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Exposure to indoor air pollutants is one of the most significant environmental and health risks people face,
especially since they spend most of their time indoors. Therefore, evaluating indoor air pollution levels and
comfort parameters is essential for achieving sustainable indoor air quality (IAQ). The main objective of this
study was to identify patterns of indoor air pollution in two buildings with different characteristics located on
a university campus in northeastern Mexico. We measured the concentration of particulate matter in
fractions of 1.0 um (PMy), 2.5 um (PM,5s), and 10 pm (PMjg), as well as carbon dioxide (CO,), carbon
monoxide (CO), and ozone (Oz), along with the temperature and relative humidity in each
microenvironment during the working hours of spring, summer, and autumn. Next, unsupervised
learning was employed to identify behavioral patterns of air pollutants within the
microenvironments. The K-means clustering algorithm was
microenvironments within the study area. We performed three clustering analyses per building: (1)

machine
used to identify homogeneous
considering all the variables in the dataset, (2)selecting the significant variables through principal
component analysis (PCA), and (3) examining two time ranges within the working day. The robustness of
the proposed approach was evaluated through a comparative analysis of the K-means, DBScan, and
hierarchical algorithms, assessing their performance using the Davies—Bouldin index and Silhouette
score metrics. Furthermore, the stability of the clusters over time intervals was assessed using the

adjusted Rand index. Cluster analysis enabled us to identify microenvironments with maximum similarity
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Accepted 6th September 2025 and those that change groups, as their behavior depends on the time range. Consequently, grouping

microenvironments into homogeneous IAQ classes is effective in accurately identifying spaces based on
patterns related to their contamination levels and guiding actions to reduce pollution levels by zone or
building.
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Environmental significance

Indoor air pollution represents a serious problem due to its direct impact on individuals. In developing countries, its effects are more pronounced because of
limited resources for monitoring and subsequent delays in taking action to reduce air pollutant concentration levels. Prolonged exposure to air pollutants is
suspected of causing serious health effects. In the case of indoor air pollution, the risk increases, as most people worldwide spend the majority of their time
indoors. Clustering analysis enabled us to identify the microenvironments with the greatest similarity (homogeneous classes) and those that transition between
groups due to their behavioural patterns, which depend on air pollution concentration within a specific time range.

leading pollution problems, possible causes, levels of air
pollution and their assessment, and recommendations to

1 Introduction

Poor indoor air quality (IAQ) can impact a person's health,
comfort, cognitive performance, and work capacity, resulting in
productivity losses."” Therefore, IAQ analysis is essential in
achieving a sustainable and healthy urban environment.?
Recently, several studies on air quality have been presented in
schools, office buildings, dwellings, hospitals, and other
workspaces.*” Allowing identified indoor air pollution sources,
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improve IAQ. Air pollutants commonly identified inside build-
ings are ozone (O3), particulate matter (PM, 5 and PM,,), carbon
monoxide (CO), carbon dioxide (CO,), volatile organic
compounds (VOCs), and bioaerosols.>*®

Factors related to temperature, humidity, inadequate venti-
lation, mold caused by humidity, lighting, and exposure to
chemical substances are considered in determining this
quality.”*™ In this sense, inadequate ventilation with low air
exchange rates can influence elevated CO, concentrations in
offices and increase the concentration of other indoor air
pollutants."*"” Temperature and relative humidity levels are

© 2025 The Author(s). Published by the Royal Society of Chemistry


http://crossmark.crossref.org/dialog/?doi=10.1039/d5ea00051c&domain=pdf&date_stamp=2025-10-06
http://orcid.org/0000-0001-8196-6496
http://orcid.org/0000-0002-0303-6303
http://orcid.org/0009-0005-7652-3822
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5ea00051c
https://pubs.rsc.org/en/journals/journal/EA
https://pubs.rsc.org/en/journals/journal/EA?issueid=EA005010

Open Access Article. Published on 08 September 2025. Downloaded on 11/10/2025 1:44:02 AM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Paper

strongly associated with comfort and are the main factors
influencing occupant productivity.”® High levels of humidity
and low or high temperatures inside an office affect the cooling
capacity of the human body, causing health problems," such as
irritation of the eyes, nose, and throat, headaches, dizziness,
and fatigue.”®** These symptoms also relate to the highest CO,
levels in the indoor environment.'**>* Long-term exposure to
PM, s and PM,, negatively affects the respiratory, cardiovas-
cular, and nervous systems and, in recent studies, has been
associated with high mortality rates.**** Additionally, asthma,
coughing, wheezing, shortness of breath, sinus congestion,
sneezing, nasal congestion, and sinusitis have been associated
with long and short-term exposure to PM, s, PM;,, CO, O3, and
VOC.*** Although people usually react differently to indoor air
pollutants, prolonged exposure to high concentrations can lead
to specific health conditions.?

The sources that generate poor air quality inside a building
vary according to the activities carried out, the consumption of
products, and the building's location,**** making it a complex
situation to analyze.® For example, O; is commonly emitted by
electronic office equipment such as laser printers and photo-
copiers.**** Hence, indoor pollutants can be emitted from
multiple sources in low concentrations, resulting in mixed air
conditions and a greater health risk. CO, benzene, sulfur
dioxide (SO,), O3, nitrogen oxides (NO,), PM, 5, and PM;, can be
mentioned in the pollutants from external sources. Internal
source pollutants have been identified, including CO,, bi-
oefluents, PM, 5, and PM,,, as well as construction-related
contaminants such as microbials and VOCs.

Therefore, recognizing microenvironments that share
similar characteristics of air pollutant concentration and
comfort parameters is a current requirement. This enables the
identification of shared pollution sources within a building and
the development of solutions, policies, or actions that reduce
concentrations. Several research studies have confirmed the
robustness of clustering approaches (mainly the K-means
algorithm) in air quality management,** discovering daily
patterns of IAQ,*” assessing fluctuations in indoor thermal
conditions,*® an indoor fine and ultrafine particle clustering
method,* identification of IAQ events from gas sensor data,*
and indoor/outdoor air pollution analysis.*** Clustering algo-
rithms are machine learning techniques classified within
unsupervised learning approaches, where the algorithm
implemented has no prior knowledge of the class to which the
instances belong and attempts to extract patterns or behaviors
that allow for the inference of some relationship (similarity)
between the cases in the dataset. Despite the drawbacks widely
discussed in the literature,*>** the K-means clustering algorithm
is one of the most reliable and widely used approaches in
unsupervised learning.*>*¢ Cluster analysis aims to identify
objects with high similarity by creating partitions between the
instances based on the data (values) of the characteristics that
make up the dataset; that is, data clustering aims to divide
unlabeled data into groups based on the distance measure that
makes it possible to identify the similarity between them.*”

The purpose of this research is to identify and visualize the
groups of indoor microenvironments that share similar patterns
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from the concentration levels of pollutants PM;, PM, 5, PM;,, CO,
CO,, O3, and air comfort parameters using the unsupervised
learning algorithm K-means within a university campus in north-
eastern Mexico. Furthermore, the results of IAQ monitoring in
microenvironments, including offices and workspaces, distrib-
uted across two buildings with different construction character-
istics, are presented. The data was collected for eight continuous
hours (per office) during the working day in the spring, summer,
and autumn seasons of 2023.

2 Methods

2.1 Study population

In our experiment, we monitored the indoor air quality (IAQ) in
two buildings of the Faculty of Engineering and Sciences in
Victoria City, Tamaulipas, Mexico. These buildings were selected
because they are the locations that concentrate the most signif-
icant number of administrative staff and professors of the insti-
tution. Building A houses the research and postgraduate division
offices on the fourth level of a seven-story building with glass
walls, built in 2012. It has 11 ventilation and air conditioning
systems installed on the fourth floor, each equipped with filters
that meet the ASHRAE MERV-8 standard. These filters can
capture up to 90% of particles measuring 3 to 10 micrometers
and are designed to trap common indoor pollutants, such as
mold spores, dust, and pet dander. Professors primarily use the
offices in building A, while building B corresponds to the central
administration offices of the faculty. This building was con-
structed on one floor in 1967. This building has four ventilation
and air conditioning systems installed with MERV-8 filters and
five units with filters that only meet a minimum standard. The
administrative staff carries out all school management activities
in this building. The study examined 26 microenvironments,
including 13 for buildings, to monitor indoor air quality (IAQ)
conditions. In building A, data were collected in nine offices and
four workspaces, with 18 participants involved in the study. In
building B, nine offices and four workspaces were monitored,
with 23 people cooperating.

The buildings considered in our study are smoke-free
workspaces. Each microenvironment typically has an average
of three devices: a personal computer, a laser or inkjet printer,
a photocopier, an IP phone, a paper shredder, surveillance and
access point devices, and interconnection equipment to the
data network. Building A does not have access to natural
ventilation, and its exterior walls are made of glass, making it
a hermetic building. A central air conditioning system provides
ventilation, regulating the interior temperature for the entire
building. On the other hand, in building B, ventilation is ach-
ieved through a central air conditioning system, allowing
personnel to regulate the interior temperature. It is possible to
have natural ventilation in the autumn and early wintertime by
opening the windows.

2.2 Sample collection

The indoor air pollutant gasses data were measured continu-
ously using sensors installed in a Libelium Smart Environment
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Pro air quality monitoring station,*® and the concentration of
particulate matter (PM;, PM, s, PM;,) were calculated with
a Plantower PMS7003 sensor.* The meteorological parameters
were measured with a BOSCH BME280 sensor.*® The particulate
matter, CO, and O; sensors were calibrated through a colloca-
tion process with a regulatory-grade reference instrument or
equivalent monitor (FRM/FEM) under real-world conditions
during an evaluation period specified in the US EPA's method-
ology for low-cost sensor calibration.*>** The O; sensor achieved
a coefficient of determination (R*) of 0.90; the particulate matter
sensor achieved an R? of 0.96 for PM;, 0.90 for PM, 5, and 0.88
for PM,; and the CO sensor achieved an R* of 0.91. The cali-
bration process for the PM;, PM, 5, PM;,, O3, and CO sensors
was similar to that described in our previous work.*® The CO,
sensor was calibrated in a laboratory using a vacuum chamber
with a controlled internal temperature of 20 °C and a relative
humidity of 55% (£5%), resulting in an R* of 0.91. The
measurements were taken continuously for eight hours indoors
at 3 minutes intervals during the workday (9:00 a.m. to 5:00
p.m.), collecting data for each microenvironment in each of the
four seasons of the year. The air quality monitoring station was
mounted on a height-adjustable tripod (to ensure the desired
height) and placed approximately 1.3 to 1.5 meters high,
matching the breathing zone of a sitting person. The sampling
occurred from April to May (spring), July to August (summer),
and October to November 2023 (autumn).

2.3 Data analysis

Data was processed using the statistical analysis software R-
Studio IDE 4.3.3 through the Posit Cloud. Since the data
exhibited a non-normal distribution, the Spearman rank
correlation analysis was performed to discover the degree of
association between the study variables. The following tasks
were applied to implement the unsupervised learning approach
using the K-means clustering technique. The datasets were
normalized using the BB-misc:normalize library. The distance
or proximity between two objects was calculated using the
Euclidean distance, which defines their similarity. Next, a prin-
cipal component analysis (PCA) is applied to select the signifi-
cant variables contributing to each principal component and
explain the maximum variance of all the variables, helping to
reduce high dimensionality. The PCA was implemented using
the FactoMineR library version 2.11. In each experiment, the
optimum cluster value (K) was calculated using the Elbow
method using the fviz_nbclust function of the factoextra library
version 1.0.7. Finally, the clustering algorithm was imple-
mented using the K-means function of the Stats 4.3.3 library,
and the visualization of the generated clusters was done using
the fviz_cluster function of the factoextra library. Evaluating the
quality of each generated model using the silhouette score
metric, using the cluster library version 2.1.6. A comparative
analysis was also conducted between the K-means, DBSCAN,
and hierarchical algorithms to assess the robustness of the
proposed method, using the Davies-Bouldin index and
Silhouette score metrics for performance evaluation. Addition-
ally, the stability of the clusters over different time intervals was
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examined with the adjusted Rand index. Finally, the loading
changes over intraday time ranges of the study variables were
analyzed using PCA.

3 Results

3.1 Correlation analysis

The Spearman correlation analysis was used to decipher the
relationships between variables of indoor air pollutants and
meteorological variables. Fig. 1-3 show correlation matrices
generated with the Spearman method corresponding to the
spring, summer, and autumn seasons, respectively. The rela-
tionship between CO and relative humidity (RH) is a moderate
negative to moderate positive correlation (—0.41 = r; = 0.59),
with a statistically significance p-value < 0.05, in the spring and
summer for building A (see Fig. 1 and 2). The shift from
a negative to a positive correlation suggests that underlying
factors influence the relationship between CO and RH, and
these factors change over time or in response to environmental
conditions. Possible factors include ventilation and air condi-
tioning systems, CO sources, environmental dynamics, and
occupant behavior during daily activities.

Likewise, an association with moderate strength was iden-
tified between CO and O; in the summer period (r; = 0.41, p-
value < 0.05). This correlation suggests that both pollutants
exhibit similar dynamics within the building, driven by factors
such as outdoor air filtration and the operation of ventilation
systems during the summer, which result in a simultaneous
increase in their concentrations. In the analysis carried out for
the microenvironments of building A, we observe that the O,
and RH exhibit a consistently moderate negative to strong
positive relationship in the spring of r, = —0.48, summer of ry =
0.66, and autumn of r; = 0.75 periods (see Fig. 3). The strongly
positive correlations identified in autumn and summer result
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Fig. 1 Visualization of the Spearman coefficient correlation matrix for
the spring season using the building A dataset.
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Fig. 2 Visualization of the coefficient
summer season for building A.
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Fig. 3 Visualization of the Spearman coefficient correlation matrix for
the spring season using the building B dataset.

from the hot, sunny days typical of these seasons. These times
usually have the highest outdoor O; levels, and outdoor relative
humidity is also very high. As a result, the HVAC system must
draw in outside air to ventilate the building, actively intro-
ducing air that contains both O; and humidity. During autumn,
the magnitude of the correlation coefficient between tempera-
ture (T) and Oj; reaches its highest value (r; = —0.81, p-value >
0.05) in the correlation matrix, confirming a very strong corre-
lation (see Fig. 3). This relationship is also observed in the
summer, but with a moderate negative strength. The variables
for particulate matter in its fractions (PM;, PM, 5, PM;,) present
a moderate association with the RH, both in summer (r; = 0.46)
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Fig. 4 Visualization of the Spearman coefficient correlation matrix for
the autumn season for building A dataset.

and in autumn (rs = 0.54). Finally, Fig. 1-3 show that the RH
and T variables establish a relationship with a coefficient
between —0.40 and —0.59 in the three seasons analyzed.

Fig. 4 shows a correlation matrix for the spring season of the
building B dataset. In this figure, three moderate negative
associations are observed between the variables of CO, and O;
(rs = —0.40), T and O3 (r; = —0.44), and T and RH (rs = —0.52).
More-over, moderate negative relationships were identified
between the O; and T variables of r, = —0.42 and r, = —0.58 in
summer and autumn (see Fig. 5 and 6), respectively. Further-
more, we found that CO has a moderate negative correlation
with the T variable in the summer and autumn periods, and
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Fig. 5 Visualization of the coefficient correlation matrix for the

summer season for building B.
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Fig. 6 Visualization of the Spearman coefficient correlation matrix for
the autumn season for building B dataset.

a moderate positive association was observed between the CO
and O; variables with a coefficient of r; = 0.51. Finally, the PM,,
PM, s, and PM,, variables are associated with moderate
strength with the CO, variable, with ry = 0.45, rs = 0.42, and ry =
0.42, respectively. The positive and moderate correlation
between CO, and particulate matter fractions suggests that
these variables move in the same direction. This is highly
relevant in the context of a building. One possible explanation is
that poor ventilation or high occupancy in offices leads to
a simultaneous increase in CO, levels (exhaled by occupants)
and the resuspension of particles generated by human activi-
ties, along with filtration from outside.

On the other hand, in the autumn period, the highest coef-
ficient was found in the correlation matrix of building B, with
a strong positive association between the PM; and RH variables
of ry = 0.77 (see Fig. 6). Further, the PM, 5 and PM,, variables
are related to RH but with a value of 7 = 0.76 with p-value < 0.05.
The strong positive correlation suggests that relative humidity
is a key factor in indoor particle concentrations during the fall,
likely due to the hygroscopic properties of the particles or their
interaction with ambient conditions typical of this season.

3.2 Clustering analysis

In the first experiment with the data from building A, using all
the variables and the data from the three seasons of the year
considered in the study, 3 clusters were obtained, consisting of
20 elements in cluster 1, 13 objects in cluster 2, and 6 elements
in cluster 3 (see Fig. 7). Objects are identified by office number
and the season of the year (e.g., 8-2 for office 8 in the summer).
In cluster 1, it was observed that instances presenting Office 12
in the three seasons exhibit high similarity, forming part of the
same group. Furthermore, the cases of offices 3, 6, 8, 9, and 11
in the summer and autumn seasons exhibit similar
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Fig. 7 Clusters generated from the data of building A, considering the
8 study variables.

characteristics, and a minimum distance is observed between
the observations of offices 4 and 5 in spring and summer. In
Fig. 7, it can be observed that objects 8-3 and 11-3 of cluster 1
and objects 8-1, 2-2, 7-2, and 13-3 of cluster 2 are very close,
with a high similarity, despite belonging to different clusters.
The elements grouped in cluster 3 are characterized by sharing
high values in the con-centration levels of PM,, PM, 5, PM;,
and O3, as well as a high percentage of relative humidity.

In a second experiment, principal component analysis (PCA)
was implemented to capture the relevant and highly correlated
variables, as well as to eliminate noisy variables and reduce
over-fitting, thereby improving the performance of the algo-
rithm when forming clusters with the microenvironment data.
Fig. 8 displays the scree plot, which illustrates the significance
of each principal component in building A dataset. This Fig. 8
displays the percentage of explained variances by each compo-
nent. The first component almost explains 41% of the total
variance, implying that the first principal component can
represent nearly two-quarters of the data from the eight vari-
ables. In this case, four components are required to explain
85.73% of the total information in the data with the variables
CO, PM, 5, PM; o, PM;, and CO,. If five principal components are
considered, 94.54% of the accumulated variance is reached, and
the variables with the greatest contribute are CO,, O;, CO,
PM, 5, PM, o, PM;.

&

Dimensions

Fig. 8 Scree plot of the components in the data analysis of building A.

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Then, a sub-dataset containing the PM;, PM, 5, PM;,, CO,
and CO, variables was built to analyze them using the clustering
algorithm. Fig. 9 shows the groups created with a building A
dataset. In this figure, the overlap between elements of clusters
1 and 2 is no longer observed (compared to Fig. 7). Objects 8-1,
11-1, 2-2, and 7-2 changed their membership to cluster 1,
leaving cluster 2, as mentioned in the analysis of Fig. 7. Like-
wise, objects 5-1, 12-1, 12-2, and 1-3 were added to cluster 2.
Cluster 3 maintains the same elements, incorporating a clear
pattern of behavior, and includes an object (9-1) from cluster 2.
The K-means algorithm detected patterns more clearly in the
dataset, particularly when working with low-dimensional data.
Even though the dataset used does not contain many variables
(high dimensionality), the PCA function helps discard noisy and
non-significant variables to discover behavioral patterns.

The third experiment analyzes the data by time range: 8 a.m.
to 12 p.m. will be referred to as time-1, and 1 p.m. to 5 p.m. will
be referred to as time-2. Fig. 10 and 11 show the objects that

Dim2 (24.2%)

cluster

'
A2
3

Dimt (74.3%)

Fig. 9 Objects comprising the three clusters derived from the
instances between 1:00 p.m. and 5:00 p.m., considering the result of
the applied PCA method (building A).

cluster

a2

Dim2 (20.3%)

Dimt (60.7%)

Fig. 10 Clusters formed with the K-means algorithm considering the
instances of time-1 range and the variables of the result of the applied
PCA (building A).
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comprise the clusters in time-1 and time-2, respectively. When
comparing the elements that make up the clusters in the two-
time ranges, it was identified that 62% of the objects main-
tain their membership in the same group. In the cluster analysis
for the time-1 range, four components were considered that
reached a percentage of variance explanation of 84.28%, and
the contribution of the variables has the following order: PM, s,
PM,,, PM;, CO and CO,. In the case of the PCA analysis used in
the clustering of time-2, it is made up of four components, with
87.61% of the accumulated variance explained, with several
changes in the variables that contribute (PM, 5, PM;,, PM;, and
03) to the components, about the results of the previous PCA.
Object 6-1 (spring season) recorded lower values in its variables
within the time-2 range, which caused the object to change by
presenting a greater distance from the objects of the previous
cluster (time-1 range). Two objects (8-2 and 13-2) in the
summer, and similarly in the autumn (1-3 and 2-3), were
identified that changed clusters due to a decrease in the
concentration levels of indoor air pollutants recorded in that
microenvironment and in that time range. In the particular case
of office 12 (represented by objects 12-1, 12-2, and 12-3), which
is an open work area that during the spring and summer
seasons has a large number of visitors in time-2, which is re-
flected in the change of cluster of objects 12-1 and 12-2, and the
case of object 12-3 it changes to a cluster with objects that
register a lower concentration of air pollutants. On the other
hand, elements 10-1, 12-1, 13-1, 12-2, and 9-3 registered
a higher average in the concentration of air pollutants in the
time-2 range; for this reason, they present a smaller distance
with the elements of cluster 1, as shown in Fig. 11.

As mentioned above, the exterior walls of building A are
made of glass, and several microenvironments receive sunlight
through-out the workday, but with a high impact during time-2.
Still, it was not found to influence air pollution concentration
levels in the spring and summer periods when the highest
ambient air temperatures occur during the year. For example,
objects 7-1 and 11-1 (offices that receive direct sunlight for
most of the day) show a slight increase in the concentration in
the time-2 range in the spring season (see Fig. 11).

cluster
:
a2
: 3

Dim2 (22.1%)

Dim1 (60.9%)

Fig. 11 Groups generated with data from building A, considering the
variables derived from PCA analysis (four components).
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Dim2 (29.9%)

cluster

(4] 2
3

Dim1 (38.4%)

Fig. 12 Clusters generated from the data of building B, considering
the 8 study variables.

In the case of the clusters generated from the data of
building B, three groups of 10, 27, and 2 objects were formed
(see Fig. 12). Cluster 2 comprises 6 elements from the spring
period, 9 from the summer period, and 12 objects (92%) from
the autumn period. The object from autumn that is not
included corresponds to office 22-3, characterized by high
levels of particulate matter in this period. Therefore, the
distance of element 22-3 from the centroid and the objects of
cluster 2 is considerable. On the contrary, the 12 elements
identified in the autumn period (cluster 2) of building two that
follow the same pattern show high similarities. This cluster
comprises 6 and 9 objects from spring and summer, confirming
that the concentration levels of indoor air pollutants and
meteorological parameters are very similar in this building. On
the other hand, cluster 3 comprises only two objects (22-3 and
24-2), which present high concentration levels in the three
fractions of particulate matter.

In the second experiment, we are considering the sub-
dataset of building B composed of PM, 5, PM;,, PM;, O3 and

cluster

Al 2
3

DIm2 (23.6%)

Dim1 (75.9%)

Fig. 13 Clusters formed considering instances of the time-1 range
(building B).
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CO, variables, assigned according to the results of the PCA,
which is com-posed of 4 components with a proportion of
explained variance of 90.33. The objects 24-1, 24-3, 25-3, and
26-3, which belonged to group 1 in the previous analysis (see
Fig. 12), were reassigned to a different group (see Fig. 13).
Furthermore, objects 20-1 and 22-1 were reassigned to cluster 2
when applying the PCA, while cluster 3 retained its original two
elements. The rest of the elements (33) confirmed the same
degree of similarity using a smaller number of variables in the
sub-dataset, confirming the cohesion between the data reflected
in the formation of the clusters.

In experiment 3 of building B, the PCA was applied to the
time-1 and time-2 sub-datasets, using fewer components and
variables to contribute to the dimensionality reduction. In time-
1, three principal components are used with a proportion of
explained variance of 80.80%, with a contribution from the
following variables: PM, s, PM;o, PM;, and CO,. The above
allows generating 3 clusters with 1, 32, and 6 objects, respec-
tively. In time-2, the first four components were selected, which
accumulated a variance of 81.87%. This experiment utilizes only
three variables (PM;, PM, 5, and CO,), which contribute the
highest percentages to the selected principal components,
enabling the construction of three clusters with 1, 12, and 26
objects. In this experiment, numerous changes are observed in
the objects that comprise the clusters within the time-1 and
time-2 ranges. Cluster 2, which is made up of 31 elements in the
time-1 range (see Fig. 14), maintains only 26 objects (cluster 3)
in the time-2 range (see Fig. 15). Now, their distance is smaller,
approximately equal to the centroid of cluster 3, thereby
maintaining a statistical similarity between the objects based
on their data characteristics. In the case of cluster 2 (time-2), it
incorporated 1 and 6 elements from cluster 1 and cluster 2 in
time-1, respectively, which increased the average values in their
variables in the time-2 range (see Fig. 15). That is, the distance
between the new objects comprising cluster 2 is minimal,
maintaining cohesion in the group. Finally, cluster 1 (time-2)
incorporates an element that belonged to cluster 3 (time-1)
and loses object 22-3, which considerably decreases the value
of its characteristics in the time-2 range (see Fig. 14 and 15).

Dim2 (21.1%)

Gluster
)
e
) 3

Dim1 (60.8%)

Fig. 14 Clusters generated from the PCA with data from building B.
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Fig. 15 Objects that comprise the clusters of building B derived from
instances of time-2 range.

To compare the performance of the K-means clustering
models, the DBSCAN and hierarchical (a Ward linkage method)
algorithms were implemented using the datasets generated for
the second experiment, where variables were selected through
the PCA technique, ensuring highly correlated variables. The
quality of the clusters produced by each algorithm and for each
dataset was evaluated using the Davies-Bouldin Index (DBI) and
the Silhouette score. It is essential to clarify that the two metrics
offer slightly different perspectives; DBI emphasizes the rela-
tionship between internal dispersion and the distance between
cluster centroids, while the Silhouette score emphasizes cohe-
sion and separation at the level of each data point. As a result,
the Silhouette score may be more sensitive to outliers or irreg-
ularly shaped clusters. Table 1 shows the results obtained in
each experiment. In the clustering evaluation of the building A
dataset, the hierarchical algorithm received the lowest score,
indicating that its clusters are the densest and most distinctly
separated compared to the other two algorithms. The perfor-
mance of the K-means algorithm is very similar to that of
hierarchical clustering, with its score suggesting that its clusters
are less tight than those of the hierarchical model. Conversely,
in the evaluation using the building B dataset, the DBScan
algorithm scored the lowest, implying that its clusters are the
most well-defined, offering the best balance of internal density
and external separation (see Table 1). The K-means algorithm
achieved the highest score, indicating that its clusters are the

Table 1 Values achieved in the quality assessment metrics of the
constructed clusters

Dataset Algorithm BDI Silhouette

Building A K-means 1.3842 0.2559
DBScan 1.3931 0.1472
Hierarchical 1.3580 0.2515

Building B K-means 1.0902 0.3792
DBScan 0.8449 0.3812
Hierarchical 0.9668 0.3510
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least compact or most overlapping compared to the other
models.

On the other hand, the K-means algorithm achieved a rela-
tively low positive Silhouette score of 0.2559, indicating that the
clusters formed by K-means have weak separation and cohe-
sion. Although no points are misclassified, the proximity
between clusters is evident, showing that the boundaries are not
well-defined. The values in Table 1 for the Silhouette score
metric on the building A dataset, all of which are below 0.3,
suggest that the dataset may lack a natural and clearly defined
cluster structure. Regarding the quality of the clusters built with
the building B dataset, the DBScan and K-means algorithms
achieve very similar metrics (the difference from DBScan is only
0.002), which can be considered comparable in practice. This
result indicates that they have produced the most well-defined
clusters with the best separation compared to the hierarchical
algorithm. Fig. 16 shows the silhouette coefficient of the clus-
ters obtained with the dataset from the time-2 range of building
B. This metric measures the quality of the generated clusters.
The coefficient obtained is 0.52, indicating that the groups are
well separated and differentiated, with good cohesion within
each cluster and distinct separation between clusters.

Additionally, the stability of the clusters was statistically
assessed over different time intervals using the Adjusted Rand
Index (ARI) to ensure that the clusters are not the result of
random fluctuations in the data. These intervals correspond to
the spring, summer, and fall data partitions. The ARI measures
the similarity between two clusters, adjusting for the likelihood
of agreement by chance. An ARI of 1 indicates perfect agree-
ment, while a value of 0 or less suggests that the similarity is
what would be expected by chance. The K-means algorithm was
applied to each partition with the same number of clusters.
Table 2 shows the ARI values for the pairs of partitions within
each building. The ARI values for the three partition pairs in
building A are very similar. The ARI of 0.5687204 between the
spring and summer clusters indicates moderate agreement,
confirming a strong correlation between the cluster structures
in spring and summer. These values suggest that the cluster
structure remains somewhat stable over time but is not entirely
static. Some data points may have shifted clusters, or the
boundaries between clusters may have shifted due to seasonal
changes. On the other hand, assessing the similarity between
the spring and autumn partitions of building B yields an index
value of 0.6381156, indicating that the cluster structure is highly
similar between spring and autumn (see Table 2). This points to
significant stability in the data patterns over time, despite
possible seasonal changes. Similarly, the similarity index
between the spring and summer partitions was 0.6042155,
confirming that the clustering algorithm produced a meaning-
ful partition that closely matches the reference. While this is not
a perfect agreement, it is a positive outcome showing that the
algorithm captured a real and relevant data structure.

Furthermore, the loading values of each variable in PCA were
analyzed to quantify intraday changes using a sliding window
(time-1 and time-2) to determine the significance of the vari-
ables. A loading value is the correlation between an original
variable and a principal component, where a high loading
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Fig. 16 Silhouette score of the clusters generated for the time-2 range of building B.

(positive or negative) on the first principal component (PC1)
indicates that the variable is a key factor influencing data vari-
ance in that time window. In building A, the loading values of
the PM,; variable on PC1 reflect its contribution to data vari-
ability in that component. With a loading value of 0.53508485 in
the morning and 0.531226037 in the afternoon, it suggests that
the variable's importance is comparable and high during both
periods, with a slight decrease in the afternoon (see Table 3).
Hence, the PM;, PM, 5, and PM,, variables are major factors in
the data variability in both morning and afternoon; this indi-
cates that the data structure captured by PCA remains relatively
stable concerning the influence of these variables. The O;
variable, with a loading value of about 0.095, has a very low
impact on the main pattern of data variability during the
morning. This is expected, as tropospheric ozone production is
linked to solar radiation. In the second time window (afternoon
hours), the loading value rises to 0.163, which is a 71% increase
compared to the morning (see Table 3). Although this value
remains moderate, the increase is significant and indicates that
ozone concentration variability be-comes more important in the
afternoon data, aligning with its photochemical formation
cycle. For its part, the variable CO is not a significant factor in
explaining the data's variability in either period. This indicates
that CO fluctuations are independent of the other factors
influencing PC1.

Concerning CO,, the difference between the loadings shows
that its relative importance varies considerably throughout the

Table 2 Results of the cluster stability assessment using ARI

Partition combination Building A Building B
Spring - summer 0.5687204 0.6042155
Spring - autumn 0.5316253 0.6381156
Summer - autumn 0.5433255 0.4400574

M52 | Environ. Sci.: Atmos., 2025, 5, 1144-1157

day. Its influence is moderate in the morning but nearly zero in
the afternoon. Regarding the meteorological variables, the
difference in loadings for relative humidity shows that its
importance shifts significantly throughout the day. While it
plays a moderate role in the morning (0.163), it becomes a key
factor in the afternoon (0.313). This change may be linked to the
use of air conditioning, the influx of people, or the rising
temperature during the day, making relative humidity a more
representative indicator of the overall environmental variability
during that period (see Table 3). In this sense, the difference in
temperature loads shows that its behavior and influence change
significantly throughout the day. In the morning, temperature
exhibits a behavior that positively contributes to the main
pattern of variability (0.139). In the afternoon, their relationship
reverses, and their relative influence decreases (—0.080). This
pattern could be related to external factors like solar radiation

Table 3 First principal component (PC1) loadings by time period

Dataset Variable Time-1 loadings Time-2 loadings

Building A PM; 0.53508485 0.53122603
PM, 5 0.54423959 0.54011290
PM;, 0.53900124 0.53932743
O3 0.09493903 0.16263629
CO 0.02258891 —0.00078407
CO, —0.26714783 —0.06874059
RH 0.16330848 0.31253203
T 0.13929765 —0.07968783

Building B PM; 0.54792026 0.4602331
PM, 5 0.55347504 0.4069517
PM;, 0.5536367 0.1085071
O3 0.13994936 —0.3379548
CO 0.08678465 —0.2711114
CO, 0.11967097 0.2571383
RH 0.18287404 —0.3403311
T —0.10978945 0.4910619
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or the intervention of air conditioning systems, which alter the
natural behavior of temperature in the office environment.

Otherwise, the analysis of PCA loadings in building B
revealed that PM; and PM, 5 are key contributors to data vari-
ability in-side the building during both periods, with their
influence being stronger in the morning. For PM;,, the differ-
ences in loading values indicate that its relative importance
among the variables changes throughout the day (see Table 3).
This decrease can result from several factors in an office envi-
ronment, such as reduced outdoor PM; and PM, 5 input due to
less traffic or external activities in the afternoon; more intense
indoor activities that generate PM; and PM, 5 in the morning
and decline later; and other factors like temperature, relative
humidity, or other pollutants becoming more dominant in the
afternoon, making PM's variability less influential on PC1.
Additionally, the high correlation between these two variables
suggests that the morning PCA may be capturing the dynamics
of outdoor air pollution entering the building. Likewise, the
change in the PCA loadings of the PM,, variable, from 0.553 to
0.108, indicates that its contribution and significance to the
building's indoor air variability patterns decreased significantly
from morning to afternoon (see Table 3). In the afternoon, the
building's windows may have been closed, or external condi-
tions such as traffic may have changed. This greatly reduces the
entry of outdoor PM;,, removing the main source of variability
in the morning. Additionally, there is a shift in pollution sour-
ces, becoming mainly indoor during the second period, when
reduced building operations can decrease dust resuspended by
human activity. Therefore, the PM,, concentration in the
afternoon either behaves independently or is affected by local
and sporadic factors that do not contribute to the overall vari-
ance explained by the PCA.

The ozone behavior in building B mirrors that in building A.
The afternoon increase in O; load suggests that ozone shifts
from being a minor variable to one that accounts for a large part
of the indoor environment's variability. This is likely caused by
increased outdoor ozone infiltration during the afternoon, due
to more sunlight, higher outdoor O; levels, and the building's
natural or mechanical ventilation. The change in PCA loadings
for the CO variable shows it rising from an insignificant role in
the morning to a significant one in the afternoon. The negative
sign indicates an inverse relationship, probably related to CO
dilution through natural ventilation or external source
dynamics. Likewise, the increase in PCA loadings for CO, from
0.119 in the morning to 0.257 in the afternoon is a typical and
reasonable trend. It shows that CO, becomes much more
influential in explaining indoor air variability as the day goes
on.

Relative humidity became much more significant for the
principal component in the afternoon period (the absolute
value of the loading increased to —0.34), indicating that its
fluctuations are now a key factor in explaining indoor environ-
ment variability. The negative loading shows an inverse rela-
tionship, meaning that as the principal component increases,
relative humidity decreases. In conclusion, during the after-
noon, as indoor temperature rises (due to solar heating or
human activity), relative humidity drops (because warm air can

© 2025 The Author(s). Published by the Royal Society of Chemistry

View Article Online

Environmental Science: Atmospheres

hold more water vapor before becoming saturated). Therefore,
the afternoon principal component might be capturing the
building's heating pattern and the resulting decrease in relative
humidity. In this way, the temperature variable shows a change
in PCA loadings from —0.109 in the morning to 0.491 in the
afternoon, indicating that temperature becomes a significant
and dominant factor in indoor air dynamics as the day prog-
resses. Furthermore, during the afternoon, the sun shines
directly on the building and its windows, causing a natural rise
in interior temperature. In this context, as the temperature
rises, it can affect other factors such as relative humidity (which
decreases) and human activity (which can increase or de-crease
thermal comfort). Furthermore, using electronic devices or the
presence of more people in the afternoon can generate heat,
contributing to the increase in temperature.

Finally, a Spearman correlation analysis was performed
between the study variables and contextual and operational
variables in each microenvironment to identify activities that
may influence the levels of air pollution recorded in the two
buildings. In this analysis, the operation of printers and
copiers, computers, electronic devices (such as IP phones,
access points, and external storage units), and mini-
refrigerators was recorded, along with additional activities like
vacuum cleaning and electronic soldering. A daily average of
door openings and closings was calculated for each microen-
vironment. Table 4 shows an excerpt of the correlations with
a significance value of p > 0.05 calculated for the spring period
in building A. A strong correlation is observed between partic-
ulate matter fractions and printers, with a coefficient greater
than 0.77. Additionally, computer operation and door opening/
closing have coefficients ranging from 0.55 to 0.64. This
suggests that when equipment is in use and people enter or
leave the office, particulate matter concentrations tend to
increase.

Table 5 displays the correlation coefficient matrix for
autumn data in building B, revealing a similar pattern between
particulate matter and printers, computers, and door move-
ments, with the correlation for door activity being notably
higher (0.87, p-value < 0.001). Moderate to strong relationships
were also found between O3 and printers (0.50), devices (0.62),
and operational activities (0.62), indicating that increased
equipment use and activities such as vacuuming or soldering
electronic components lead to higher O; levels. Additionally,
RH shows a negative association with printers and a positive
link to door opening/closing, implying that printer operation
tends to decrease relative humidity in the microenvironment,

Table4 Spearman correlation coefficient matrix for the spring season
in building A*

Printers PCs Devices Doors Activities
PM, 0.86%** 0.57%* — 0.55% —
PM, 5 0.78%* 0.57% — 0.64%* —
PM,, 0.78%* 0.57* — 0.62* —
T e e — — —0.58*

¢ Where * equals p < 0.05, **p < 0.01, and ***p < 0.001.
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Table 5 Spearman correlation coefficient matrix for the autumn
season in building B*

Printers PCs Devices Doors Activities
PM; 0.89%** 0.60* — 0.87%** —
PM, 5 0.89%%* 0.60* — 0.87%%% —
PM,, 0.89%** 0.60* — 0.87%%* —
O3 0.50* — 0.62* — 0.62%*
RH —0.54% — — 0.77%* —

“ Where * equals p < 0.05, **p < 0.01, and ***p < 0.001.

while opening a door causes humidity levels to rise due to cold
air entering from the corridors.

4. Discussion

The following conclusions can be drawn from evaluating the
quality of the K-means clustering models. Clusters formed by K-
means using PCA-filtered and divided by time range datasets
exhibit non-convex shapes. In this sense, DBI may be less
sensitive to clusters with non-convex shapes or highly variable
densities, as its calculation is based on distances to centroids.
For this reason, the values obtained for K-means clustering
quality metrics are not the most appropriate; algorithms such as
DBScan achieve better results due to their ability to handle this
kind of data and clusters with elongated or curved shapes (see
Table 1). This is shown in Fig. 9 and 13, as well as in the
Silhouette score values obtained by the clustering algorithms,
where K-means produces the best scores for clusters with
convex shapes and a low quality for clusters with elongated or
linear shapes.

The cluster analysis enabled the identification of microen-
vironments that maintain similar values in the variables across
the three seasons considered in the study. The 20 objects
(microenvironments) that compose cluster 1 of building A (see
Fig. 9) are characterized by low values in the average concen-
tration of particulate matter, in PM, 5 from 1.5 to 9.2 pg m >
and in PM,, from 1.7 to 10.3 pug m . In all the objects of this
cluster, high levels of CO concentration are present, exceeding
0.90 ppm, which stands out as the highest records, considering
the data from the three seasons of building A. In addition, 50%
of the objects that comprise cluster 1 recorded the highest CO,
concentration values. The patterns described above define the
maximum similarity between these objects. On the other hand,
the objects of cluster 2 stand out for having low values of CO,
between 0.63 ppm and 0.86 ppm, and low concentrations of
PM,, PM, 5, and PM,,. The variables of the particulate matter
fractions present concentration levels very similar to those of
cluster 1. However, the separation between these clusters is
defined by the difference in CO and CO, concentration levels,
which are lower than those recorded in cluster 1. In the case of
cluster 3, the values of the concentration levels of PM;, PM, s,
and PM,, are higher than those recorded in the objects of
clusters 1 and 2; for example, PM;, has concentrations between
15 and 22 pg m ™3, which causes the separation of these objects
to form a third cluster.
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In this sense, the objects 10-1, 10-2, and 10-3 in cluster 3
(see Fig. 9), which correspond to office 10 in the spring,
summer, and autumn seasons, are most similar. Likewise,
objects 12-1 and 12-2, as well as elements 13-1 and 13-3, are
highly similar to the other objects that comprise the cluster. The
coincidence of objects representing the same office but from
different seasons of the year allows us to conclude that the
activities carried out in these microenvironments do not vary in
frequency or intensity. In addition, the sources of air pollutants
released at the same concentration level are probably the same
sources that originate the pollution in the 3 time periods.

In the clusters derived from the data collected from building
B (see Fig. 13), it is evident that the objects that form cluster 3
are less similar or dissimilar to the objects of other clusters, and
there is a considerable distance between the objects of cluster 3
and the objects of clusters 1 and 2. This behavior in the objects
of cluster 3 is caused by the very high concentration levels of
PM;, PM, 5, and PMy,, from 25 to 42 ug m™ >, 36 to 66 g m >,
and 44 to 79 pg m >, respectively; these levels of contamination
are very far from the data recorded in the other objects. It is
essential to note that the IT technical support activities
frequently carried out in these offices often result in high
contamination levels. Computer equipment maintenance
activities take place in this office, which can cause dust to
spread from the vacuum cleaners used for cleaning the equip-
ment. Electronic components are also occasionally soldered,
releasing polluting gases into the interior, even when an
extractor fan is installed. Seven people work in this area,
following the same schedule. During the spring, the door was
opened 42 times in a single workday. This door grants direct
access to the exterior of the building. Therefore, the IT support
activities performed in these offices may be related to the high
levels of pollution recorded.

Furthermore, the composition of clusters 2 and 3 is deter-
mined by the concentration levels of the particulate matter
fractions. In the case of cluster 1, which consists of 12 objects,
PM,; concentration levels were recorded between 14 and 20 pg
m 3, PM, 5 with values between 16 and 36 pg m™3, and PM,,
values between 17.5 and 41 ug m > were observed. In cluster 2,
PM, 5 concentration levels are between 2.80 and 16 ug m > and
PM,, between 3.3 and 21.6 ug m . In the case of CO, variations
are observed in the three clusters. Similarly, the concentration
of CO, is only greater than 928 ppm in cluster 1, where six
objects are observed.

On the other hand, the average values of CO in the indoor air
of the buildings considered in the study did not exceed the
values defined in the guidelines of the US Environmental
Protection Agency (EPA) of 9 ppm,* and by the World Health
Organization (WHO) of 8.6 ppm for pollutants in the IAQ.** The
mean concentration of the CO of each building is consistent
with that reported by Baloch et al.,* where the distribution of
indoor air pollutants in approximately 300 classrooms across
various countries. The CO concentration was evaluated through
a 30 minutes short-term measurement in each room, yielding
a mean CO concentration of 0.72 ppm. On the other hand, in
Moreira et al.,>® an average of 1.8 ppm is reported for the
pollutant CO, with conditions like our experiment in
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temperature and relative humidity; in a study carried out in 3
offices and four service areas in a school involved teachers,
workers, and students. Similarly, Shen et al,’ reports the
average levels of CO between 1.2 and 1.6 ppm inside different
rooms in regular residential apartments.

The mean concentrations of CO, for the two buildings
ranged from 634 to 772 ppm. It is essential to note that the
average CO, concentration in the three seasons of the two
buildings exceeds 600 ppm.** However, although the averages
do not exceed the limits established by the EPA, maximum
values above 2000 can be observed in building A during the
summer (2423 ppm) and in building B during spring and
autumn, at 2715 and 2015 ppm, respectively. In particular, in
building B, the average CO, concentration exceeded 770 ppm
during the spring monitoring season. Therefore, a person's
health impact cannot be ruled out in this building, as the
average CO, level is very close to the permissible limit value in
IAQ during the seasons analyzed in this study. Building B has
the peaks (2715 ppm, 2015 ppm, and 1463 ppm) and average
highest CO, concentrations. In the spring, the highest mean
measurements of our experiment are observed (772 ppm =+ 428
ppm), which can be influenced by the very high ambient
temperature during this season. With a sudden and extreme
change in temperature between winter and spring, a maximum
temperature of 28 °C in the winter last weeks and spring with
a maximum temperature of 40 °C (in the range from 1:00 p.m.
to 7:00 p.m.). Hence, the air conditioning system of the building
is in operation for a minimum of 12 hours per day, and all the
building windows are closed permanently. On the other hand,
during the autumn period, the average CO, concentration
decreased by approximately 50 ppm (from 716 ppm), which is
consistent with the decrease in ambient temperature. It is
common to open the windows in buildings during these
seasons of the year.

It is essential to consider that several offices of building B are
staff areas, and there is an influx of students at certain times of
the day. Then, the average CO, measurements and the high
peaks observed can be caused by the increase in people in the
indoor spaces of this building. In this sense, Szabados et al.,””
exposed an average CO, of 1329 ppm, with a minimum
concentration value of 767 ppm and a maximum of 2328 ppm.
These data are derived from a study in which 64 school build-
ings were monitored for five consecutive days, with periods of 6
to 8 hours per day. Similarly, Gupta et al.,*® reported monitoring
IAQ in four office buildings during eight regular hours of office
work on weekdays; the average CO, concentration in some
buildings was 1434 ppm, but with very high average concen-
trations in others (1918 ppm). In this way, in Villanueva et al.,”
high peak and average CO, concentrations have been reported
in secondary school classrooms during the reopening after the
COVID-19 pandemic. The average concentration of CO, was
699 ppm (+172 ppm), with a minimum value of 393 ppm and
a maximum of 2117 ppm, based on data collected through
continuous monitoring for approximately one month, 6 hours
per day.

In addition, in Madureira et al,* present a study of the
exposure of newborns and mothers indoors in northern
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Portugal, identifying high concentrations of PM, ;s and PM;,
with average levels of 53 ug m ™~ and 57 ug m ™ in a sample of 65
homes. Furthermore, Qiu et al.,** found a significant variation
in PM, 5 concentration levels between floors of tall buildings
with average values (24 hours) between 34 and 102 pg m >, On
the other hand, Roh et al.,** reported average values in PM, 5
concentration between 4.28 ug m > and 12.2 ug m* in a study
of 8 offices before the COVID-19 pandemic. Similarly, in
a survey of indoor air quality in 25 offices of a Medical Univer-
sity,*® an average of 21 ug m > was recorded with a minimum of
3 ug m~? and a maximum of 65 pg m >, considering monitoring
of 2 continuous hours per office. Finally, in Felgueiras et al.,*
report in a study that considers 15 offices, they found high
concentration levels of PM,s and PM;, only in one office
located on a second floor, with values of 53 pg m > and 57 ug
m 2, respectively; in the rest of the offices, values less than 20 ug
m > and 40 pg m ™ were recorded for PM, 5 and PMj.

In summary, the CO, CO,, O3, PM, 5, and PM;, levels recor-
ded in this study are within a normal concentration range for
each pollutant. The PM;, average concentration for 24 hours
does not exceed the permissible limit of 45 g m > published by
the WHO.®* In the case of PM, s, the allowable limit of 15 ug m >
is slightly exceeded in building B in the spring and summer
with a value less than 1 pg m 2, and in the fall with a value less
than two ug m™?, which corresponds to 12.9%. The average CO,
CO,, and O3 concentrations recorded in the two buildings are
far from the maximum limits recommended by different
international organizations. For example, CO, is found at 23%
and 36% of the recommended limit of 1000 ppm, respectively.

5 Conclusions

The proposed clustering approach, based on the K-means
algorithm, can effectively improve the identification of micro-
environment clusters by leveraging patterns discovered in their
characteristics. This study enables the creation of maps of
microenvironments based on the objects that comprise the
clusters. The microenvironments (objects) within each cluster
are more comparable to one another and distinct from the
microenvironments of the other groups generated using the K-
means algorithm. Furthermore, the implementation of the
principal component analysis (PCA) method allowed us to
identify the variables with the most significant contribution to
the creation of groups, thus detecting the variables that influ-
ence the creation of the groups, highlighting that in some cases,
the clusters represent offices with a low, medium, or high level
of pollution. Moreover, in the analysis by time range, it was
observed that the O; pollutant variable makes a significant
contribution to the formation of the clusters, particularly when
solar radiation is high and ambient temperatures are also high.
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