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The oxidative potential (OP) of particulate matter (PM) is a pivotal metric to evaluate the potential health
effects of air pollution. However, the variety of assays and protocols available to measure the OP poses
a challenge for comparing one study with another. The present study aims to provide an analysis
comparing four calculation methods for determining the OP. These methods include the use of
calibration curves (CURVE), absorbance values (ABS), and two concentration-based (CC1 and CC2)
methods. Two acellular assays, dithiothreitol (DTT; OPP™") and ascorbic acid (AA; OP*), were chosen to
be examined. The application of these assays led to varying OP results depending on the applied
calculation method. Regarding results, first of all, there is a notable agreement between the ABS and
CC2 methods across both the DTT and AA assays. Second, however, for both assays, the CC1 method
consistently leads to higher OP values, with OPP™T variations of up to 18% compared to ABS and CC2,
and OP™ variations of up to 12%. Third, the CURVE method yields OPP™" and OP* values that are up to
10% and 19% higher than those calculated by the ABS and the CC2 methods, respectively. Therefore,
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consistency across different PM samples. These findings underscore the importance of defining

DOI: 10.1039/d5ea00025d standardizing OP protocols which should explicitly include all needed calculation steps in order to

rsc.li/esatmospheres further develop the OP metric into a comparable measure linking air quality and human health.

Environmental significance

Assessing the oxidative potential (OP) of particulate matter (PM) is crucial for understanding its role in air pollution-related health effects. However, variations in
calculation methods can lead to discrepancies in reported OP values, limiting comparability across studies. This work highlights how different computational
approaches influence OP estimates and identifies the methods that yield more consistent results. Establishing standardized OP calculation protocols is critical
to enhancing the reliability of this metric, ultimately improving its applicability in air quality assessments and public health research. By refining OP quan-
tification, this study contributes to a more robust framework for evaluating the oxidative stress burden associated with PM exposure.

capacity of aerosol species to catalyze redox reactions and
influence the formation of reactive oxygen species (ROS) has

1. Introduction

Oxidative potential (OP), the ability of particulate matter (PM) to
induce oxidation in the lung environment, is increasingly used
as a metric to assess health effects of air pollution."*
Researchers worldwide have extensively explored methodolo-
gies for OP assays, recognizing them as more precise measures
for predicting the toxicity of aerosol particles.*” So far, the
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been widely investigated in many studies using chemical acel-
lular assays.®** The variability in OP measurements can be
attributed to several factors, including the chemical composi-
tion of PM,**'® emission sources,’”*® chemical interactions,**>*
size-segregated PM,* reactant concentrations,* and operating
conditions,* all of which have been investigated.

The assessment of aerosol particle toxicity based on oxida-
tive potential assays was initially conducted in the early
2000s.”**” Since then, researchers worldwide have developed,
optimized and applied a variety of methodologies to determine
the OP of PM. Common acellular methods include the dithio-
threitol (DTT) assay (OP”"™"), the ascorbic acid (AA) assay (OP**),
the glutathione (GSH) assay (OP°*") and other acellular
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assays.”®* Due to the catalytic activity of redox-active PM
species in the presence of antioxidants, redox reactions
combined with absorbance measurement routines are used to
determine the consumption rate of reducing agents, thereby
measuring the dynamics of OP values based on air volume and
sampled mass normalization.*®** However, previous studies
have not examined the mathematical approaches to derive OP
values from measurements obtained with different assays, and
apparently, there is no consensus on the optimal method to
determine the OP associated with PM and redox-active species
capable of depleting antioxidants. Many of the current proto-
cols for measuring OPs involve the use of known concentrations
of reducing agents, such as DTT or AA, incubated with PM
extracts. OP values are then deduced from the consumption of
the reagents over time, using various mathematical methods.
These include calibration curves (CURVE),**?** absorbance
values linked to consumption rates (ABS)****” or concentration
values associated with the decay kinetics of DTT or AA
consumption (CC1 and CC2).'%3%4

Although previous studies have explored the uncertainties in
OP assays by investigating the variability of OP values resulting
from factors such as experimental repeatability, regression
curves, and operational procedures,* no studies have specifi-
cally addressed the variability in OP values resulting from
different calculation methods. In this study, a critical compar-
ison of different mathematical approaches for estimating the
OP of PM is performed. A review of 130 publications resulted in
identifying at least four distinct approaches. The methods are
applied on specific data sets generated with both the OP”™" and
OP** assays, as these are the most prominently used assays in
the domain. The primary objective of the present study is to
assess the variability across different calculation methods for
different assays, with the aim of establishing a standardized
protocol for OP quantification as a common final step of all OP
assays. This will help ensure more consistent and reliable
measurements contributing to a better understanding of the
toxic potency of aerosols. By promoting the adoption of uniform
OP calculation methods, this research should enable more
meaningful comparisons across global studies, fostering
collaboration and advancing the field of environmental health
research.

2. Materials and methods

2.1. Oxidative potential assays, a kinetic measurement with
computational implications

Most oxidative potential measurements are based on the
consumption of antioxidants or chemical surrogates (e.g., OP**,
OPP™| and OP%SH) or the evaluation of ROS production (e.g.,
OP°") by a PM sample. These analytical protocols involve
multiple absorbance measurements over a period of 15 to 45
minutes to evaluate the kinetics of the reaction between the
sample and the reactants. The rate of consumption of reducing
agents, such as DTT and AA, is determined by applying linear
regression to the absorbance data (which is proportional to the
concentration loss of DTT or AA) as a function of incubation
time. This analysis yields the regression slope and intercept,
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which are used to assess the reactivity of the PM samples. Thus,
the slope is consistently used in various calculation methods to
derive OP values, which are then normalized based on mass and
volume. Specifically, the slope corresponds to the rate constant
(k), which indicates the rate at which the concentrations of
reductants (e.g., DTT and AA) decrease over time, in proportion
to their respective concentrations, as shown in eqn (1).

—m = k' [reductant]*[PM]" (1)
where k' = k [O,], with K’ representing the rate constant for DTT
or AA consumption and “a” and “b” are the reaction orders with
respect to DTT or AA and PM, respectively.**** In this context,
the concentration of dissolved oxygen is considered negligible,
as air is in continuous contact with the surface of the solution
throughout the OP assays. However, by maintaining an excess
concentration of DTT and AA during incubation with PM
components, their influence on the reaction rate becomes
negligible and the reaction simplifies to eqn (2).

_d[red(ljlftant] _ K[PM]" )

Hence, the rate law simplifies to a dependence solely on the
concentration of PM, with the reaction order now being b.
Notably, the presence of reactive PM species increases the
overall oxidation of DTT and AA, reflected in a higher k. Over
prolonged incubation periods, the consumption of DTT and AA
may become more gradual, leading to a reduction in apparent £,
which is better explained by a pseudo-first-order reaction.***
This has significant implications for routine OP assays, espe-
cially when very low concentrations of DTT and AA are used to
incubate PM extracts, as it directly affects the reaction order of
the OP assay. Another important consideration is the determi-
nation of OP values for PM samples with high reactivity, which,
in turn, affects the apparent k and influences the linearity of
DTT and AA consumption.

It should be noted that endpoint measurement protocols are
also used to determine the oxidative potential based on the
initial and final absorbance values.**** However, these protocols
do not guarantee linear consumption of reducing agents,
leading to significant variations in the measured OP since they
typically involve long incubation periods. To address this, initial
reaction rates are measured by collecting data at short intervals
after the reaction begins to ensure linearity.*® Calibration curves
and appropriate controls are used for accurate quantification of
OP™ and OP*, along with critical monitoring of blank
absorbance values, especially at time 0. Conditions are opti-
mized to prevent rapid DTT and AA consumption, and auto-
mated systems are employed to improve precision and
reproducibility.®

2.2. PM samples

The present study examined six PM;, samples (#A, #B, #C, #D,
#E, and #F) to investigate the variability between different
mathematical approaches for estimating OPP™" and OP**
values. Since this study focuses on method comparability by

© 2025 The Author(s). Published by the Royal Society of Chemistry
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analyzing three distinct sources, the small sample size
employed here is sufficient to ensure the variability in the OP
values across different mathematical approaches. PM samples
#A and #B were collected during Saharan dust events, samples
#C and #D were collected under European urban conditions,
and samples #E and #F were collected during winter in regions
affected by biomass burning in Europe. Samples were collected
using quartz fiber filters for 24 h of sampling (DA-80 devices,
720 m?).

2.3. PM extraction and iso-concentration of particles

All PM samples were extracted at 37.4 °C using a combination of
dipalmitoyl phosphatidylcholine (DPPC) and Gamble's solution
to create a respiratory simulated lung fluid (RSLF).** To ensure
comparability of the experiments, extractions at iso-
concentration of the particles were performed at 25 pg mL ™"
and then incubated with DTT or AA.>°

2.4. Dithiothreitol assay (OP""™")

The OP™ assay was investigated through TNB>~ formation,
which involved multiple absorbance measurements using
a TECAN Infinite® M200 Pro spectrophotometer and 96-well
CELLSTAR® Multiwell plates from Greiner Bio-One®. The
reaction mixture contained 225 uL of phosphate buffer solution
(PBS; Carl Roth GmbH + Co KG Karlsruhe, Germany), 50 uL of
250 pM DTT (CAS: 3483-12-3; Carl Roth GmbH + Co KG Karls-
ruhe, Germany) in PBS, and 20 pL of PM extraction. TNB>~
formation was monitored at 412 nm with the addition of 50 pL
of DTNB (CAS: 69-78-3; Carl Roth GmbH + Co KG Karlsruhe,
Germany) at 0, 15, and 30 minutes of incubation. OP"™"
measurements were carried out in triplicate. Blank measure-
ments (n = 6) were carried out using the same protocol as
previously described for PM samples. Positive controls con-
sisted of monitoring the OP of 1,4-NQ (24.7 uM) to evaluate
measurement quality and reproducibility. The coefficient of
variation (COV; %) ranged between 2 and 8% (n = 8). Further
details can be found in Calas et al.*' and Dominutti et al.®

2.5. Ascorbic acid assay (OP**)

The depletion of AA was investigated using the same instrument
as for the DTT assay. A redox reaction was performed by incu-
bating 100 pL of 240 pM AA and 80 pL of the PM extract (25 pg
mL~") for 32 minutes. Absorbance measurements were taken
every 4 minutes (at 0, 4, 8, 12, 16, 20, 24, 28, and 32 minutes) at
265 nm. The chemical controls involved monitoring and
assessing the measurement quality and reproducibility using
1,4-NQ (24.7 uM). The COV ranged between 1 and 5% (n = 6).
Additional information on the OP** assay can be found in the
studies by Marsal et al.* and Borlaza et al.* All OP** measure-
ments were carried out in triplicate.

2.6. Mathematical approaches for quantifying OP”"™"

The present study evaluates four mathematical approaches for
assessing the OP of PM, identified through a comprehensive
literature review (see Section 3.1: Calculation methods for

© 2025 The Author(s). Published by the Royal Society of Chemistry
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quantifying oxidative potential). The OP values calculated using
these different approaches—including the calibration curve
(CURVE), absorbance-based (ABS), and two concentration-
based methods (CC1 and CC2)—were initially assessed as the
activity rate (nmol min ). These values were then normalized
further to account for 1 pg of incubated mass (nmol min™"
pg~ 1) and 1 m? of air volume (nmol min~* m ).

For all calculation methods, background absorbance values
obtained from blank measurements were subtracted from the
absorbance values of the PM samples prior to the calculation
step. In addition, we carefully monitored the background
absorbance and the autoxidation of DTT and AA in both OP
assays, placing particular emphasis on accurately assessing
these parameters to ensure data reliability.

2.6.1. Calibration curve (CURVE) method. For the OP°"™,
an analytical curve was constructed using values ranging from
0 to 140 uM (N = 6; six concentration levels of DTT) TNB>*~
produced during the DTT and DTNB redox reaction.” To
examine the impact of different DTT concentrations on the
determination of OP"™" values, we investigated additional
ranges, including 0-100 pM (N = 5) and 0-60 pM (N = 4). These
concentration ranges have been used in previous studies, as
described by Yu et al.*® and Dominutti et al.> For OP**, the AA
concentration ranged from 0 to 240 pM (N = 6) to facilitate
comparison with other calculation methods. Additionally, cali-
bration curves were constructed using different AA concentra-
tion ranges, including 0 to 192 pM (N = 5) and 0 to 144 pM (N =
4), to investigate the impact of varying AA concentration ranges
on the determination of OP** values. In this study, we investi-
gated the effect of varying the number of data points selected
from the full calibration curves (DTT: 0-140 uM; AA: 0-240 pM)
on the slope and intercept of the regression and consequently
on the calculated OP values.

Using the CURVE method, the OP is obtained as follows:

(i) An absorbance vs. (DTT/AA) concentration regression
curve is established, and both the slope () and intercept (c)
values are determined.

(ii) During the incubation of the samples with (DTT/AA) in
the respective assays, the absorbance values at each incubation
time point (4,) are recorded.

(iii) The absorbance (4, is converted into a (DTT/AA)
concentration using the calibration curve parameters ob-
tained in (i) above.

(iv) The OP is determined as the rate of change of (DTT/AA)
concentration over time.

(v) The value is multiplied by the solution volume (V), to
obtain the OP values (nmol min™").

The determination of OP values using the CURVE method
can be represented as follows:

d /4, —c¢
P -
Oeune = - ¥ 5, (1) ®)

Further features of the CURVE method are discussed in
other studies.****

2.6.2. Absorbance-based (ABS) method. The determination
of OP values using the ABS method is described as follows:
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(i) Absorbance values related to DTT/AA consumption are
recorded every 5, 10, or 15 min for the DTT assay and every 4 or
5 min for the AA assay.>*°

(if) A calibration curve of absorbance values versus time is
established, and both the slope and intercept are determined.

Accordingly, the OP (nmol min~") using the ABS method is
determined as follows (eqn (4)):

[reductant], d4,

OPpps = -V 4
T @

Here, p refers to the intercept of absorbance versus time,
[reductant], to the initial concentration of DTT or AA
(in mol L"), V is the solution volume (L), and 4, to the
measured absorbance values.*>*

2.6.3. Concentration-based method 1 (CC1). DTT and AA
consumption rates can also be quantified using the CC1
method, which include the following procedural steps:

(i) Replicate absorbance measurements of blank field filters
are performed shortly after the addition of DTT and AA and
represent the absorbance at time 0 (4z,).

(ii) Absorbance values are measured at equal time intervals
after adding DTT or AA (4,), during a controlled incubation
time.

(iii) The OP values in nmol min " are determined according
to eqn (5):

[reductant], d4,

OPcc) = -V 5
cct A dz (5)

0
In this method, [reductant], is the initial concentration of DTT
or AA (in mol L) and V is the solution volume (L).'>%

2.6.4. Concentration-based method 2 (CC2). The OP is
obtained using the following steps:

(i) Absorbance values for the PM samples at a given incu-
bation time (4;), as well as the absorbance values for the PM
samples at time 0 (4py,), are measured.

(if) The consumption of DTT and AA is determined by
measuring absorbance at specific time intervals during the
incubation period. For the DTT assay, measurements are typi-
cally taken every 5, 10, or 15 minutes, while for the AA assay,
intervals of 4 or 5 minutes are commonly used.>*® These inter-
vals are chosen to effectively monitor the reaction kinetics and
accurately assess the consumption rates of DTT and AA.

For the OP determination (nmol min~"), as proposed by eqn
(6), the [reductant], is the initial DTT or AA concentration
(in mol L") and V is the solution volume (L).14%#1:51

[reductant], d4,

Pecy = —
O cc2 V d[ (6)

Apm,

2.7. Statistical evaluation

A comprehensive statistical analysis was conducted to assess the
variability in OP values derived from the four mathematical
approaches (CURVE, ABS, CC1, and CC2). The COV was calculated
to quantify the relative variability of OP values, providing a stan-
dardized measure of dispersion. Discrepancies between methods
were quantified by comparing individual OP values to the overall
OP mean. Analysis of variance (ANOVA) was used to determine
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statistically significant differences among methods, incorporating
replicate measurements. Paired ¢tests and associated p-values
were employed to examine OP value variations across calibration
curve ranges and to further investigate the differences between
the calculation methods. The mean and median were also used to
compare OP values obtained from each method.

3. Results and discussion

3.1. Calculation methods for quantifying the oxidative
potential

The mathematical approaches presented in the previous section
are designed to investigate the linear consumption rate of DTT
or AA during incubation with redox-active PM species. To fulfill
linearity, the methods are applied for protocols with short
incubation times, typically less than 45 minutes. However, some
studies have used alternative assays that extend the incubation
time, typically to four hours, and have used additional mathe-
matical approaches to assess the OP of PM.*»**»37% These
extended incubation methodologies are not discussed in the
present study, as differences in incubation times potentially
affect the dynamics of the redox mechanism and linearity. This
issue alone might warrant a separate review-like treatment.
Based on OP studies conducted over the past five years (2020-
2024), the various mathematical approaches applied for deter-
mining OP are grouped to provide a comprehensive overview of
the methodologies. Studies lacking sufficient information
about their calculation methods are classified as “unknown.”
A review of 130 peer-reviewed papers within this period
revealed that the CC2 method (39 publications, 30%) and the
ABS method (34 publications, 26.1%) were the most commonly
employed approaches for assessing the oxidative potential of
particulate matter (Fig. 1). Other OP studies used calibration
curves to investigate the rate of DTT or AA consumption;
however, this approach was less common, appearing in only

45
39

2 34
2 31
8 30-
5
=
(o}
k] 18
2 15-
=
= 8

O T T T T T

CURVE ABS CCf1 CC2 Unknown

Fig. 1 Number of peer-reviewed publications addressing different
calculation methods used to estimate OP values in the scientific
literature over the past 5 years (n = 130), including previous citations
and others 5617

© 2025 The Author(s). Published by the Royal Society of Chemistry
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13.8% (18 publications) of the OP studies. Additionally, about
6% (8 publications) of the studies applied the CC1 method in
DTT or AA assays. A substantial portion, 23.8% (31 publica-
tions), lacked sufficient information to be classified within the
categories presented in the previous section.

3.2. Variability of OP”™" values across different
mathematical methods

3.2.1. Mass-normalized (OPL'") and volume-normalized
(OPP™) values. Determination of OPP™" values normalized by
mass and volume was carried out using the four mathematical
approaches described above: CURVE, ABS, CC1, and CC2. The
values of both OPL' " and OPY™" are shown in Fig. 2(a and b) and
also in Table S1 in the ESI. Similar patterns are observed for
OPR" and OPY™" in terms of variability introduced by the use of
different calculation methods. For different PM samples, higher
OPR™ is observed for #E and #F (influenced by biomass
burning), followed by #C and #D (urban areas with traffic and
anthropogenic activities), and finally #A and #B (dominated by
mineral dust). In terms of OP,, higher values are observed for
#B, followed by #E, #F, and #A and finally #C and #D.

When comparing the OP values from different calculation
methods, CC1 yields significantly higher results. For instance,
in the case of sample #F, the OPL' " values are roughly 25%
higher (0.099 nmol min~"* pg™") than those obtained using the
ABS and CC2 methods. For OPy™", the ABS and CC2 methods
yielded values of 4.24 and 4.19 nmol min~' m >, respectively,
while CURVE and CC1 methods result in values of 4.59 and 5.57
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OPy™"values, whereas the CURVE and CC1 methods typically
result in higher OPs. A detailed comparison of OPL'" and
OPY"" values is presented in Table S17 for all the investigated
samples, including information on their statistics, mean,
median, and COV.

3.2.2. Differences in relation to the overall OP®"" mean. To
assess the variability of OPP™" values across different calcula-
tion methods, we compare the overall OP mean values—calcu-
lated as the average of the OP values from all four methods—for
each sample with the OP values obtained from each method.
The comparisons are given in percentages, as shown in Fig. S1.}
The results indicate substantial agreement between the ABS and
CC2 methods, with both showing comparable mean and
median OP values (Table S17) and similar differences in relation
to the overall OP mean. In contrast, the CURVE method yields
OP values that differ by up to 10% from those obtained using
the ABS and CC2 methods on average. This difference is
statistically significant for OPy™™ (p < 0.05) but not for OPL' " (p >
0.05) (Table S2t).

The ABS method leads to OPP™" values differing from the
overall OP mean by 4.0% to 11%, while the CC2 method shows
deviations of 4.5% to 14% (p > 0.05; Table S27). Although both
the ABS and CC2 methods exhibit similar profiles, the CC2
method reveals slightly higher variation compared to the ABS
method. In contrast, the CURVE method exhibits the least
variation, with the deviations in the OP values ranging between
1.1% and 5.7% relative to the overall OP mean.

The CC1 method displays the highest variability observed in
this study, with variations of up to 27% (ranging from 14% to

nmol min~" m 7, respectively. Therefore, both ABS and CC2 it )
methods tend to produce comparable OP2™™  and 27%). This indicates that CC1 provides OP values that
(a) OPR™"

-~ _9

' CURVE =45
(@)] =

= 0.10 ABS 40.10 g_ 0

E & cc1 i 3 Q
& E 0.05{ JCC2 T 10.05 % g
oy -~ ®

£ 0.00 1 + . . . : 000 — §

A B C D E P
(b) OPP™T

& 9 9 2

| o ()

z 35
EE 8 ® a8
o & ) 3 o
Q= 3 o 13 “ =
SN 8| — 3
5 0 T T T _I‘T‘tlj T T O - %

A B C D E F

Fig.2 OPPTT values normalized by both mass (a) and volume (b) for four distinct calculation methods: (first bar: CURVE (0-140 uM), second bar:
ABS, third bar: CC1, and last bar: CC2), along with the overall OPP™T mean per sample (the average of OPP™ values calculated by all four
methods). Six random PM samples (A, B, C, D, E, and F) were selected to show the variability between the mathematical approaches with
a concentration of particles of 25 ng mL~. OPP™T measurements were performed in triplicate (n = 3), and error bars show the standard deviation.
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significantly differ from those obtained through other mathe-
matical approaches (p < 0.05; Table S27). Notably, the parame-
ters utilized for the OP determination in the CC1 method differ
from the others, potentially exerting a substantial impact on the
distribution of both OPXT" and OPP™™ values.

The variability previously observed for OPL' " remains for
OPY™ values, as shown in Fig. 2b, since both normalized OPs
are primarily derived from the same OP values (nmol min™").
Moreover, the t-test reveals statistically significant differences
for all methods except for the comparison between ABS and
CC2, which yield similar OPY™ and OPL'" (Table S2f). To
facilitate the interpretation and presentation of our findings,
the following sections will focus on discussing the OPL! " values.

In general, the descending order in both OPL'" and
OPY™ values for the investigated methods is as follows: CC1 >
CURVE > ABS = CC2.

3.2.3. Intrinsic variability of OP®™" values for each calcu-
lation method. This section evaluates the impact of replicate
measurements on the overall determination of OP, highlighting
the variability observed in each calculation method due to
differences in replicate absorbance values. Higher COVs are
observed for the replicates of PM samples #A, #C, and #E when
using the CC1 method, compared to the COV values for the
CURVE, ABS, and CC2 methods (Table S1 and Fig. S2at). This
implies that the CC1 method shows larger variability relative to
the OP®™ mean for these samples, leading to less consistency
in OP”™ values among the replicates. On the other hand,
higher COVs are observed for PM samples #B, #D, and #F when
using the CC2 method (Fig. S2at).

Although the differences in the mean values for these
samples may be low, the relative variability of the results is
higher for these PM samples. In other words, the COV for the
CC2 method varies significantly between different PM samples,
suggesting that its reliability is sample-dependent, as already
observed for CC1. This implies that the variability observed in
both the CC1 and CC2 methods may depend on the complex
interplay of aerosol chemical species across different PM
samples, or alternatively, may arise from the inherent effects of
the variability caused by the distinct absorbance values at time
zero, as incorporated within the framework of these methods.

The OPP"™" values of PM samples #A, #B, #D, and #F are not
significantly different, regardless of the calculation method
used and replicate values (one-way ANOVA, p > 0.05 at the 0.05
level; Table S3t). This was different for the effects of replicate
values on the OP™ of PM samples #C and #E, which showed
significant differences between the mathematical approaches.
This aligns well with the previous observation, where the high
COVs for the CC1 method indicates general variability issues,
while the varying COVs suggest that each method's relative
performance can be significantly different depending on the PM
sample. A complete assessment of the statistical differences
between the calculation methods with consideration of their
replicated OP values, including ANOVA and p-values is provided
in Table S3(a-f)} for the DTT assay. It should be noted that
significant variation already exists in calculating the OP using
different methods as previously described. However, the vari-
ability increases further due to differences between replicates
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for each PM sample, particularly for methods CC1 and CC2. In
these cases, the variability, expressed here as the COV, is
notably higher compared to those generated by other calcula-
tion methods.

3.2.4. Variability of OP™" values using the CURVE
method. The calibration curve is generated with a DTT
concentration range of 0 to 140 pM (n = 6) to allow comparison
with the ABS, CC1, and CC2 methods. In this section, the vari-
ability of the OP values is evaluated using different ranges of
DTT concentrations, including 0 to 100 uM DTT (N = 5) and 0 to
60 uM DTT (N = 4) (Fig. 3). Further details on the slope and
intercept parameters are given in Table S4 in the ESL

A consistent pattern in the OP distribution emerges when
varying the DTT concentration range between 0 to 100 pM (N =
5)and 0 to 140 uM (N = 6), as similar OP"" values are obtained
for both ranges, indicating consistency across these calibration
intervals. However, across all PM samples, markedly lower
OPL" values are observed when using the calibration curve in
the lower range of 0-60 pM DTT (N = 4), as shown in Fig. 3.
Thus, the OPY'" values calculated with the CURVE method
based on the 0-60 uM DTT calibration curve are, on average, up
to 43% lower than the values derived either from 0 to 140 uM
DTT (p < 0.05; Table S5at) or from 0 to 100 uM DTT (p < 0.05;
Table S5af). This difference arises solely from the variation in
calibration parameters (slope and intercepts) among the cali-
bration curves used. As such, the slopes and intercepts play
a key role in the observed differences in OP values when
comparing different calibration curves. As evidenced in Table
S4,f the differences in these parameters propagate through the
calculation, ultimately resulting in substantial changes in the
final OPP™" values. Similar trends are observed for OPY™™, as

0.12

[ Jo-140um
[ Jo-100um
0-60 uM

0.08 +

OPP™T (nmol min™' ug™)

0.04 4 =

WI
A B C D E F

Fig. 3 Mass-normalized DTT activity (OPE') for the CURVE method
across different DTT concentration ranges (uM) for six PM;o samples
(A—F) at 25 pg mL~%. OPE'T values were calculated using the slope and
intercept of calibration curves with concentration ranges of 0-140 uM
(first bar; n =6), 0-100 puM (second bar; n =5), and 0—60 pM (third bar;
n =4), as described in Section 2.4.1. In this study, we varied the number
of data points selected from the full calibration curve to assess their
influence on the slope and intercept, and consequently on the
calculated OP values.

0.00
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both  values derived from non-normalized OPs
(nmol min™%).

This disparity underscores the potential for significant
deviations in OPP™" value determination when employing cali-
bration curves of different concentration ranges. Specifically,
variations in both slope and intercept values directly influence
the baseline absorbance utilized in the CURVE method's
calculation of DTT consumption.

This analysis supports the work of Molina et al.,** where
these authors demonstrated relative uncertainties in OP”™"
values for both PM10 and PM2.5 samples, highlighting signif-
icant variation in linear regression analyses of PM samples.
According to the authors, various operational conditions
contribute to the variability of OP values in the DTT assay,
including reproducibility factors associated with curve fitting
analysis.**

Although significant variability exists between the mathe-
matical approaches, the chosen concentration range of DTT for
generating the calibration curves appears to significantly
influence the assessment of OP. This suggests that a significant
bias may arise from the concentration ranges used in the cali-
bration curve, potentially due to a loss of linearity and issues
related to DTT consumption at low concentrations, such as
those observed at 0-60 uM. For routine OP®™" assays, the DTT
concentration ranges between 0-140 uM and 0-100 pM, which
provide results more consistent with those obtained using the
ABS and CC2 methods, are thus preferred.

3.2.5. Variability of OPP™" values using the CC1 method. In
this subsection, the variability of OP”™" values using the CC1
method (Section 2.3.3) is investigated focusing on variations in
the filter blank absorbance at time zero (A ) and its impacts on
the OPP™" values. The CC1 method normalizes the difference in
the absorbance by the blank absorbances at time zero, as
detailed in eqn (5). Fig. 4 shows the distribution of OPP"" values

are

[Intercept [0.11331 £ 0.00108|
| Slope 1-0.06636 + 0.00125|
= Pearson's r -0.99401
007 -. :R-Squam (COD) 0.98806
—~ - [Adj. R-Square 0.98771
v -
= ",
€ s,
o 0.06 .,
g -l. *
N ..
- [
o o 1 -y
o 0.05 . -
1 L™
-
I
I
I
0.04 T T — T
0.7 0.8 0.9 1.0

Blank absorbance (4,)

Fig. 4 Variability of OPP™T values (nmol min~?) in relation to variations
in filter blank absorbance values at time O (Ag ). “*" denotes the average
blank absorbance value for this study. The figure illustrates the impli-
cations on the use of different initial blank absorbance values on OPP™"
values based on the CC1 method.
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(nmol min~"), accounting for a range of blank absorbance
values from 0.683 to 1.033 at time zero.

Fig. 4 shows that the OP™" values exhibit substantial vari-
ability, primarily driven by changes in the Ag values in the CC1
method, with OPP™" ranging from 0.046 to 0.070 nmol min™".
This variability corresponds to an additional variation of up to
34% in the OPs, as demonstrated by the cascading effect
observed when varying Ag. The results suggest that larger
differences between Ag and A, lead to lower OP values, while
smaller variations among these parameters tend to yield higher
OPs. Specifically, higher absorbance values at time 0 indicate
reduced intrinsic reactivity of the PM samples, resulting in
lower OP values that are more consistent with those obtained
using the ABS and CC2 methods. Thus, the normalization with
Ag, may explain the differences observed between CURVE, ABS,
and CC2 methods. Trace levels of redox-active species and PM
catalysts in the blank solution could also lead to increased
consumption of DTT and AA, resulting in lower absorbance
values at time 0. This, in turn, affects the results of the CC1
method.

Accordingly, minimizing variation in blank absorbances can
enhance the reliability of OP values and reduce the variability
between replicates. In summary, this section highlights the
importance of using consistent absorbance values for blank
measurements in routine OP assays, as this has direct impli-
cations for the accuracy of OP values. Future OP studies should
consider comparing theoretical absorbance values, calculated
based on the initial concentrations of DTT and AA, with the
actual blank absorbance values obtained through instrumental
measurements. Finally, it is crucial to carefully examine the
intrinsic reactivity of blank samples in OP analysis, as this can
contribute to more consistent OPs.

3.3. Contrasting OP®™" and OP** outcomes for different
methods

The observed variability in OP** values across different meth-
odologies mirrors previous findings for OPP™" (Fig. S3 and
Table S6t). Notably, both CC1 and CURVE methods consistently
produced higher OP** values, while ABS and CC2 methods
resulted in comparatively lower values. For OP**, the CURVE
method leads to the highest observed OP**, followed by CC1,
CC2 and ABS. This difference may be partially attributed to the
effect of incubation time, as previously reported, or to the
normalization approach used in the CC1 method. Specifically,
variations in the absorbance values of blank samples at time
0 suggest substantial fluctuations in OP** values when using
the CC1 method, which could influence comparisons across
studies.

In terms of replicates, the CURVE and CC1 methods exhibit
higher COVs for PM samples #A, #B, and #C. In contrast, the
ABS and CC2 methods show higher COVs for samples #D, #E,
and #F. Specifically, stronger AA depletion was associated with
increased COVs for the ABS and CC2 methods, while weaker AA
depletion corresponded to higher COVs for the CURVE and CC1
methods (Fig. S27). Statistical analysis indicated significant
differences among replicate measurements for PM samples #C,
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#D, #E, and #F (Table S3; ANOVA, one way, p < 0.05). This
finding is consistent with previous results from the DTT assay,
highlighting the influence of replicate variability in OP assays
and its dependence on the calculation methods employed,
where the inherent variability in replicate measurements
appears to be sample-dependent. Calibration curves with
a narrower AA concentration range (0-144 uM) yielded lower
OP** values than those with wider ranges (0-192 uM and 0-240
uM; Fig. S371). This trend is similar to that previously observed
with the DTT assay, which indicates that higher DTT concen-
tration ranges for the calibration curve result in increased
OPP™. This aligns with the findings of Lin et al,'> who
demonstrated that the initial concentration of DTT significantly
affects OP values during incubation with PM.** Specifically, the
authors showed that lower DTT concentrations during incuba-
tion generally lead to lower OP values.

As a final comparison, the variability caused by the different
calculation methods have a more pronounced effect on OPP™"
compared to OP*, as indicated by the greater variability
observed in the OPP™" values (Fig. S11). However, at higher
consumption rates, as previously demonstrated for #D, both the
ABS and CC2 methods have a greater influence on the AA
compared to the DTT assay. For both assays, increasing the
concentration ranges of DTT and AA used in calibration curves
resulted in higher OP values compared to other calculation
methods. While the CC1 method led to elevated OPs in both
assays, its impact was particularly pronounced in the DTT assay.

4. Conclusion and recommended key
features of a standardized OP
determination

This study presents an in-depth analysis of the mathematical
methodologies outlined in the literature for the determination
of OP values. These approaches assess the consumption rates of
DTT and AA in the presence of redox-active PM species and PM
catalysts by utilizing relative absorbance values over time,
which are subsequently extended to yield slope and rate
constant values. The experimental results revealed distinct OP
profiles, with varying calculation methods leading to divergent
outcomes. These findings are best summarized as follows:

(i) Both the ABS and CC2 methods exhibited significant
similarities in both DTT and AA assays, demonstrating similar
OP values and relative variation.

(ii) The CC1 method is prone to yielding higher OP?™" and
OP* values compared to the CURVE, ABS, and CC2 methods.
The intrinsic variability of the CC1 method, as observed in
measurement replicates, affects the precision and stability of
OP values, which in turn influences comparisons across
different studies. The blank assessment is the critical step
within CC1 to obtain comparable OP values.

(iii) variation in the concentration ranges of DTT and AA
used in the CURVE method significantly influence the vari-
ability of OPP™" and OP™* values. Such variations carry impor-
tant implications for the slope values associated with the rate
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constants of the redox and catalytic reactions involved in OP
assays.

The findings of the present study highlight the importance
of uniform OP protocols with guidelines on the methodological
aspects of OP assays, including the adoption of more compa-
rable mathematical approaches for measuring the OP and
critical evaluation of blank solutions.

It is important to acknowledge the inherent limitations in
the assumptions in the absorbance-to-concentration conversion
methods. While the ‘CURVE’ method employs a more complex
approach, other methods appear to utilize a simplified conver-
sion factor ([reductant]o; p; Ag; Apm,)- This approach implicitly
assumes ideal Beer-Lambert behavior and exclusive absorbance
due to the reductant. However, as demonstrated in Table S4,+
real-world measurements often exhibit a non-zero intercept,
indicating deviations from ideality. This intercept suggests that
background absorbance or other systematic effects contribute
to the measured absorbance, rendering the simplified conver-
sion factor potentially inaccurate. Therefore, for OP standardi-
zation, we must consider the limitations of these simplified
methods. From an analytical chemistry standpoint, employing
linear regression of absorbance versus concentration provides
a more accurate and scientifically justified approach. Based on
the findings of the present study and the observed discrep-
ancies in the OP values obtained through each calculation
method in comparison to the overall OP mean, both the ABS
and CC2 methods exhibit greater consistency and are recom-
mended for routine OPP"" and OP** assays. While our analysis
identifies statistical similarities among computational
approaches, we acknowledge that numerical agreement alone
does not imply scientific validity. Rather, our findings highlight
the relative differences between methods across diverse PM
sources, allowing us to identify approaches that yield more
comparable results. These findings are intended as guidance for
enhancing comparability across studies, rather than a definitive
endorsement of any single method's absolute correctness.

To maintain the accuracy and consistency of measurements
across all calculation methods, strict adherence to quality
control protocols is essential. Experimental protocols should
include an evaluation of the linearity of the regression analysis
for both DTT and AA consumption, as well as a critical assess-
ment of their concentration to ensure greater consistency across
methods. Failure to account for potential deviations from
linearity may lead to misinterpretations of the patterns
observed in both the DTT and AA assays. Additionally, future
studies could consider extracting OP values from different
methods to enable a more detailed comparison across studies,
improving the standardization and interpretability of OP
assessments.

Overall, the present study contributes to the development of
standardized protocols for the OP quantification stage, which
will enhance consistency in predicting the toxic potency of
aerosol particles and facilitate reliable comparisons across OP
studies globally.

© 2025 The Author(s). Published by the Royal Society of Chemistry
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