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ud droplet acidity over the US

Stylianos Kakavas, a Georgios Siderakisb and Spyros N. Pandis *ab

The acidity of cloud droplets can vary with size due to differences in aerosol composition and cloud

chemistry and differential soluble gas uptake. Chemical transport models (CTMs) often assume that all

droplets have the same composition and therefore acidity. In this work, we use the PMCAMx CTM to

simulate size-resolved cloud and fog droplet acidity over the US during a winter and a summer month as

a function of altitude. Small droplets are assumed to form on the activated particles smaller than 2.5 mm

and have an average diameter of 20 mm, whereas large droplets form on the coarse particles and have

an average diameter of 30 mm. Our simulations show that large droplets are often more alkaline than

small (up to 100% lower H+ concentrations) especially in regions influenced by dust. In areas with more

acidic conditions, the difference in H+ concentrations between small and large droplets is smaller. The

pH of droplets either decreases or increases with altitude, depending on the composition of the aerosol

on which the droplets were formed. Comparison of the bulk and two-section size-resolved approaches

indicates that current differences in aqueous-phase sulfate concentrations over the US are generally low

and usually less than 20% at approximately 10 min intervals (the most frequent difference ranges from

zero to 5%). Based on our results, bulk calculations can simulate current aerosol composition and

droplet pH over the US with small discrepancies. This is due to reduced SO2 emissions causing SO2

levels in clouds to often fall below those of H2O2. Under these conditions the importance of the pH-

dependent ozone sulfate production pathway is diminished. These findings are specific to the US and

may not apply to regions with higher SO2 emissions.
Environmental signicance

This study investigates the variability of the acidity of clouds over a continental region (US) as a function of season, altitude and droplet size. Clouds and fogs are
important for many atmospheric processes, affecting air quality and climate. One of the most signicant properties of these droplets is their acidity which
determines the partitioning of acids and bases between the gas and aqueous phases, the rates of reactions, and their corresponding wet removal rates. Cloud
evaporation leads to aerosol formation, and therefore aerosol composition and acidity can be directly affected by aqueous-phase chemistry.
1. Introduction

Clouds and fogs are important for many atmospheric processes,
affecting air quality and climate.1 One of the most signicant
properties of these droplets is their acidity which determines
the partitioning of acids and bases between the gas and
aqueous phases, the rates of reactions, and their corresponding
wet removal rates.2,3 Cloud evaporation leads to aerosol forma-
tion, and therefore aerosol composition and acidity can be
directly affected by aqueous-phase chemistry.2

The calculation of cloud droplet pH has long been a part of
chemical transport and climate models because of the need to
simulate sulfate production. Sulfate is an important component
of ne particulate matter, and its production in cloud and fog
s (ICE-HT/FORTH), Patras, GR 26504,

rsity of Patras, Patras, GR 26504, Greece.

1110–1118
droplets is signicantly inuenced by droplet acidity.4 Many
chemical transport and climate models, such as CAM-Chem,
CMAQ, GEOS-Chem, TM4-ECPL, and WRF-Chem incorporate
cloud water pH in their calculations.2 In some of these models
the calculation of cloud pH is simplied. For example, CAM-
Chem does not account for particulate nitrate, and it does not
explicitly account for the oxidation of S(IV) by ozone and
hydrogen peroxide.2,5 Other models, such as TM4-ECPL and
GEOS-Chem, neglect the effects of dust.6–9 In some model
applications a constant droplet pH is assumed.10,11 Measure-
ments of cloud droplet pH have shown that small droplets are
oen more acidic than the larger ones, indicating a pH
dependence on droplet size.12 Most models use bulk droplet pH
neglecting the heterogeneity of cloud droplets. Previous studies
have shown that the bulk droplet approach can underestimate
sulfate production rates from aqueous-phase chemistry.1,13–15

Shah et al. (2020)16 improved GEOS-Chem cloud water pH
predictions by including the effects of carboxylic acids and dust,
but they did not account for droplet size. Fahey and Pandis
© 2025 The Author(s). Published by the Royal Society of Chemistry
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(2001)13 developed a computationally efficient size-resolved
aqueous-phase chemistry module (Variable Size Resolution
Model or VSRM), which simulates the mass transfer between
the gas phase and different groups of droplets. This model in its
default operation mode determines whether bulk or two-section
size-resolved chemistry should be applied based on a set of
semi-empirical rules. The size-dependence of cloud drop
composition can also impact other atmospheric processes, such
as wet removal rates of pollutants, ice formation, etc.

Despite the above progress, there are still large discrepancies
in droplet pH predictions among chemical transport and
climate models, especially in areas inuenced by dust.2 Also,
measurements of cloud and fog droplet pH indicate that there
can be signicant errors in the simulated pH.

In this study, we use the PMCAMx chemical transport model
(CTM), which incorporates VSRM, to simulate the size-resolved
acidity of cloud and fog droplets over the US for a wintertime
and a summertime period (February and July 2017). Our objective
is to quantify the pH variation between small and large droplets
and its dependence on location and altitude. We also present
results based on the bulk droplet assumption, examining its
impact on particle composition, and compare our predictions
with cloud water pH measurements from specic locations.
2. Model description
2.1 PMCAMx

The PMCAMx CTM used in this work is the research version of
the CAMx model.17 The gas-phase chemical mechanism used is
a modied version of SAPRC,18 and includes 237 reactions of 91
gas species and 18 radicals. To describe the aerosol size and
composition distribution, a 10-size section representation
(diameters from 40 nm to 40 mm) is used, assuming that each
size bin is internally mixed. Therefore, PMCAMx can predict
PMx concentrations where x can be equal to (among other
choices) 1, 2.5, and 10 mm. The aerosol components considered
in the model include sulfate, nitrate, ammonium, sodium,
chloride, potassium, calcium, magnesium, other inert crustal
species, elemental carbon, primary and secondary organic
species and water. The aerosol and gas phases are assumed to
be always in equilibrium in the present study, while for the
thermodynamic calculations of inorganic aerosol species the
ISORROPIA-lite model is used, which assumes that aerosol is
always in metastable state (liquid aerosol) even at low RH.19

ISORROPIA-lite also considers the effects of secondary organic
aerosol (SOA) water on inorganic aerosol thermodynamics. In
this work, the SOA hygroscopicity parameter is assumed to be
equal to 0.15.19,20 For the simulation of primary and secondary
organic aerosols, the volatility basis set (VBS) approach of
Donahue et al. (2006)21 is used, while aqueous-phase chemistry
is simulated using the VSRM module of Fahey and Pandis
(2001)13 as described below.
2.2 VSRM

The Variable Size Resolution Model (VSRM) is based on the
chemical mechanism of Pandis and Seinfeld (1989),22 but
© 2025 The Author(s). Published by the Royal Society of Chemistry
includes Ca2+ in the list of particle components as well as H2SO4

in the gas phase. In this work, K+ and Mg2+ have been added to
the list of simulated particle components together with their
impact on the acidity of droplets through the ion balance. VSRM
simulates the evolution of 21 gas-phase and 50 aqueous-phase
species and includes 109 aqueous-phase chemical reactions. It
calculates the time-dependent uptake of gases into droplets
separately for each droplet group by solving the corresponding
differential equations, as described by Fahey and Pandis (2001).13

VSRM was originally developed to save computational time in
aqueous-phase chemistry simulations due to its capability to
perform either bulk or two-section calculations depending on the
composition. Fahey and Pandis (2001)13 have shown that this
approach allows sulfate predictions to match closely the predic-
tions of a six-section size-resolved model, while reducing the
computational cost by an order of magnitude.

Droplets are assumed to be formed instantaneously on
particles with size above a critical dry diameter, with smaller
particles assumed to be interstitial aerosol. Fahey and Pandis
(2001)13 originally assumed a critical diameter of 0.7 mm.
However, more recent studies suggest a lower average critical
diameter.23,24 In this study, we assume a critical diameter of 0.3
mm. Therefore, particles in the rst three size bins of PMCAMx
are considered interstitial aerosol. Particles with dry diameters
larger than the critical diameter and up to 2.5 mm become
“small” droplets, while particles with dry diameters greater than
2.5 mm become “large” droplets. The 2.5 mm cutoff is an
empirical choice used to separate more acidic (PM2.5) from
alkaline (PM2.5–10) particles, based on ndings from previous
studies on aerosol acidity. A 1 mm cutoff could also be consid-
ered as an alternative. Small droplets are assumed to have an
average diameter of 20 mm, while large droplets have an average
diameter of 30 mm. For bulk calculations, an average droplet
diameter of 20 mm is assumed. It should be noted that sulfate
predictions are not signicantly affected by the assumed
droplet diameters.14

Gas phase concentrations, cloud liquid water content (LWC),
and aerosol size and composition distribution are the main
inputs to the aqueous-phase module. VSRM is applied in
PMCAMx when LWC and temperature are higher than
0.05 g m−3 and 268 K in a grid cell respectively, as it handles
liquid cloud microphysics exclusively. At lower temperatures,
ice processes, which VSRM does not support, dominate. Also, it
is assumed that 80% of the cloud's liquid water is in the form of
small droplets while the remaining 20% in the large droplets.
The 80 : 20 split between small and large drops is an empirical
choice based on measurements showing that large drops
initially constitute a small fraction of the total LWC and grow
through coalescence.4 Droplet pH is calculated by VSRM for
each grid cell at time steps ranging from 7 to 24 min when
clouds or fog are present. More details about VSRM can be
found in Fahey and Pandis (2001; 2003).13,14

3. Model application

PMCAMx was used to simulate size-resolved cloud and fog
droplet acidity over the US during February and July 2017. The
Environ. Sci.: Atmos., 2025, 5, 1110–1118 | 1111
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modeling domain covers an area of 4752 × 2952 km2, which
includes northern Mexico and southern Canada. The horizontal
grid resolution is 36 × 36 km, while the vertical domain
consists of 14 layers extending up to 6 km in altitude.

For meteorological inputs to PMCAMx, the Weather
Research and Forecasting (WRF v3.6.1) model was used, with
a horizontal resolution of 12 km across the entire domain.
Emission data for the simulations were based on the 2017
National Emissions Inventory.25 Wind-blown dust emissions
were simulated using the WBDUST model, which is provided by
Ramboll as a pre-processing tool for CAMx (https://
www.camx.com/download/support-soware). In this study,
calcium, potassium, magnesium, and sodium represented
2.4%, 1.5%, 0.9%, and 1.2% of the emitted dust respectively.26

More details about the WBDUST model can be found in
Liaskoni et al. (2023).27 A detailed description of WBDUST
application can be found in Kakavas et al. (2025).28 The
PMCAMx predictions in terms of aerosol levels and
composition for the simulated periods were found satisfactory
by Kakavas et al. (2025).28 More specically, the model's
performance ranged from good to average for daily
concentrations of total PM2.5, total PMcoarse, and the
individual components of PM2.5 based on the criteria of
Morris et al. (2005).29

Two PMCAMx simulations were performed for both February
and July 2017. In the rst simulation, two-section size-resolved
chemistry calculations were performed by VSRM, and
a comparison between small and large droplets acidity is pre-
sented. A second simulation was performed assuming that all
droplets had the same size (bulk approach). The inputs for both
simulations were identical.
4. Results
4.1 Cloud and fog presence time

For both periods, there are cloud and fog free areas, as well as
regions with high fog and cloud presence (up to 60% of the total
simulated time). The average predicted presence time of clouds
and fogs for each PMCAMx vertical layer for both simulated
periods is presented in Fig. S1 and S2 (SI), respectively. Higher
cloud presence is predicted for both simulated periods in the
eastern part of the US and the areas covered by sea (parts of the
Atlantic and Pacic oceans). The average cloud LWC is, as ex-
pected, higher in these regions (Fig. S3 and S4, SI). In the
western US, the predicted presence of clouds and fogs is lower
(up to 10% of the simulated time), but there are also areas (e.g.,
parts of California during wintertime and Colorado during
summertime) with higher cloud and fog presence frequency (up
to 50%). The frequency of cloud and fog presence is an
important factor for ensuring that droplet pH predictions are
representative of each area.
Fig. 1 Frequency distributions of pH predictions at 10 min intervals for
small and large droplets over the US during February 2017 at different
altitudes: (a) and (b) first 300 m, (c) and (d) 300–1000 m, (e) and (f)
1000–2000 m, (g) and (h) 2000–4000 m.
4.2 Altitude, seasonal and size dependence of droplet pH

During wintertime, the predicted pH of both droplet sizes
ranges from 2.5 to 8 across the US, with the relative frequency of
pH predictions varying depending on altitude and location
1112 | Environ. Sci.: Atmos., 2025, 5, 1110–1118
(Fig. 1). The average predicted pH is 4.9 ± 1.0 for small droplets
and 5.1 ± 1.2 for large droplets. The average predicted pH of
small and large droplets over the US at altitudes between 640
and 980 m is shown in Fig. 2. Results for other altitude ranges
are shown in Fig. S5 and S6 (SI). For both droplet sizes, higher
pH values are predicted in the western part of the US due to the
higher concentrations of alkaline dust.28 In the eastern part, the
higher concentrations of acidic particle components like sulfate
combined with the higher concentrations of acidic gases (e.g.,
HNO3), lead to lower droplet pH predictions. Cloud water
acidity is oen compared to the CO2–H2O system, which has
a pH of 5.5 at current CO2 levels.16 Lower pH values are
considered acidic, while higher alkaline. At altitudes up to
300 m, the most frequent pH prediction is between 3 and 4 for
small droplets and between 4 and 5 for large droplets (Fig. 1).
However, as altitude increases, the pH distribution becomes
narrower with most values in the 4–6 range. Particles and gases
concentrations decrease with altitude leading to a change in
cloud pH. For example, in the western US, where dust concen-
trations are higher, its decrease with altitude leads to lower
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 2 Average predicted pH of small and large droplets at altitudes
between 640 and 980 m during: (a) and (b) February 2017, (c) and (d)
July 2017. The white colour corresponds to cloud and fog free areas.
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average droplet pH at higher altitudes (Fig. 3). Concentrations
of acidic components also decrease with altitude in the western
US, but those of basic components decrease at higher rates
(Fig. S7, SI). In contrast, in the eastern US, where acidic
components are prevalent, their decrease with altitude leads to
higher average droplet pH at higher altitudes (Fig. 3). Partially
responsible for this change is also the increase of cloud LWC
with altitude (Fig. S8, SI).

During summertime, higher droplet pH values are predicted
more frequently compared to wintertime (Fig. 4), with average
Fig. 3 Average predicted pH of small and large droplets as a function
of altitude for the eastern and western US during: (a) February 2017,
and (b) July 2017.

© 2025 The Author(s). Published by the Royal Society of Chemistry
pH values of 5.1 ± 0.9 for small droplets and 5.3 ± 1.0 for large
droplets. At altitudes up to 300 m, the most frequent pH
prediction for both droplet sizes is between 5 and 6 units.
However, as altitude increases, the pH distribution becomes
narrower with most values in the 4–6 range just like wintertime.
Summer droplet pH is higher in the eastern part of the US
compared to wintertime period with differences up to 2 units
(Fig. 2). Results for other altitude ranges are also shown in
Fig. S9 and S10 (SI). In the western part, higher pH values are
predicted compared to the East. The higher concentrations of
alkaline dust and ammonia during summertime over the US
lead to higher pH predictions for both droplet sizes. In the
western US, average droplet pH decreases with altitude, whereas
in the eastern US, it increases with altitude (Fig. 3). For both
simulated periods, higher droplet pH is predicted over the Great
Plains and Midwest, where high NH3 emissions strongly inu-
ence cloud water pH. Future pH increases may also result from
rising wildre emissions and warmer soil temperatures in these
regions.

In general, large droplets have lower H+ concentrations over
the US (up to a factor of 2) compared to small droplets. The
Fig. 4 Frequency distributions of pH predictions at 10min intervals for
small and large droplets over the US during July 2017 at different
altitudes: (a) and (b) first 300 m, (c) and (d) 300–1000 m, (e) and (f)
1000–2000 m, (g) and (h) 2000–4000 m.

Environ. Sci.: Atmos., 2025, 5, 1110–1118 | 1113
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frequency distributions of the fractional difference in H+

concentrations between large and small droplets over the US
during both simulated periods are shown in Fig. 5. A negative
fractional difference indicates that large droplets have lower H+

concentrations than small droplets. At altitudes up to 300 m,
the most frequent fractional difference in H+ concentrations
between large and small droplets is −40 to −20% during
wintertime and −60 to −40% during summertime. As altitude
increases, the most frequent fractional difference in H+

concentrations ranges from −40% to −20% during wintertime
and from −20% to 0% during summertime. The variation in H+

concentrations between small and large droplets is due to
differences in cloud chemistry related to droplet size,30 the
lower condensational rates of acid gases in large droplets (lower
surface area-to-volume ratio) and the greater volume of water in
large droplets which dilutes acids more effectively.12,31 However,
there are some cases (10–20% of predictions) in both simulated
periods where small droplets have slightly lower H+ concen-
trations than large droplets (usually up to 20%). This is
Fig. 5 Frequency distributions of the fractional difference in H+

concentrations at 10 min intervals between large and small droplets
over the US during February and July 2017 at different altitudes: (a) and
(b) first 300 m, (c) and (d) 300–1000 m, (e) and (f) 1000–2000 m, (g)
and (h) 2000–4000 m. A negative fractional difference indicates that
large droplets are more alkaline than small droplets.

1114 | Environ. Sci.: Atmos., 2025, 5, 1110–1118
primarily due to the higher surface area-to-volume ratio of small
droplets, which enhances their ability to absorb NH3 when this
base dominates the system. Hu et al. (2019)15 have also shown
that the H+ concentration of large droplets can be higher
compared to small during the initial stage of cloud formation.

The higher pH differences between small and large droplets
are predicted in areas with higher dust concentrations (such as
the western US) for both simulated periods (Fig. 6). Results for
other altitude ranges are shown in Fig. S11 and S12 (SI). In
contrast, in the eastern US, higher concentrations of acidic
particles and gases, which can dissolve in droplet water, lead to
lower pH values for both droplet sizes. As a result, lower pH
differences are predicted between small and large droplets in
these areas (Fig. 6). Additionally, as altitude increases, the
reduction in particle and gas concentrations leads to a corre-
sponding change in droplet pH. This change can either be
a decrease or an increase, depending on whether the particles
and gases contribute acidic or basic substances to the cloud
water. Another factor inuencing this change is the increase in
cloud LWC with altitude.
4.3 Bulk droplet approach

An additional simulation was performed for both months
assuming that all droplets have the same size and composition
(bulk approach). The average predicted bulk pH during
February and July 2017 for different altitudes are shown in
Fig. S13 and S14, respectively (SI). In most cases, the bulk pH of
droplets falls between that of small and large droplets (Fig. S15–
S16, SI). However, in some areas, such as North and South
Dakota during winter, the pH of bulk droplets is even higher
than that of large droplets. This occurs because in the bulk
simulation, droplets can absorb gases (e.g., NH3) faster than the
large droplets in the size-resolved simulation due to their higher
surface area to volume ratio, while containing all the alkaline
dust of the PM.

Previous studies2,13,14 have shown that bulk aqueous phase
models tend to predict lower sulfate production rates in the US
compared to size-resolved models under many conditions.
However, when there are small pH differences in droplets of
different sizes bulk and size-resolved models produce similar
Fig. 6 Average percentage difference between the pH of large and
small droplets at altitudes between 640 and 980m during: (a) February
2017, and (b) July 2017. The white color corresponds to cloud and fog
free areas. A positive fractional difference indicates that large droplets
are more alkaline than small droplets.

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 7 Average difference between H2O2 and SO2 concentrations (in
ppb) as a function of altitude at: (a) and (b) 480–640 m, (c) and (d)
640–980 m, (e) and (f) 980–1340 m, (g) and (h) 1340–1720 m during
February and July 2017. A positive difference indicates that H2O2 levels
are higher.
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predictions. Models such as the VSRM try to address these
underestimations while saving computational time. In this
work, we also investigated the impact of the bulk droplet
assumption on aerosol composition. We compared the
aqueous-phase sulfate production over the US with predictions
from two-section size-resolved chemistry calculations. In
general, the fractional difference in aqueous-phase sulfate
concentrations over the US for 2017 between the two-section
size-resolved and bulk chemistry calculations is relatively low
and usually less than 20% at all altitudes for both simulated
periods (Fig. S17, SI). Additionally, for hourly total PM10 sulfate,
nitrate, and ammonium concentrations (Fig. S18–S20, SI), the
fractional difference over the US between the two-section size-
resolved and bulk chemistry calculations is low and usually
less than 10%. Fahey and Pandis (2003)14 showed that, on
a daily basis, the percentage difference in aqueous-phase sulfate
production between the VSRM and the bulk assumption in the
South coast of California during 1995 could vary from 10% to
200%. They also found that the percentage of size-resolved
aqueous-phase chemistry module calls was high in most areas
ranging from 5% in areas with high NH3 emissions to 100%.We
also examined how oen each approach is used in VSRM when
the decision algorithm of Fahey and Pandis (2001)13 is applied.
During wintertime, the bulk droplet assumption is applied in
approximately 96% of cases, while during summertime,
increases to 99.6%.

All of the above suggest that bulk aqueous-phase chemistry
calculations can simulate current aerosol composition across
the US for 2017 conditions with small discrepancies mainly due
to the signicant decrease of acidic atmospheric pollutants
levels (e.g., SO2 emissions) compared to 30 years ago. As a result,
initial SO2 concentrations are now oen lower than those of
H2O2, reducing the role of the pH-dependent ozone pathway,
and leading the VSRM decision algorithm to favor the bulk
approach. Please note that these conclusions apply to the US
and not to regions with high SO2 emissions.

According to the VSRM algorithm, SO2 levels inuence the
decision between bulk and size-resolved simulation when the
SO2 concentration exceeds 12 ppb or when H2O2 < 0.9 SO2. To
investigate this further, we examined this concentration
difference (H2O2–0.9 SO2) in vertical layers with substantial
cloud presence for both simulated periods (Fig. 7). During
wintertime, the difference between H2O2 and SO2 levels are low
(up to 1 ppb) especially in the northern part of the US. On the
contrary, during summer, this difference is higher (up to 4 ppb)
due to the higher concentrations of H2O2 driven by the
increased photochemical activity. SO2 levels are lower than 0.5–
1 ppb in most areas (Fig. S21, SI). These results indicate that
a relatively small increase in SO2 levels (of 0.5–1 ppb) during
winter may be enough to inuence the difference between the
bulk and sectional approaches, while during summer higher
increases are needed to have a similar impact.
4.4 Comparison with cloud pH measurements

There are numerous studies on cloud water pH in various
regions of the US.12,32–37 However, most were conducted over
© 2025 The Author(s). Published by the Royal Society of Chemistry
three decades ago. The reduction of SO2 levels over the past 30
years resulted in signicant changes in cloud droplet compo-
sition. For example, the chemical system at Whiteface Moun-
tain has shied away from being dominated by sulfate to one
that is now mainly inuenced by base cations.38 Therefore, to
evaluate our predictions, we compared the results with cloud
water pH measurements from more recent studies (Fig. 8 and
Table S1, SI). These comparisons are illustrative and not
intended as a formal evaluation of the simulation outputs. We
include some older measurements since there are no recent
measurements in the particular region considering also that the
sites are relatively remote and the droplet pH may have not
changed signicantly during the past few years.

Boris et al. (2018)39 reported an average cloud water pH of 5.9
± 0.4 at Casitas Pass in southern California during the summer
of 2015. PMCAMx predicted a little higher value of 6.9 ± 0.6
during summer of 2017. Hutchings et al. (2009)40 observed
a mean cloud water pH of 6.3 ± 0.4 for Mt. Elden in Arizona
Environ. Sci.: Atmos., 2025, 5, 1110–1118 | 1115
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Fig. 8 Measured and predicted droplet pH at the examined sites.
Values are presented as means ± standard deviations for both
observations and predictions. Measurements were conducted during
different summer periods, while predictions correspond to July 2017
simulation. Measured pH values refer to cloud water, whereas pre-
dicted values represent bulk droplet pH.
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during the summers of 2005 and 2007, which is consistent with
the PMCAMx predictions (6.3 ± 0.8). Hill et al. (2007)41 reported
an average cloud water pH of 4.4 ± 0.8 in Michigan during the
summer of 2005. PMCAMx predicted a little higher bulk droplet
pH value of 5.4 ± 0.8 during summer. At Whiteface Mountain,
the average measured cloud water pH was 4.8 ± 0.3 during the
summer of 2014.42 PMCAMx predicted a bulk droplet pH value
of 5.5 ± 0.6 during summer. Murray et al. (2013)43 reported an
average cloud water pH of 4.3 at Mt. Washington during the
summers of 2008 and 2010. The bulk droplet pH prediction in
this region equals to 5.1 ± 0.6 during summer.

Although small discrepancies exist between the measure-
ments and PMCAMx predictions, these are likely due to small
differences in temporal factors, such as variations in dust, NH3

and SO2 levels. Despite these minor differences, the model
predictions are reasonable.
5. Conclusions

Size-resolved cloud and fog droplet acidity was simulated over
the US during wintertime and summertime period. Higher
droplet pH was predicted in the western part of the US for both
simulated periods due to the higher dust concentrations for
both droplet sizes. In contrast, the presence of higher concen-
trations of acidic particle components (e.g., sulfate) and acidic
gases that can dissolve in droplets water led to lower droplet pH
predictions in the eastern US and in marine areas with varia-
tions inuenced also by ammonia emissions during the two
simulated periods. The decrease in concentration of particles
and gases with altitude results in a corresponding change in
droplets pH. In the western US, cloud pH is mainly inuenced
by higher dust concentrations, which decrease with altitude,
leading in turn to lower droplet pH at higher altitudes. In
contrast, in the eastern US, where acidic components are more
dominant, their decrease with altitude leads to higher pH
1116 | Environ. Sci.: Atmos., 2025, 5, 1110–1118
predictions at higher altitudes. Another factor inuencing this
change is the increase in cloud LWC with altitude.

Large droplets at all altitudes weremore alkaline (up to 100%
lower H+ concentrations) than small especially in regions with
higher dust concentrations during both simulated periods.
However, the pH differences predicted by the two-section
approach should be viewed as a lower limit of the actual pH
droplet variation across the droplet size spectrum.44 The bulk
droplet assumption typically resulted in a droplet pH that was
either close to or between the pH values of small and large
droplets. The bulk droplet approach can simulate the current
aerosol composition over the US with small discrepancies (less
than 10% on average) compared to the two-section size-resolved
chemistry calculations. Our simulations indicate that the
current pH differences between small and large droplets in
regions with high SO2 emissions are lower than they were 30
years ago. Also, the current initial SO2 concentrations are oen
lower than H2O2 concentrations across the US, leading the
VSRM decision algorithm to favor the bulk droplet approach,
given the small contribution of the pH-dependent ozone
pathway to the aqueous-phase sulfate production. Please note
that these conclusions are specic to the US and may not apply
to regions with high SO2 emissions. Our ndings suggest that
a small increase in SO2 levels (approximately 0.5 ppb) during
winter may be sufficient to inuence the difference between the
bulk and sectional approaches in the US. In contrast, during
summer, higher SO2 concentrations are required to produce
a comparable effect.

Droplets acidity is an important property inuencing a wide
range of CTMs predictions, including atmospheric chemistry,
PM formation, precipitation acidity, trace metal speciation and
their response to emission changes. Our study suggests that the
representation of droplet pH in CTMs does not signicantly
inuence predictions across the US.
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