurities have also been shown to be important factors
affecting ion migration.*>**®* Only comprehensive consider-
ation of the influence mechanisms of all factors can help us
understand ion migration more deeply.

3. Enhanced ion transport by
chemical substitution

To date, although LizScCls exhibits the highest ionic conduc-
tivity (6 = 3 x 107> S cm™") among all ternary halide SSEs, it is
still not comparable to the excellent ionic transport properties
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of conventional organic electrolytes.>® In order to facilitate the
practical application of halide SSEs, chemical substitution is
considered to be an effective method to enhance ionic conduc-
tivity, which optimizes the components through elements with
different charges and radii to influence the structural frame-
work and vacancy concentration. Table 1 summarizes the
crystal structure and ionic conductivity changes of typical
halide SSEs before and after various chemical substitutions.
Chemical substitution can be categorized into three categories:
(1) aliovalent cation substitution; (2) isovalent cation substi-
tution; (3) anion substitution. It is worth noting that the influ-
ence of each substitution type on the ion transport mechanism
is completely different and will be discussed in detail below.

3.1 Aliovalent cation substitution

The enhancement of the Lithium-ion transport properties in
halide SSEs by aliovalent substitution cannot be separated
from many factors. In addition to the increase in vacancy con-
centration due to the introduction of aliovalent cations,
changes in Li" concentration and distribution as well as the
evolution of the local structural framework are also crucial. For
trivalent metal halides, tetravalent Zr** and Hf*" are often
used as aliovalent cations.>®#>9%193.1%4 Because of their abun-
dant reserves, low cost, suitable sizes and good redox stability,
they are expected to achieve large-scale commercial application
of halide SSEs.

As the packing style of the anion sublattice depends on the
cation-anion radius ratio, aliovalent substitution leads to the
transformation of the crystal structure or rearrangement of
the Li" sublattice, which results in a significant change for the
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carrier diffusion path. Park et al. successfully achieved struc-
tural modulation and ionic conductivity enhancement by
introducing Zr*" into Li;MCle (M = Er/Y).>® The crystal struc-
ture experienced evolution from the trigonal phase (phase-I) to
the orthorhombic I phase (phase-II) to the orthorhombic II
phase (phase-IiI) with the addition of Zr*" (Fig. 5a). Among
them, the orthorhombic II phase structure exhibited the
highest ionic conductivity (6 = 1.1 x 107 S cm™"), which was
attributed to the tilting of the (Er/Zr)Cls octahedra and the cre-
ation of additional Tet interstitial Li3 sites (Fig. 5b), strength-
ening the 3D Li" diffusion path. As shown in Fig. 5c, the
ASSLB using Li, ¢33ET¢.633Z50.36,Cls as the cathode electrolyte
exhibited higher discharge capacity (more than 110 mAh g™)
and coulombic efficiency (96.4%), superior to that of the
LizPS,. In fact, this phase transition process is also related to
the sample preparation temperature. In another study, Park
et al. achieved the phase transition of Li;_,Yb; ,Hf,Cls from
the trigonal phase to the monoclinic phase at lower annealing
temperature (Fig. 5d), exhibiting higher ionic conductivity.”® It
was attributed to the fact that the presence of more Tet inter-
stitial sites in the monoclinic phase structure played an active
role in the establishment of the fast 3D diffusion network.
However, as shown in Fig. 5e, the trend of ionic conductivity
with doping amount is not linear. Moderate Hf'" doping
increases the vacancy concentration and provides more avail-
able sites for Li* hopping, whereas excessive Hf*" doping
causes a dramatic decrease in carrier concentration and con-
traction of lattice spacing, which in turn inhibits the Li" trans-
port behavior. Therefore, designing a reasonable doping
scheme to balance the vacancy content and carrier content is

Table 1 Comparisons of structure and ionic conductivity before and after chemical substitution (T refers to temperature)

Original materials ~ Crystal structures ¢ (S cm™) Modified materials Crystal structures ¢ (S cm™) T(°C)  Ref.
LizErClg hcep (P3m1) 8.7x107° Liy 633Er0 633ZF0.367Cle hep (pnma 10) 1.1x1073 25 26
Li;YClg hep (pnma) 6.08 x10™°  LizY,5Ing 5Clg cep (C2/m) 1.51x10™% 25 44
LizYClg hep (P3m1) 1.39x 107" Liy Y, Hf) cCly hep (P3m1) 1.49%x10™° RT 83
LizYClg hep (P3m1) — LizYBr;Cly cep (C2/m) 7.2%x107° RT 29
LizYbClg hep (P3m1) 1.9x107* Li 6Ybg 6Z1.4Clg cep (C2/m) 1.5x1073 30 59
LisLuClg hep (pnma 1) 4.0x107* Liy sLug 5Zro.5Clg hep (pnma 11) 1.5%x107° RT 84
LizHoClg hcep (P3m1) 1.0x107* Li, ¢HO( ¢Z1( 4Clg hep (pnma 10) 1.8x1073 RT 85
LizHoClg hep (P3m1) 1.2x107* LizHoCl,Br, cep (C2/m) 1.24x107% 25 86
LizInClg cep (C2/m) 8.8x107* Li, oIng 9Zry 1Clg cep (C2/m) 1.54x107° 20 87
LiInClg cep (C2/m) 4.7 x107* Liy 6INg 6Zr0.4Clg cep (C2/m) 1.25%x10™° RT 78
LizInClg cep (C2/m) 6.7x107* Li, ;Iny ;Hf, 5Clg cep (C2/m) 1.28x107° 25 88
LizInClg cep (C2/m) 9.7 x10™* Li, ¢Ing gTay ,Clg cep (C2/m) 4.47x107 30 89
LizInClg cep (C2/m) 8.49x10™*  Liy75Y0.16ET0.16Ybo.16IN0.25Z025Cls  ccp (C2/m) 1.17x10™° RT 90
LiInClg cep (C2/m) 9.8x107* Lis,oINg 75ZT0.15C0.05ET0.05Y0.05Cle cep (C2/m) 2.18x107 30 91
LizScClg cep (C2/m) 6.7x107* Li, 5S¢ 5210 5Clg cep (C2/m) 2.23x107° 25 92
Li;ScClg cep (C2/m) — Lis 3755C0.375ZT0.625Clg cep (C2/m) 2.2x107° 25 93
Li,Sc,/5Cly hep (pnma) 1.5x1073 Li,SC0.222IN0.444Cls hep (Fd3m) 2.0x107° 25 30
Li,ZrClg hep (P3m1) 4.0x107* Liy »5Z10 75Feg.25Clg hep (P3m1) 9.8x107* 30 43
Li,ZrCl cep (C2/m) 7.1x107° Li, ,Zr0 5(In/Sc)o 5Clg cep (C2/m) 2.1x107° 30 94
Li,ZrClg hep (P3m1) 5.7 x107° Liy 5Zr 5Y0.5Clg hep (P3m1) 1.19x10™° RT 95
Li,ZrClg hep (P3m1) 1.2x107* Lip »5ZT0 55Al g »5Clg hep (P3m1) 1.13x107° 25 96
Li,ZrClg hep (P3m1) 3.0x107* Lis 1ZT.05Mg0.05Cls hep (P3m1) 6.2x107* 25 97
Li,ZrClg hep (P3m1) 4.0x107* Liy 1Zr0.0sMn 05Clg hep (P3m1) 8.0x107* RT 98
Li,ZrClg hep (P3m1) 3.3x107* Lis 1ZrCl, O; 4 cep (C2/m) 1.3x107° 25 99
Li,ZrClg hep (P3m1) 3.97x 107" Liz 4ZrCl, 404 cep (C2/m) 1.46x107° 25 100
Li,ZrFq hep (P3m1) — Li,ZrF;5Cl hep (P3m1) 5.5x 1077 25 101
Li,HfCl, hep (P3m1) 3.98 x10™*  Li, zHf, ;In, 5Clg cep (C2/m) 1.05x107° 30 102

370 | EES Batteries, 2025, 1, 364-384

© 2025 The Author(s). Published by the Royal Society of Chemistry


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5eb00010f

Open Access Article. Published on 17 March 2025. Downloaded on 2/1/2026 2:22:14 PM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

EES Batteries

View Article Online

Review

(@ T[T awm.m ] (b) (c) 4%
404
10° 4 —~
5 354 \
~ Fos = 30 j
£ % E 25 ] LiCo0,/Li 633Ero 6332r0.367Cls = 70/30
U) ~— < 45 47 T .3 T ' T T b T ¥ T
=~ —8— Oy ©
& —A—& (| o, - Av ' AV A‘ aé’ 404 a0
. 3 Lil § 3541 > 30
1 RN RN
T 0.3 Lil 254 T T T LIFOOZ/l;bPSd =| 70/3|0
00 02 04 06 08 0 20 40 60 & 100 120
X in LigxErqy,ZrClg b 6 Specific capacity (mAh g-')
(d) (e) o—
—~ 10 4 / \

400°C )
HT

®

| e
(] /
500°C el Ml Orth. 1l 3
o A

—O— HT 400 °C
—@— HT 500 °C

[T T T[T o 1T
0.00 0.20 0.40

X in LizyYbyHf,Clg
Li ion content = Vacancy content

Li in octahedral site

vacancy

l||||]¢
0.60

10+ T T T T T
0.0 0.2 04 0.6 0.8

X in LizyYbyHf,Clg
Most efficient ion transport

Fig. 5 Effect of aliovalent substitution on halide phase evolution and ionic conductivity. (a) Phase evolution and corresponding ionic conductivities
for Liz_xEr;_,Zr,Cle. (b) Li* connection along the (100) direction. (c) Charge—discharge voltage profiles of ASSLBs using different SSEs. Reproduced
with permissions from ref. 26. Copyright 2020, American Chemical Society. (d) Phase evolution of Lis_,Yb;_,Hf,Clg annealed at different tempera-
tures. (e) Changes in ionic conductivity at different temperatures for Liz_,Yb;_,Hf,Clg. Reproduced with permissions from ref. 59. Copyright 2021,

Elsevier. (f) Effect of the correlation between vacancy concentration and Li-

Copyright 2023, The Royal Society of Chemistry.

the key to modulating ion transport behavior. This is evi-
denced in the study of Wang et al., who concluded that the
optimal ion transport behavior can only be realized when the
vacancy concentration is equal to the carrier concentration
(Fig. 5£).%*

It is worth mentioning that not all aliovalent substitutions
cause the transformation of intrinsic structure such as
Liz_,In;_,(Zr/Hf),Cls and Lis_,Sc;_,(Zr/Hf),Cls, which main-
the ccp throughout the solid solution
range.?” 88103106 Because their ionic radii are very similar,

tain structure
doping does not make the average ionic radius of the central
metal change significantly. For these compounds, aliovalent
substitution enhances ionic conductivity mainly by the syner-
gistic effect of the Li" sublattice rearrangement and migration
path optimization. In the case of Liz;InCls with a typical layered
structure (Fig. 6a), In*" is only distributed in the (001) plane,
while Li* occupies both the (001) and (002) plane.”® After
doping Zr**, the Li* on the Tet interstitial site Li3 disappears,
and the Li" content on the M2/Li4 site increases, implying that

© 2025 The Author(s). Published by the Royal Society of Chemistry

ion content on ion transport. Reproduced with permissions from ref. 84.

Li" is more preferred in occupying the M2/Li4 site with the
mixed cation distribution. The former provides more vacancies
for Li" migration along the ab-plane, the latter raises Li"
diffusion rate along the c-axis due to the weakened coulombic
repulsion from high-valence cations. The redistribution of Li"
sites leads to the formation of migration channels (Lil/Li2-
Li3-M2/Li4-Li3-Li1/Li2) with lower activation barriers
(Fig. 6b), enhancing the 3D Li' diffusion. Similarly, the
enhanced 3D diffusivity can also be explained by the change
in the preferred orientation of lattice plane.?” For example, by
doping Zr*" in Li;ScClg, Li et al. made the original random
orientation ab planes tend to be aligned in a uniform orien-
tation (Fig. 6¢), which reduced the migration resistance of Li"
conduction in all directions (Fig. 6d), especially in the ab
plane.®> This optimized ion migration behavior was also
reflected by the excellent rate capability of the battery (Fig. 6e).
Notably, it is not difficult to find in Fig. 6d that the Li" conduc-
tion along the c-axis was the speed control step, which deter-
mined the overall Li" migration rate. Therefore, the effect of
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http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5eb00010f

Open Access Article. Published on 17 March 2025. Downloaded on 2/1/2026 2:22:14 PM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

View Article Online

Review EES Batteries
(a) (b) 06 2D conduction 3D conduction
lyckoff 2a Wyckoff 4g Wyckoff 4h 05+ & ﬁ fi ’fb i 4%
M1 M2/Li4 Li1 s IESOUNATA TN ATS
© O o fxifylfyi/il
3 03 j lf; l L3 i [ us |
Wyckoff 2d Wyckoff 8,4i @ I | L] !
Li2 Li3 cl o 02 | L] W !
{1
01 ¢ L g i
¢ [+ (%) o 7N R
0.0 [Ur Lt L u2 M,zlfl'a
b 0 2 4 6 8 10 12 14
Reaction coordinate / A
(©) _ . ()R
(001) plane Li* conduction enhancement = O @ O @& O pmyegreos
1 s [35EEE S
Zr subtitution 8 os th'“:‘)‘ I],v--fz ¢ l'\ 00 i
25 |ar 4.,,"() o Lne 0600660
2 & .O B © W@ © e U diffusion along ¢ axis
9 U" diffusion in ab plane
YN e m I
5 = m_ M=
< L
03
(001) Planes with random orientation (001) Planes with preferred orientation Li1-Tet-Li1 Li1-Tet-Li2 Li1-Tet-Li3
(e) () 6.14 0633 (9)
=~ |o1c = :
Y L~ 6.40 x 11.16
2 ,00]9%%0 0.2C 0.1C| & 6.104 O 0060 5 <
e 00000 05C oa | T4 e S g e ,_/D
£ 0900 00900 | © o B k
= '] ') v o 1) c o
= 000y 0 6.06 057 5§ £ 636 _1112
= 1C 0y < o, O T 8 ’
o 0099,) 05 a 0 00| % (0] - ®
g 09, g 6.02 1 o u3 (26 2 (eh) 054 o a
8 160 9900 S o o 2 E g ﬁww =
o = Q 8 £ 632+ ” F11.08
5 o NCM811/LSCI/LPSCI/Li-In 8 5.98 4 o — +051 5 8 e b
2 » NCM811/LSZCI/LPSCI/Li-In — O w /
" = —o0— ¢
5.94 4 . . . . }0.48 2 628 L —-11.04
0 5 10 15 20 25 0 02 04 06 08 1 = 00 02 04 06 08 10
Cycle number X in LizxScqxZrClg Xin LizsyZryxInyClg

Fig. 6 Cation site distribution and migration pathway affected by aliovalent substitution. (a) Crystal structure of LisInCls. (b) Optimal Li*

diffusion

pathway from bond valence sum calculations. Reproduced with permissions from ref. 78. Copyright 2021, American Chemical Society. (c) Schematic

illustration of Zr**
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parameter with In3*

Zr"*" substitution on the change of c-axis channel size in
LizScClg was carefully considered. The researchers found that
the triangular bottleneck area for Li' migration along the
c-axis was increased with the increase of Zr** (Fig. 6f), which
lowered the migration barrier of the c-axis, obtaining a higher
ionic conductivity.”?

Recently, Li,ZrCls has attracted much attention due to its
cost-effectiveness and good environmental stability, but the
lower ionic conductivity restricts its further development, and
is related to its insufficient number of carriers."””'% In view
of this, Kwak and his coworkers doped In**/Sc*" in Li,ZrClg to
increase the carrier content in the (002) plane, favoring the
more convenient Li* migration along the ab plane.”* At the
same time, due to the difference in electronegativity of the
central metal elements, mixed ionic-covalent bonding is
formed in the crystal structure and local anisotropic lattice
expansion is triggered (Fig. 6g). The existence of mixed ion-
covalent bonding is the signature characteristic of rapid Li"
transport. In addition, attempts to dope trivalent low-cost
metal elements (such as Fe*", AI’**) and divalent metal

372 | EES Batteries, 2025, 1, 364-384

doping amount. Reproduced with permissions from ref. 94. Copyright 2022, Elsevier.

elements (such as Mg>*, Mn*") into Li,ZrCls have also been
shown to effectively improve ionic conductivity by increasing
carrier contents and broadening migration channels.**°¢%

3.2 Isovalent cation substitution

Compared with aliovalent substitution, the isovalent substi-
tution of the central metal cation does not affect the carrier
content and vacancy content. Instead, it enhances the ionic
conductivity mainly by changing the basic structural frame-
work or migration channel size due to the difference in ionic
radii. Li et al. elevated the ionic conductivity of Li;YCls by
doping In*", and its structure was gradually converted from
hep structure to ccp monoclinic phase structure (Fig. 7a).**

particular, the ionic conductivity of all samples reached 1 x
1072 S em™" when the doping amount exceeded 50%, which
confirms that the monoclinic phase structure is the most
favorable structure for Li" conduction. It is worth mentioning
that In** doping also significantly improves the humidity stabi-
lity of LizY;_,In,Cls, which is attributed to the formation of
LizY;_,In,Clg-xH,O intermediates to prevent the hydrolysis of

© 2025 The Author(s). Published by the Royal Society of Chemistry
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LizYClg (Fig. 7b). Inspired by LizY; ,In,Cls, Zhou et al. syn-
thesized the chlorospinels Li,Scy ¢66_xIN:Cls (0 < x < 0.666),
which exhibited high ionic conductivity (1.83-2.03 x 107> S
cm™') over the entire compositional range.*® It was associated
with the low occupancy of Oct sites and Tet interstitial sites,
providing more vacancy sites and forming the 3D Li" diffusion
channel with a lower migration barrier (Fig. 7c¢ and d).
Particularly, the ASSLB assembled with Li,In;;;Scy/3Cls also
displayed favorable charge-discharge behavior and rate capa-
bility when matched with LiNij g5C0o1Mng 050, (NCM85), as
shown in Fig. 7e. In addition, although some computational
simulations have shown that La>" has the potential to enhance
ionic conductivity by increasing the lattice size and broaden-
ing the migration channels due to the larger ionic radius,
further experiments are needed for validation."***"*

3.3 Anion substitution

As the skeleton ions constituting the bulk structure of halide
SSEs, the local coordination environment of halogen ions
plays a crucial role in the ion transport rate. By changing the
polarization of the Li-X bond, modifications in the lattice
parameters and even anion sublattice stacking style can be
triggered.

Based on the fact that the more polarizable anion sublattice
is more beneficial for Li" migration, Tomita and his group
explored the effect of different halogen doping on the crystal
structure and ionic conductivity in Li;InBre.>"''> As expected,
F~ doping caused the contraction of the lattice parameter and
the decrease in ionic conductivity, while I~ doping led to the

© 2025 The Author(s). Published by the Royal Society of Chemistry

expansion of the lattice parameter and the increase in ionic
conductivity. Surprisingly, because CI~ doping is ordered
enough to compensate for the negative effects of lattice shrink-
age, the ionic conductivity was also ultimately improved. The
substitution mechanism was further explained in studies
regarding LizHoClg_,Br,, Liz;HoBre_,J, and
Li,ZrFe_,Cl.2%*'°" For example, Plass et al. obtained faster
Li" diffusion channels with low migration barriers by doping
LizHoBre with 1", which has a larger ionic radius and lower
electronegativity. This effect originated from the increase in
interplanar distance and coordination polyhedral volume,
which led to the widening of Li' diffusion channels.
Meanwhile, the weaker bond strength between Li" and X~ led
to the weakening of the binding force of the skeleton ion
against Li". It should be noted that the doping amount of I~
should not be excessive, as this affects the mixed distribution
of cation sites in the lattice and increases the electrostatic
repulsion, thus inhibiting the rapid Li" diffusion and lowering
the ionic conductivity.

Besides lattice expansion and lattice softening, anion sub-
stitution can also induce a change in the anion sublattice
stacking style. Liu et al. prepared a new halide family
Li3sMBr;Cl; (M = Y/Er), by mechanochemical milling and hot-
pressing (HP) treatment, which exhibited the same ccp mono-
clinic phase structure as the endmember LizYBrs.”® Li;YBr;Cl;
achieved ultrahigh ionic conductivity (~7.2 x 107> S ecm™),
which was the result of synergistic modulation of the two
factors. On the one hand, due to the mixed distribution of Li*
in the Oct and Tet interstitial sites, more vacancies were gener-
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ated in the Oct site and the energy barrier was lowered (Fig. 8a
and b), thus optimizing the 3D Li* diffusion channel. On the
other hand, the hot-pressing-treated samples formed denser
blocks and better grain boundary contacts, which greatly
reduced the grain boundary impedance and benefited the
overall ionic conductivity. The high conductivity of Li;YBr;Cl;
was further explained by a first-principles study."'? Intralayer
vacancy diffusion in the Li layer promotes interlayer concerted
diffusion between different metal layers, which accelerates the
Li" transport rate.

Significantly, although it is widely believed that 0>~ with
high electronegativity is not favorable for fast ionic conduc-
tion, many recent studies have demonstrated that O*>~ doping
possesses  unique advantages in enhancing ionic
conductivity.'*>'*® As shown in Fig. 8c, Tanaka et al. reported
a new oxyhalide SSE, LiMOCIl, (M = Nb/Ta), belonging to the
orthorhombic structure (space group: Cmc21), in which O~ is
only responsible for connecting the octahedra together.''* The
addition of O broadened the bottleneck size of the Li*
diffusion channel (1.939 A), achieving an ultrahigh ionic con-
ductivity of 1.07 x 107> S em™", which is comparable to those
of liquid electrolytes. In addition, O>~ doping can also affect
the ionic conductivity by changing the crystal structure and Li"
site distribution. Park and Cheng et al. achieved a structural
transition from the hcp trigonal phase to the ccp monoclinic
phase by increasing the amount of O°  doping in
Li,ZrClg.*®'® Accompanied by the stabilization of Li intersti-
tial sites and the enrichment of carrier concentration (Fig. 8d),
the ion transport channel was broadened and the ionic con-
ductivity was successfully raised above 1 x 107 S cm™.

374 | EES Batteries, 2025, 1, 364-384

Interestingly, O>~ doping seems to enhance the amorphous
proportion of halide SSEs, which is extremely important for
inducing polyhedrons distortions and lowering the migration
barriers.**""”"'® Similar amorphous characteristics have been
recent studies on nitrogen doping. The
Liz,TaCl;N, synthesized by Hong et al. exhibits a highly amor-
phous structure, demonstrating exceptional ionic conductivity
(up to 7.34 x 107 S em™ ), 51gn1f1cantly exceeding that of most
conventional halide SSEs.?* This remarkable performance was
attributed to the incorporation of nitrogen, which alters the
local coordination environments of both cations and anions,
thereby establishing a unique and efficient Li* migration
mechanism within the amorphous structure.

observed in

3.4 Double-doping strategy

In order to provide halide SSEs with both high conductivity
and excellent interfacial stability, double-doping strategies
have emerged as a concern. For example, Subramanian et al.
prepared Li, 4Yo.4Zr06Cls.85F015 SSE through the high-energy
ball milling method.""® Among them, Zr** doping increased
the vacancy concentration and cation disorder, and a high
ionic conductivity of 1.45 x 10~ S cm™" was obtained, whereas
F~ doping contributed to the formation of stable Li*-conduct-
ing cathode-electrolyte interphase (CEI), and the electro-
chemical window was widened to 1.29-3.9 V. In addition,
structural modulation by the double-doping strategy was also
observed in a UCls-type LaCl; SSE. Hao et al. achieved high
ionic conductivity and superior compatibility with Li metal by
doping both Zr** and 0~ in a LaCls-based SSE.®* It was attrib-
uted to the Zr*~0*~ co-doping strategy that makes the anion

© 2025 The Author(s). Published by the Royal Society of Chemistry
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sublattice more stable and smoothes the 1D Li" transport
channel. Indeed, such a double-doping strategy can be further
extended to multi-ion doping.”"'*° Song and his group syn-
thesized the high-entropy halide SSE
Lis -5Y0.16Er0.16Ybo 16100 25ZT0 25Cls (HE-LIC) by replacing In®*
in LIC with various metal elements.”® The local lattice distor-
tion triggered by the high entropy effect effectively improved
the diffusion kinetics of Li* and Cl~, which enhanced the Li*
conductivity and oxidation stability.

In summary, the chemical substitution of halide SSEs can
tune the vacancy concentration and modify the Li* migration
channel, thereby attaining aliostructural/isostructural alloy
halides with higher ionic conductivity. Nevertheless, more
efforts are expected to explore the feasibility of multi-element
doping in order to further enrich the halide SSEs family to
improve its competitiveness in the SSEs field.

4. Interface modification by chemical
substitution

In addition to the ionic conductivity of SSEs, interfacial issues
between SSEs/electrodes should not be neglected, as they sig-
nificantly affect the coulombic efficiency, rate capability and
cycle life of ASSLBs.*>'*'""** In order to construct high-energy
and long-life ASSLBs, it is necessary to investigate the electro-
chemical stability of halide SSEs and effectively regulate the
interface behavior through modification strategies.

4.1 Intrinsic electrochemical stability

The electrochemical stability of SSEs is closely related to the
electrochemical stability window, the upper and lower limits of
which represent the plating/stripping potentials, respectively,
in which SSEs do not suffer from any redox reactions. And SSE
with a wide electrochemical stability window can be better
matched with high-voltage cathode active materials and high
specific capacity Li metal anode to maximize the energy
density of ASSLBs and achieve stable cycling. As shown in
Fig. 9a, Mo et al. evaluated the thermodynamic equilibrium
voltage curves and phase equilibria of LizYCls and LizYBrs by
theoretical calculations, both of which have a wide electro-
chemical window (LizYCls: 0.62-4.21 V; Li;YBrg: 0.59-3.15 V),
hoping to achieve great contact with the electrodes.®® The
relationship between the thermodynamic intrinsic electro-
chemical window and composition of halide SSEs is specified
in Fig. 9b, where the F~ and Cl -based halides indeed exhibit
high oxidation potentials. However, the calculation results of
the mutual energy between chloride SSEs and cathode
materials show that chloride SSEs exhibit high mutual energy
(~100 meV) when matched with the high-pressure ternary
system NCM (Fig. 9¢)."*® It is well above the threshold for the
interfacial reaction to occur, implying that the severe inter-
facial reaction is occurring. As for the reduction stability at low
potentials, even though the group III elements represented by
the Sc, Y, and La-Lu exhibit the lowest reduction potentials

© 2025 The Author(s). Published by the Royal Society of Chemistry
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(0.41-0.92 V vs. Li'/Li), it is still higher relative to the Li metal
anode.®®

In order to improve the high-voltage stability and reduction
stability of halide SSEs, current modification measures include
adding a coating or buffer layer between the electrode
materials and SSEs.?”'?®7'2° However, this increases the
assembly cost of ASSLBs and is not suitable for commercial
production. Chemical substitution can affect the degree of
electron localization between M and X due to the difference in
electronegativity, thus determining the oxidation and
reduction potentials. Tham et al. explored the influence of
different substitution types on the electrochemical stability of
halide SSEs with the help of first-principles calculations."*®
They suggested that doping halogen ions with higher electro-
negativity yields higher oxidation potentials, while doping
cations with lower electronegativity obtains lower reduction
potentials due to the weakened attraction against electrons.
This provides design guidelines for the experimental synthesis
of halide SSEs with excellent electrochemical stability.
Furthermore, the volume change at the SSEs/electrode inter-
face is also crucial for interfacial compatibility; in particular,
the Ni-based cathode material has serious volume shrinkage
under high pressure, resulting in cracks and contact loss at the
interface, which decays the cycle performance."***** The par-
tially substituted halides shown in Fig. 9d demonstrate excel-
lent mechanical stability and are expected to be key com-
ponents in high-voltage batteries.”*® The battery configur-
ations and electrochemical performances of ASSLBs using
halide SSEs are summarized in Table 2.

4.2 Stability of halide SSEs towards Li metal anode

In view of the poor reduction stability of halide SSEs, when
they are directly matched with Li metal anode, continuous
interfacial reaction and lithium puncture will occur, shorten-
ing battery life and even causing safety problems. For example,
the contact of LizMClg with the Li metal anode leads to the
occurrence of a reduction reaction, in which M** is reduced to
M°. 134135 M® and another reaction product, LiCl, form a mixed
ion-electron conduction (MIEC) interface (Fig. 10a), where suc-
cessive electrons pass through the interface to drive the con-
tinuation of the thermodynamically favorable reduction reac-
tion. The continued accumulation of reaction products rapidly
increases the interfacial impedance and eventually gives rise to
battery failure as Li;MCl, or Li metal is depleted. This was con-
firmed by Riegger et al. in their study on the interfacial com-
patibility between Li;InClg and Li metal anode."*> As shown in
Fig. 10b, the interfacial impedance increased with time, which
was attributed to the non-self-limiting interfacial reaction
between the Liz;InClg and the Li metal anode.

In liquid batteries, LiF is the key component for stabilizing
SEI membranes due to its wide electrochemical window, excel-
lent ionic conductivity and electronic insulation as well as suit-
able elastic modulus."***** Correspondingly, constructing an
in situ-formed F-rich interfacial layer at the SSEs/Li metal
anode interface can effectively inhibit the formation of the
MIEC interface and lithium dendrite growth (Fig. 10a).'43714
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Fig. 9

Intrinsic electrochemical stability of halide SSEs. (a) The thermodynamic equilibrium voltage profile and phase equilibria for LizYCle and

LisYBrg. (b) Calculated thermodynamics of inherent electrochemical windows for Li-M-X ternary compounds (M = cation, X = F, Cl, Br, |, O, S).

Reproduced with permissions from ref. 66. Copyright 2019, Wiley-VCH.

(c) Mutual reaction energy between common cathodes and halide SSEs.

Reproduced with permissions from ref. 125. Copyright 2021, American Chemical Society. (d) The percentage volume changes caused by the SSEs/
cathode interfacial reaction. Compounds are mechanically stable with a percent change in volume of less than 10%. Reproduced with permissions

from ref. 130. Copyright 2023, The Royal Society of Chemistry.

Yu et al. attempted to dope F~ into Li;YBre to improve the
degradation of LizYBrs in contact with the Li metal anode."*®
The assembled Li//Li;YBrs5 ;F, 3/LCO@LIC battery maintained
a higher discharge capacity even after 70 cycles (Fig. 10c),
which was attributed to the findings from the investigation of
the SSE/Li interface post-cycling. XPS depth profiling results
revealed that the characteristic peak of the Li-F bond at
~684.7 eV gradually increased with increasing etching level,
indicating the formation of abundant LiF at the interface
(Fig. 10d). This was corroborated by the SEM image of the SSE/
Li interface, which showed a dense and homogeneous F-rich
interfacial layer with a reticular structure (Fig. 10e). The in situ

376 | EES Batteries, 2025, 1, 364-384

F-rich interfacial layer not only passivated side reactions at the
interface but also mitigated the excessive stress caused by
inhomogeneous Li deposition, thereby inhibiting the growth
of lithium dendrites.

Interestingly, the amorphous content of the material also
seems to influence the reduction potential. For example, the
reduction potential of amorphous and crystalline
Lio 35La0.55TiO; differs by 0.5 V."*® Hu et al. obtained materials
with more amorphous content by doping O*~ in Li,ZrClg; as a
result Li; ;5ZrCly 7500 5 exhibited a reduction potential of 0.37
V lower than that of Li,ZrClg."'® However, the magnitude of
this reduction was not sufficient to achieve direct compatibility

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Table 2 Summary of battery design and electrochemical performances of ASSLBs using halide SSEs (LCO: LiCoO,; NCM811: LiNig gCog1Mng10,;
NCM622: LiNig 6C0g 2Mng 205; NCM85: LiNig g5C00 1MNg 0502 NCM955: LiNig 90C00.05sMNg.0502; NCM523: LiNig 5C0g 2Mng 305)

Voltage
range

Electrochemical performances (mA h g™)

Current density/specific
capacity/initial coulombic

Current density/cycle
number/specific

Battery configurations T(°C) (Vs Li'/Li) efficiency (ICE) capacity/capacity retention Ref.
Li-In//LizYClg//LCO 25 2.5-4.2 0.44C/~117/94.8% 0.1C/100/~114/98% 22
Li;1Sng//LizPS,//LCO@Li, 635ETo 633270 367Cle RT 3-4.3 0.1C/~112/96.4% 0.5C/200/~80/— 26
Li-In//LigPS5Cl//Lis 1Yo 4Hf ¢Cle//LCO RT 2.9-4.2 0.1C/120/93% 0.1C/100/~80/70% 83
Li//Lis 3PS, 5Cly.oBTo 5/ Lis Yo 6ZT0 4Cls.85Fo 15/ RT 2.5-4.25 0.1C/190/87% 0.5C/250/128/95.5% 119
/NCM811

Li//Li;YBrs//LCO@LIC RT 2.5-4.2 0.14 mA cm 2/126.7/89%  0.14 mA em%/70/~15/12% 136
Li//Li;YBrs ,F ;/LCO@LIC RT 2.5-4.2 0.14 mA cm2/121.6/90%  0.14 mA cm™%/70/~73/60% 136
Li-In//Lis ,SiSbo.sSsI/Lis s Ybo 7Zr sClg/NCM622  RT 2.8-4.3 0.2C/170/— 0.2C/150/136/80% 103
Li—In//Li;0GeP,S15//Liz 556YDo 405 ZF0.402Cle//LCO 25 2.5-4.5 0.1C/193.9/93.3% 0.3C/50/149.7/82.1% 60
In//LiyoGeP,S1,//LisInCle//NCM811 25 2.5-4.4 0.13 mA cm 2/154/84.2%  0.13 mA cm™2/70/150/97.4% 23
Li-In//LigPS5Cl//Liz;InCls/LCO RT 3-4.2 0.1C/104.4/92.2% 0.1C/50/~57/54.5% 88
Li-In//LigPSsCl//Li, 5Ing 7 Hf sCle//LCO RT 3-4.2 0.1C/108.1/96.8% 0.1C/50/~7871.7% 88
Li-In//LigPSsCl//Li, ¢Ing g Ta ,Cle//LCO 30 3-4.6 4C/~135/— 4C/1400/~95/70% 89
In//LigPSsCl/Li;InCls//LCO@LisInCl, gF; , RT 2.6-4.47 0.063 mA cm2/160.6/92%  0.125 mA cm™2/70/102/— 28
In//LizScClg//LCO 25 2.5-4.2 0.13 mA cm%/126.2/90.3%  0.13 mA cm™~%/160/104.5/82.8% 39
Li-In//LigPSsCl//Lis 5S¢0 5ZT0 sCle//NCM811 RT 2.8-4.3 0.1C/203.6/89.6% 0.2C/200/174.5/90% 92
Li-In//Lis ,Sio.»Sbo.3S51//Li»S¢,/3CL/NCM622 RT 2.8-4.3 0.5C/~170/— 0.1C/110/170/— 11
Li-In//Lig ;Sio.7Sbo.5Ss1//LiyScy 31N, 3Cly//NCM85 RT 2.8-4.8 0.2C/~215/— 0.2C/110/~205/95% 30
Li-In//LigPS5Cl//Li,ZrCls//LCO 25 2.5-4.2 14 mA g~ %/137/97.9% 70 mA g~'/100/114/— 107
Li-In//LigPSsCl//Li,ZrCls/NCM811 25 2.98-4.18 0.1C/152.3/84.3% 0.1C/100/~133/87.4% 96
Li—In//LigPSsCl//Liy.5Z0 75Alp ,5Cle/NCM811 25 2.98-4.18 0.1C/166.8/87.2% 0.1C/100/~157/94.3% 9%
Li-In//LigPSsCl//Lis sZr0 1N, sClg/NCM811 25 2.82-4.42 0.2C/174.5/87.5% 1C/500/~110/74% 137
Li-In//LigPS5Cl//Li, 1Zry osMgo.05Cls//LCO 25 3-4.3 0.1C/147/96.6% 0.3C/100/121.3/~87.1% 97
Li-In//LZCl; ¢Fy 4//LCO 30 2.52-4.32 0.1C/132/95.57% 0.5C/70/86.4/76% 138
Li-In//LigPSsCl//Liy 55ZrCl, 5500 5/LCO 25 2.48-4.18 14 mA g~%/137.5/98.28% 700 mA g~'/150/102/— 116
Li-In//LigPSsCl/Liy sZrClsFo sO0.5//NCM955 RT 2.5-4.35 0.1C/207.1/— 0.5C/500/125.8/81.2% 139
Li//Lio s85Ta0.235La0.475Cls//NCM523 30 2.20-4.35 0.44C/163/84.96% 0.44C/100/~133.8/81.6% 32
Li-In//Li;YClg//Li; ,5TaClsNg 40//NCM811 25 3-4.3 0.5C/~130/— 0.5C/350/124.4/95.47% 35
Li-In//LisPS5Cl/LiAlOCI-981//LCO 25 2.5-4.3 0.1C/145.85/97.3% 0.5C/300/~117/86.95% 118
Li-In//LigPSsCl/HE-LIC//LCO 25 2.5-4.2 0.1C/144/97% 0.5C/500/~115/88.9% 90

between Li; ;5ZrCl, ;5005 and the bare Li metal anode, as
demonstrated by the high overpotential (~0.7 V) observed
during cycling of the assembled Li//Li; y5ZrCl, 7500 s/Li sym-
metric battery. Therefore, the incorporation of an intermediate
layer, such as LPSC, between Li; ;5ZrCl, ;500 5 and the Li metal
anode remains crucial to alleviate severe interfacial side reac-
tions and guarantee stable electrochemical performance. In
addition, the LaCls;-based SSE developed by Yin et al,
Lig 355Ta0.035L.80.475Cl3, could achieve close contact with the Li
metal anode. At a current density of 1 mA h em™?, the lithium
symmetric battery could maintain stability for over 5000 hours
(Fig. 10f), primarily due to the formation of a gradient insulat-
ing passivation layer composed of electron-insulating LiCl at
the interface, which promoted uniform Li plating/stripping be-
havior (Fig. 10g). In particular, the dense nanocrystalline
characteristics of Lig 355Ta0 235La0.475Cl; also contributed to
enhancing the SSE/Li interfacial stability, as demonstrated by
the close contact between Li,sg5Ta0235La0475Cl; and the Li
metal anode, which persisted even after 50 hours of cycling
(Fig. 10h).

4.3 Stability of halide SSEs towards high-voltage cathodes

Although most halide SSEs display high oxidation potentials
(>4 V vs. Li'/Li), they are still insufficient to directly match

© 2025 The Author(s). Published by the Royal Society of Chemistry

some high-voltage Ni-rich layered LiMO, (M = Ni, Co, Mn, and
Al) cathodes. In the case of Cl-based halides, Cl™ is oxidized to
form the Li-deficient metal chloride MCl; above 4.3 V.® In par-
ticular, when Liz;InCls comes into contact with high-capacity
Li; 15Mny 53Nig 265C00.05502 (LRM), the LizInClg suffers a severe
oxidation reaction to form In,O; at a high voltage of 4.8 V.'*”
These Li-deficient metal compounds block the Li" transport
path in the composite cathode and continuously decompose
the SSE, thus deteriorating the cycling stability of the ASSLBs.
Hence, the search for SSEs with both high-voltage stability and
high ionic conductivity is crucial for the construction of high
energy density ASSLBs.

The F-based halide is predicted to have the oxidation poten-
tial of more than 6 V, so the oxidation reaction under high
voltage can be inhibited by in situ formation of F-rich CEI at
the cathode/SSEs interface (Fig. 11a). A dual-halogen SSE,
LizInCl, ¢F, », was developed by Zhang et al.”® Compared with
the LizInClg, the ASSLB with bare LiCoO, and LizInCl, gF; ,
could deliver higher reversible capacity (203.7 mAh g™') and
initial coulombic efficiency (89.2%) at a cut-off voltage of 4.8 V
(Fig. 11c). According to the first principles computation result,
this stemmed from the generation of F-containing compounds
(including LiF, LiInF,, and InF;) after LizInCl, gF, , exceeded
the theoretical oxidation limit of 4.42 V (Fig. 11b), which
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Fig. 10 Stability between halide SSEs and Li metal anode. (a) Interfacial comparison of LizsMClg and LizMClg_,F, in contact with Li metal anode. (b)
Evolution of interfacial impedance with time extension of Li//LizInClg//Li symmetric battery. Reproduced with permissions from ref. 135. Copyright
2020, Wiley-VCH. (c) Cycling stability for Li//LizYBrs7Fo 3//LCO@LIC battery. (d) Overall XPS spectra evolution of F 1s at the LisYBrs;Fo 3/Li interface
under different etch levels. (e) SEM of the Li metal anode surface morphology after cycling 1000 h with LisYBrs;Fo3 SSE direct matching.
Reproduced with permissions from ref. 136. Copyright 2021, Wiley-VCH. (f) Li plating/stripping voltage profiles for Li//Li 388 Tao 238La0.475Cls//Li sym-
metric battery. (g) Schematic of the gradient insulation passivation layer. The red double arrows represent Li* fluxes. (h) Cross-sectional SEM of Li/
Lip.388Ta0.238La0.475Cls/Li metal interface after cycling 50 h. Reproduced with permissions from ref. 32. Copyright 2023, Springer Nature.

formed a passivated interphase that prevented the SSE from
further decomposition. This was further confirmed by the F
K-edge XAS spectra of the cycled LCO/SSE composite cathodes,
both of which exhibited a high-energy shift compared with the
pristine SSE and a low-energy shift in absorption edges com-
pared with standard LiF (Fig. 11d). This implied the formation
of a LiF-rich passivating cathode-electrolyte interphase (CEI)
after the first cycle, and subsequent scanning transmission
X-ray microscopy (STXM) mapping of a single cycled LCO par-
ticle also showed a uniform distribution of F on the surface
(Fig. 11e).

Similarly, Shen et al. succeeded in raising the practical oxi-
dation limit of Li,ZrCl, to 4.87 V with excellent ionic conduc-
tivity (~1.13 x 107 § cm™") by employing the F~/O* co-doping
strategy.*® The TEM image of the cycled NCM with LZCFO,
shown in Fig. 11f, indicated that a flat CEI layer was uniformly
generated on the surface, covering the particle, which was
responsible for the enhanced oxidation stability. The chemical
composition of the CEI layer for the cycled composite cathode

378 | EES Batteries, 2025, 1, 364-384

was further revealed by ToF-SIMS and XPS (Fig. 11g). The con-
centration of ClO,~ for the cycled NCM with LZCFO was sig-
nificantly lower, demonstrating that the decomposition of the
SSE was effectively inhibited by the formation of the F-rich
CEL Surprisingly, unlike F~ doping, the mixed metal-chlorine
spinel halide Li,In,,;3Scy/3Cl, prepared by Zhou et al. was able
to achieve stable cycling at a cut-off voltage of 4.8 V when
matched with bare NCM85 (Fig. 11i).*° It was benefited by the
low electronic conductivity of Li,Iny;;ScysCly (4.7 x 107'° S
cm™") leading to minimal reaction with NCM85. In addition,
related studies have suggested that the oxidation stability of
halide SSEs may also be related to the stability degree of the
valence electron structure for the central metal element. As
described by Xu et al., Li;YbClg exhibits good oxidation stabi-
lity at over 4.5 V due to the fully occupied atomic orbitals of
Yb, suggesting that Yb®" has the potential to enhance the
high-voltage stability of halide SSEs.*

In summary, chemical substitution has been shown to
broaden the intrinsic electrochemical window of halide SSEs,

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 11 Stability between halide SSEs and high-voltage cathode. (a) Formation of F-rich CEl prevents blockage of Li* conduction path in composite
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potentials. (c) Charge—discharge voltage profiles comparison of different

cathode SSE batteries in the voltage range of 2.6-4.8 V. (d) F K-edge XAS spectra of the cycled LCO/SSE composite cathodes. (e) STXM mapping
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making an important contribution for driving the high energy
density of halide-based ASSLBs.

5. Summary and outlook

As opposed to other types of SSEs, it is the intrinsic character-
istics of halide SSEs that have enabled them to become the
potential stock for the energy storage field of high-performance
ASSLBs in recent years. The first is that the lower valence of
halogen ions gives the halide SSEs weaker bond cooperation
against Li', resulting in lower energy barrier migration for Li*
in the skeleton structure. Secondly, the larger ionic radii and
higher polarizability of halogen ions facilitate the formation of
wider Li" transport channels and higher ion mobility, which
ultimately enables halide SSEs to display excellent ion transport
kinetics and good deformability. Even the stringent require-
ments of ASSLBs for the assembly environment are reduced
due to the stronger stability of halide SSEs in air/humidity.

In this review, starting from the structural framework and
ionic conduction mechanism, the basic concepts of halide
SSEs were discussed and the implications of anion polarizabil-

© 2025 The Author(s). Published by the Royal Society of Chemistry

ity, cation disorder and stacking faults on Li-ion migration
were specifically analyzed. Immediately thereafter, the
common substitution types were summarized and it was
shown that optimized crystal structures and Li" migration
kinetics can be obtained by selecting suitable substituent
elements and contents for the chemical modification of halide
SSEs. In addition, the mechanism of severe interfacial reac-
tions between halide SSEs and high-voltage cathodes or Li
metal anode has been revealed, and the strategy of inhibiting
interfacial side reaction by using chemical substitution has
been proposed to achieve excellent electrochemical compatibil-
ity with common electrodes. Although halide SSEs have made
impressive achievements in just a few years, shortcomings
caused by the physicochemical nature of halogen ions still
prevent them from being commercially promoted. Some poten-
tial future research directions are as follows:

(1) In-depth exploration of the relationship between local
structure evolution and ion transport. Currently, the RT ionic
conductivity of most halide SSEs has not yet reached 10~ S
em™; in particular, the development of fluoride SSEs is
seriously limited, with the maximum of only 107> S em™,
which is far from the theoretically calculated value. The ionic
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conductivity of halide SSEs is related to their overall/local
structure, so it is necessary to have a comprehensive and
thorough understanding of the crystal structure and ion
migration path of halide SSEs, with the focus on how the local
structural evolution shapes the ion transport behavior in
halide SSEs. In addition, while amorphous halide SSEs
demonstrate great potential in terms of reducing ion migration
barrier, the role played by amorphous degree in achieving high
ionic conductivity remains unclear, necessitating further
exploration into their formation mechanisms. The mechanical
knowledge of structure-property relationships can provide
materials design principles for engineering strategies such as
regulating the trade-off between vacancy concentration and Li"
content, modulating cation disorder and optimizing synthesis
parameters, ultimately giving rise to the quantum leap in the
ionic conductivity of halide SSEs.

(2) Advanced theoretical calculations can guide the discov-
ery of novel halide SSEs with excellent ionic conductivity and
electrochemical stability. Boosting the ion transport perform-
ance of halide SSEs through elemental substitution has been
widely recognized as an effective tool, but the consideration of
substitution elements for ternary halide SSEs has traditionally
been obtained through a large number of experimental
studies, which is both time-consuming and labor-intensive.
With the development of computer technology, the advent of
high-throughput simulation helps to quickly screen and ident-
ify appropriate substituent ions and content, which greatly
elevates the efficiency of preliminary experiments and shortens
the experiment period. In addition, advanced computational
methods, including AIMD and DFT, can be used to evaluate
the chemical/electrochemical stability of halide SSEs, which in
turn can be used to select mild operating conditions and high
specific energy electrode materials for matching.

(3) In situ/operational observation of interface problems
using fine characterization techniques. The degree of inter-
facial reaction between ASSLBs components is so important
that it can determine the overall ion transport rate of ASSLBs.
Yet, using conventional interfacial characterization techniques
is difficult to accurately reflect the dynamic evolution of the
charge/discharge process, which makes the exploration of the
interfacial problems always ambiguous. Therefore, there is an
urgent need for high-precision characterization techniques,
such as transmission X-ray microscopy and X-ray computed
tomography, to continuously monitor the interfacial contact
between components at high resolution without damaging the
interface. And the theoretical model established with the aid
of computational simulation can provide clear insight into the
structure and function of various surfaces, so as to better
guide the formulation of strategies for improving the inter-
facial stability.

To conclude, only by combining advanced theoretical calcu-
lation and characterization methods to clarify the basic
research content of structure and composition can we promote
the commercialization progress of halide SSEs in high energy
density ASSLBs, and better satisfy the wide temperature range
and long lifetime required in practical working conditions.
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