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ibutions of wildfire aerosols in the
western USA†

Siying Lu,a Chiranjivi Bhattarai,a Vera Samburova ab and Andrey Khlystov *a

Wildfires are a major source of aerosols during summer in the western United States. Aerosols emitted from

wildfires could significantly affect air quality, human health, and the global climate. This study conducted

a comparison of aerosol characteristics during wildfire smoke-influenced and non-smoke-influenced

days. Ambient particle size distribution (PSD) data were collected in Reno, Nevada, between July 2017

and October 2020. During this period, the site was impacted by smoke from over a hundred wildfires

burning in a wide range of ecosystems in the western United States located at different distances from

the measurement site. The smoke-influenced days were identified using satellite images, a hazard

mapping system, and wind back-trajectory. Positive matrix factorization (PMF) was applied to identify the

main sources and their characteristics. The wildfire aerosols were observed to have a number mode

diameter of 212 nm, which is significantly larger than aerosols on non-smoke-influenced days (61 nm). In

addition to the increase in particle size, wildfires made a large contribution to PM2.5 and CO

concentrations. During fire-prone months (July, August, and September) from 2016 to 2021, 56% to 65%

of PM2.5 and 18% to 26% of CO concentrations could be attributed to wildfire emissions in the study

area. On an annual basis, wildfire emissions were responsible for 35% to 47% of PM2.5 concentrations

and 5% to 12% of CO concentrations.
Environmental signicance

As wildre frequency and intensity continue to increase, characterizing the particle size distribution of wildre emissions becomes increasingly vital for
accurately assessing the climate effects of wildre aerosols and evaluating potential health risks associated with smoke exposure. This study investigated aerosol
particle size distributions measured in Reno, Nevada, over a 16 months period, during which the measurement site was impacted by smoke from 106 wildres
burning in a wide range of ecosystems in the western United States located at different distances from the measurement site. We show that wildre-related
aerosols are considerably larger (a number mode diameter of 212 nm) than aerosols on non-smoke-inuenced days (61 nm). In addition to the increase in
particle size, wildres made a large contribution to local air pollutant concentrations. For example, wildres contributed 35% to 47% of PM2.5 on an annual
basis. The ndings will enhance our ability to model and predict both the climatic and health impacts of wildre emissions, supportingmore effective air quality
management strategies and public health interventions in regions affected by wildre smoke.
1. Introduction

Atmospheric aerosols inuence the global radiation balance by
directly scattering and absorbing solar radiation.1–3 They also
affect cloud formation4 and albedo.5 As one of the six criteria air
pollutants,6 particulate matter (PM) directly affects air quality,7–9

visibility,10 and health.11,12

Biomass burning (BB), which includes wildres, is a major
source of atmospheric aerosols.13 The frequency, size, and
severity of wildres in the western United States have increased
over the past two decades.14–16 Studies worldwide – such as those
Research Institute, Reno, Nevada, USA.
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tion (ESI) available. See DOI:

502–516
from the United States,17 Finland,18,19 Australia,20 Brazil,21 Mex-
ico,22 China,23 and Russia24 – have shown that res can generate
large amounts of aerosols, raising concerns about their impact
on air quality, human health, and climate. Wildre emissions
have been linked to adverse health effects,12,25,26 such as
cardiorespiratory diseases,27 asthma attacks,27,28 and overall
respiratory morbidity.28,29 Wildre-emitted aerosols also inu-
ence the global and regional climate by scattering and
absorbing solar radiation, and impacting clouds and precipi-
tation.30,31 It has been demonstrated that wildre emissions are
associated with changes in atmospheric circulation,9,30

increases in Arctic sea ice,30 and other climate anomalies such
as droughts.31 However, there is still signicant uncertainty in
the current estimates of wildre effects on local and global
climates.32–34

Aerosol particle size distribution (PSD) plays a signicant
role in how aerosols affect the climate35,36 and human health.37
© 2025 The Author(s). Published by the Royal Society of Chemistry
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For example, direct radiative forcing caused by wildre aerosols
is sensitive to aerosol PSD.38 Fine particles are particularly
important in total optical extinction because of their high mass
scattering efficiency and absorption cross-sections.39 The ability
of particles to act as cloud condensation nuclei (CCN) is not
only driven by their chemical composition, but also primarily by
their size.40 BB aerosols can signicantly elevate CCN
numbers.41 Zheng et al.42 demonstrated that CCN concentration
in the remote marine boundary layer could be enhanced by
long-range transported wildres. Aerosol size is also a key
controlling parameter of aerosol deposition in the human
respiratory tract,37,43 which inuences exposure to toxic aerosol
components and the resulting negative health effects. There-
fore, PSDmeasurements of wildre-emitted aerosols are needed
to understand the effects of these aerosols on the climate and
human health.

Several studies have reported PSD measurements of wildre
aerosols. Chubarova et al.24 detected an increase in the volume
PSD mode radius from 0.15 mm under typical conditions to 0.24
mm during a re event in Russia. McMeeking et al.44 observed
that the volume geometric mean diameter (GMD) in Yosemite
National Park, CA, was elevated by 0.06 mm during wildre
episodes compared to non-smoke periods. Veselovskii et al.17

recorded a volume PSD radius of approximately 0.27 mm in the
summer, which was inuenced by forest res near Washington
DC. Kleinman et al.45 demonstrated that particle size increases
with downwind distance, potentially enhancing the cooling
effect in the western United States. In addition, June et al.46

reported that smoke with higher initial organic aerosol
concentration exhibits faster particle growth compared to
smoke with lower initial organic aerosol concentration. Using
a scanning mobility particle sizer (SMPS), Zheng et al.42

demonstrated a number PSD mode of aged wildre aerosols at
a diameter of 230 nm. Laing et al.47 reported that aerosols
originating from wildres in the western United States had
a number GMD ranging from 138 to 229 nm. In Southern Cal-
ifornia, the number PSD mode during re episodes were
signicantly larger, with diameters between 0.1 and 0.2 mm,
compared to typical urban air conditions.48 Okoshi et al.49

demonstrated a number PSD mode at a diameter of ∼100 nm
during small wildre events and suggested using size
measurements over mass measurements for ambient wildre
events. Studies of wildre smoke reporting size distribution
measurements covering a wide particle size range are limited
with notable variations in the reported GMD or mode sizes. The
underlying causes of these variations – such as differences in
measurement methods, wildre characteristics, and distances –
remain uncertain.

The aim of this study was to examine the effect of wildres
on the concentration and PSD of atmospheric aerosols in the
western United States using PSD data measured in the 25 to
400 nm diameter range in Reno, NV, between July 2017 and
October 2020. During this period, the study area was impacted
by 106 wildres burning in a wide range of ecosystems and
located at distances ranging from 24 to 700 km from the
measurement site. The dataset therefore provides a robust
sample of wildre aerosols that could be encountered in the
© 2025 The Author(s). Published by the Royal Society of Chemistry
western United States. Positive matrix factorization (PMF)
analysis was performed to better understand the contribution of
wildre to the ambient aerosol PSD and air quality relative to
other air pollution sources.
2. Measurements and methods
2.1 Location

PSD measurements were carried out on the roof of the Desert
Research Institute (DRI) building located at 39°34020.6700 N 119°
48006.8300 W, in northern Reno, NV, from July 2017 to August
2018, April 2020 to May 2020, and August 2020 to October 2020.
Fig. 1a shows amap depicting the locations of the measurement
site and 106 res whose smoke could have impacted the area
during the study period (see Section 2.4). Most of these wildres
occurred in California, with additional events in Nevada and
Oregon. Table S1† provides information on each wildre,
including the start date, end date, burned area, location, and
type of vegetation burned.

Reno is a city located on the east side of the Sierra Nevada
and the west of the Great Basin (Fig. 1b) with an area of
approximately 289 km2 and a population of 274 915 people in
2023.50 The elevation of this city is approximately 1300 meters
above sea level. Reno has a semiarid climate with low annual
precipitation (average annual accumulated precipitation from
1991 to 2020 was 187 mm according to U.S. Climate Data51). The
main local sources of PM in Reno are traffic and domestic
burning.52 Aerosols can also be transported from neighboring
states such as California and Oregon.53–55
2.2 Instrumentation

The aerosols were measured with an SMPS that consists of
a differential mobility analyzer (DMA) model 3081 from TSI (St
Paul, MN, USA) and a condensation particle counter (CPC)
model 3775 from TSI. The PSD was measured with 5 minutes
upscans and 30 seconds downscans (a total of 330 seconds per
one size distributionmeasurement) in a particle diameter range
of 25 to 400 nm.

Hourly and daily air pollutant concentrations of PM2.5

(aerosol particles with aerodynamic diameters of or less than
2.5 mm), ozone (O3), nitric oxide (NO), nitrogen dioxide (NO2),
nitrogen oxides (NOX), carbon monoxide (CO), potassium (K),
elemental carbon (EC), and organic carbon (OC) measured at
the downtown Reno air quality monitoring site (Fig. 1, Envi-
ronmental Protection Agency (EPA) Air Quality System identi-
cation no. 320310016 in 2017 and 2018, no. 320310031 in 2020)
were downloaded from the EPA website.56

The wind back-trajectory data were processed using the
National Oceanic and Atmospheric Administration (NOAA)
Hybrid Single-Particle Lagrangian Integrated Trajectory (HYS-
PLIT) Model.57,58

Satellite images were taken from Worldview, the National
Aeronautics and Space Administration (NASA) with the Fires
and Thermal Anomalies (day and night) layer, which shows
active re detections and thermal anomalies, from MODIS
Terra (MODIS/Terra Thermal Anomalies/Fire 5-Min L2 Swath 1
Environ. Sci.: Atmos., 2025, 5, 502–516 | 503
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Fig. 1 The left panel (a) shows a geospatial representation of wildfires that were affecting Reno, NV, during the observation period. The size of
each wildfire dot represents the burned area (km2). Concentric black circles radiate from Reno, NV, with each circle representing a 100 km
increment from the city, which serves as a spatial reference for distance. The right panel (b) shows a detailed map of the Reno area, including
downtown Reno and DRI, which is adapted from Google Earth.
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km, MOD14) and Aqua (MODIS/Aqua Thermal Anomalies/Fire
5-Min L2 Swath 1 km, MYD14) satellite product with 1 km
sensor resolution and daily temporal resolution.

The daily smoke polygon product from the NOAA Hazard
Mapping System Fire and Smoke Product (HMS) was used for
additional identication of the presence of smoke. The HMS
with 2 km nominal spatial resolution is based on two satellite
products (GOES-16 and GOES-17). Ecoregions and their vege-
tation features for California, Oregon, and Nevada were
collected from ecoregion posters on the EPA Ecoregions
website.59
2.3 Data processing

The SMPS data were averaged to hourly values from which the
aerosol number concentration (units: cm−3), volume concen-
tration (units: mm3 cm−3), and the number GMD (units: nm,
hereaer referred to simply as GMD) were calculated. The total
number concentration was calculated by summing up the
number concentration of particles over the 25 to 400 nm size
bins. To get the volume concentration, the number concentra-

tion for different particle size bins was multiplied by
p

6
and the

cube of particle diameters, and then summed up. The following
equation was used to calculate GMD:
504 | Environ. Sci.: Atmos., 2025, 5, 502–516
GMD ¼ exp

�P
Ni$lg Di

Ntot

�
(1)

where Ni is the number concentration of particles with different
diameters at different datetimes, Di is the particle diameter, and
Ntot is the total number concentration for all particles at
different diameters.

To gain insight into prevailing sources and whether they
correlate with certain PSD characteristics, positive matrix
factorization (PMF) implemented with the Python program
scikit-learn package60 was applied to the PSD hourly data. PMF
has been used extensively in ambient air quality studies.61–66 The
PMF can be represented as:67–69

X = GF + E (2)

where X (n × m) is the matrix of input data with dimension n
rows and m columns, G (n × p) is the contribution/weight
matrix where p is the number of factors, F (p × m) is the
matrix of factor prole, and E (n × m) is the residual matrix.

The EPA PMF 5.0 program was used to quantify the contri-
bution of air pollutant sources for an 8 year (2015 to 2022) data
analysis using daily air pollutant concentrations. The program
requires chemical species concentrations with uncertainties as
input data and produces factor contributions, factor proles,
© 2025 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5ea00007f


Paper Environmental Science: Atmospheres

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

3 
M

ar
ch

 2
02

5.
 D

ow
nl

oa
de

d 
on

 7
/3

0/
20

25
 1

0:
27

:1
7 

PM
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online
and residuals. The best run was selected based on the critical
goodness-of-t parameter Q, with the lowest value indicating
the optimal choice. Bootstrap (BS), displacement (DISP), and
BS-DISP error estimation analysis methods were used to esti-
mate the variability of the selected run and to determine the
optimal number of factors. A Student's t-test was conducted to
determine the statistical signicance of the differences between
the means of two groups. The signicance level (p-value) was set
at 0.05.
Fig. 2 Satellite images during smoke-influenced days of (a) August 19, 2
2018. The small orange dots in (a)–(c) are fire and thermal anomaly spots
for Reno during the smoke-influenced days (d) of August 19 and 20, 2020
heights of 100 m, 500 m, and 1000 m starting a new trajectory every 6 h
2020, and (g) August 20, 2020, and a baseline day (h) of July 10, 2018. In (f
levels (green = light; yellow = medium; red = heavy). Reno, NV, is mar
hexagram in (f)–(h).

© 2025 The Author(s). Published by the Royal Society of Chemistry
2.4 Identication of smoke-inuenced days

Satellite images, wind directions, and wind back-trajectories
were investigated to verify that the measurement site was
indeed impacted by a wildre and to identify the re location.
Satellite images were used to observe whether smoke was
affecting the area around the site. The back-trajectories were
then used in conjunction with local wind directions and areas
of satellite thermal anomalies to locate res that might affect
the measurement site. Fig. 2 shows examples of using satellite
020, and (b) August 20, 2020, as well as a baseline day (c) of July 10,
that could have affected the Reno, NV, area. The wind back-trajectories
, and the baseline days (e) of July 9, 10, and 11, 2018, were produced at
ours. The HMS results during smoke-influenced days (f) of August 19,
), (g), and (h), the shadowswith different colors indicate different smoke
ked by a red marker in (a)–(c), a black star in (d) and (e), and a yellow

Environ. Sci.: Atmos., 2025, 5, 502–516 | 505

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5ea00007f


Environmental Science: Atmospheres Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

3 
M

ar
ch

 2
02

5.
 D

ow
nl

oa
de

d 
on

 7
/3

0/
20

25
 1

0:
27

:1
7 

PM
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online
imagery and wind back-trajectories to identify smoke-
inuenced days and the res that could have affected the
measurement site. During August 19 and 20, 2020, the wind
back-trajectories and the western and southwestern winds
indicated that smoke generated by wildres could have been
transported to the Reno area (Fig. 2a and b). In contrast, during
the non-smoke-inuenced days, when the site was again subject
to the westerly airow (Fig. 2e), there were no major res in the
upwind direction, whereas the absence of smoke on the satellite
images further conrmed the absence of inuence fromwildre
smoke (Fig. 2c). Along with satellite images and wind back-
trajectory plots, HMS maps were used for additional conrma-
tion of smoke-inuenced days by checking the presence of
overhead smoke in Reno, NV, during 2018 to 2020 (HMS is not
available for 2017). HMS indicatedmedium to heavy smoke over
Reno, NV, on August 19 and 20, 2020 (Fig. 2f and g), whereas no
smoke was indicated on July 10, 2018 (Fig. 2h). This conrms
that August 19 and 20, 2020, were smoke-inuenced days,
whereas July 10, 2018, was not. In addition, the HMS helped to
exclude September 1, 2020, when res and smoke were around
Reno, but did not affect the city area. However, the HMS
appeared to miss some smoke-inuenced days. For example,
HMS did not indicate the smoke impact on September 26, 2020,
in the Reno area, but our analysis of satellite images and wind
back-trajectories indicated that the site was impacted by res,
which was further conrmed by a high PM2.5 concentration
(reaching 58 mg m−3) and a high total aerosol volume concen-
tration (reaching 31 mm3 cm−3), which are typically in the range
of 3 to 13 and 0 to 9 during non-smoke-inuenced days,
respectively.

The largest uncertainty in our approach in smoke-inuence
day identication comes from the use of satellite imagery,
Fig. 3 Time-resolved (a) normalized number PSD distribution with the l
and (c) O3, CO, and NOX concentration. The red shadow areas represen

506 | Environ. Sci.: Atmos., 2025, 5, 502–516
which provides only one snapshot per day. Thus, there is
a chance that smoke inuence could be missed if it occurred at
a different time of day. Another uncertainty could arise from the
fact that the satellite measurements provide a column-average
information. If a smoke plume is transported at higher levels
without affecting the ground, the image would provide a false
positive indication for our ground-based measurements.
However, with a few exceptions, our smoke identication
correlated well with the observed differences in aerosol PSD and
pollutant concentrations, as will be shown in the Results and
discussion section.

In total, for the period of July 2017 to October 2020, 88 days
were identied as smoke-inuenced days (July 14, 16, 19–20, 25,
and 30–31, 2017; August 1–5, 7, and 29–31, 2017; September 1–
3, and 14–15, 2017; October 11–12, 2017; July 4, 14–15, 20–22,
and 27–31, 2018, August 1–12 and 16, 2018; August 16–31, 2020;
September 2–8, 10–22, 26, and 30, 2020; October 1 and 4–5,
2020). Seven days (from July 5 to 11, 2018) were used as a base-
line for comparison with smoke-inuenced days. These base-
line days were selected in smoke-inuenced months (mainly
July, August, and September) in Reno, NV,70 to reduce the
inuence of seasonal variation in aerosol sources. Days that
were not selected as the smoke-inuenced days or the baseline
days were assigned as “other” days.
3. Results and discussion
3.1 Comparison of smoke-inuenced and non-smoke-
inuenced days

Fig. 3 shows a time series of the number PSD, total number
concentrations (Ntot), and total volume concentrations (Vtot)
measured with the SMPS at DRI as well as air pollutant
og-normal fit particle diameter; (b) Ntot, Vtot, and PM2.5 concentration;
t the smoke-influenced days.

© 2025 The Author(s). Published by the Royal Society of Chemistry
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concentrations (PM2.5, O3, CO, and NOX) measured in down-
town Reno, NV, during the period when the SMPS measure-
ments were done. The periods identied as smoke-inuenced
are shaded in red.

Particle sizes, Vtot, and PM2.5 concentrations during smoke-
inuenced days tend to be signicantly higher than average.
Steep increases in Vtot and PM2.5 concentration were observed
during the smoke-inuenced days, with the highest Vtot
exceeding 135 mm3 cm−3, and PM2.5 concentration reaching 292
mg m−3. Therefore, Vtot and PM2.5 concentrations can be used to
conrm re inuence. CO concentrations had signicant
increases during both winter and the smoke-inuenced days,
which is reasonably following the emissions from traffic and
wildres. On the other hand, Ntot, O3, and NOX concentrations
did not provide a clear indicator for the smoke-inuenced days.
High values of O3 concentrations are regularly observed because
of the seasonal photochemical pattern. The elevated winter
concentrations of particle number, NOX, and CO were likely due
to lower atmospheric mixing and additional emissions from
domestic wood burning.

Fig. 4 shows boxplots of GMD and air pollutant (PM2.5, CO,
NOX, O3) concentrations measured during the identied smoke-
inuenced days, the baseline days, and the other days. Their
descriptive statistics are provided in Table 1. GMD and PM2.5

concentration had considerably higher values during smoke-
inuenced days than during non-smoke-inuenced days
(baseline + other) with high statistical signicance (p < 0.001).
GMD during smoke-inuenced days (approximately 139 nm on
average) was approximately two times greater than GMD during
baseline days and other days. Of the smoke-inuenced days,
August 19, 2020, had the largest GMD of approximately 257 nm
and September 1, 2020, had the smallest GMD of approximately
42 nm. In contrast, the largest GMD during the baseline days
was approximately 109 nm on July 7, 2018, and the smallest
GMD was 44 nm on July 9, 2018. This shows that the smallest
GMD observed during smoke-inuenced and non-smoke-
inuenced days were similar, but most of the observed GMD
during the smoke-inuenced days were signicantly (more than
two times) larger. Portin et al.71 showed similar results during
Fig. 4 Boxplots of hourly (a) GMD, (b) PM2.5 concentration, (c) CO conc
smoke-influenced days (pink on the left), the baseline days in fire month

© 2025 The Author(s). Published by the Royal Society of Chemistry
summer: higher GMDs during smoke-inuenced days of
158 nm compared to the mean sizes on the other days of
76.3 nm. However, Alonso-Blanco et al.72 found smaller particle
sizes during days with wildres than days without res,
although their measurements were limited to the size range
above 0.1 mm. The similarity of the smallest GMD between
smoke-inuenced and non-smoke-inuenced days observed in
this study is likely due to some periods during the smoke-
inuenced days having little or no re impact. Our smoke-
inuenced/non-smoke-inuenced designation is mostly based
on daily satellite observations, whereas size distributions were
measured at a much higher frequency. The smoke-inuenced
days may include periods of low re smoke impact. The corre-
lation of the observed GMD with the other pollutants will be
discussed later in the paper.

The mean and median values of PM2.5 concentration during
baseline and other days were approximately 1/4 to 1/3 of the
values during smoke-inuenced days. The maximum value of
PM2.5 concentration during smoke-inuenced days reached 292
mg m−3, which was more than 13 times the maximum value
during the baseline days and more than 2 times the maximum
value during the other days. This conrms that in the western
United States, wildre is a signicant source of PM2.5 in
summer.73 CO had higher concentrations during smoke-
inuenced days than non-smoke-inuenced days as well, but
not as pronounced as the differences in the GMD and PM2.5

concentrations. NOX and O3 concentrations had comparable
values during smoke-inuenced and baseline days, which were
both lower than their values during the other days.

During smoke-inuenced days, PM2.5 and CO concentra-
tions had a good correlation (Fig. 5a) with a high r2 value (0.77,
see Table 2), which is consistent with results from Jaffe et al.74

for data collected in Sparks, NV, which is located approximately
5 km to the northeast of the downtown Reno site. On smoke-
inuenced days, the relationship between PM2.5 and CO is
clearly different from the relationship observed on non-smoke-
inuenced days (baseline + other) (Table 2). This indicates that
the smoke-inuenced days were inuenced by a different air
entration, (d) NOX concentration, and (e) O3 concentration during the
(green in the middle), and the other days (gray on the right).
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Table 1 Descriptive statistics of hourly mean data measured during 2017, 2018, and 2020

Type of day Number of data points Mean Std Min 25% 50% 75% Max

GMD (nm) Smoke 2097 139 45.2 42.0 106 136 174 257
Baseline 168 72.3 12.2 44.1 65.1 72.6 79.3 109
Other 8630 72.2 19.4 35.4 59.1 69.6 80.3 193

PM2.5 (mg m−3) Smoke 1949 31.0 29.2 0.00 11.0 21.0 41.0 292
Baseline 143 7.27 3.43 0.00 5.00 7.00 9.00 21.0
Other 19 227 6.70 5.63 0.00 3.00 5.00 9.00 125

CO (ppb) Smoke 1949 329 222 11.0 166 266 424 2036
Baseline 143 126 59.5 57.0 94.0 112 133 504
Other 19 227 231 206 1.00 112 159 269 2747

NOx (ppb) Smoke 1949 10.9 8.35 1.90 5.40 8.40 13.50 73.2
Baseline 143 8.00 6.02 2.20 4.15 5.70 10.0 38.2
Other 19 227 21.1 26.2 0.10 5.40 10.50 26.7 395

O3 (ppb) Smoke 1949 45.6 18.3 4.00 32.0 46.0 59.0 100
Baseline 143 39.4 11.6 12.0 34.0 39.0 47.5 62.0
Other 19 227 30.6 17.8 0.00 16.0 33.0 44.0 85.0
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pollution source, which is yet another conrmation for the
selection of smoke-inuenced days.

In contrast, NOX and CO showed good correlation on the
non-smoke-inuenced days (Fig. 5b) with a high r2 value (0.89).
This is likely because urban emissions, such as those from
Fig. 5 Correlation between PM2.5, CO, NOX, and O3 concentrations and G
dots) and the non-smoke-influenced days within the whole period (gr
confidence interval. The linear regression information is annotated in th

508 | Environ. Sci.: Atmos., 2025, 5, 502–516
traffic, dominated the relationship between these two pollut-
ants on non-smoke-inuenced days. In fact, the ratio of NOX

and CO (0.12 ppm ppm−1) is close to that of summer emissions
from light-duty vehicles (0.134 ppm ppm−1) measured in the
Fort McHenry Tunnel.75 The other pollutant pairs did not show
MDwith linear regression lines during the smoke-influenced days (red
ay dots). The shadow around the linear regression line shows a 95%
e plot.

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Table 2 Slope, intercept, coefficient of determination (r2), slope uncertainty (slp_unc), and intercept uncertainty (int_unc) information of the
linear regression lines between different air pollutant concentrations during smoke-influenced and non-smoke-influenced days (baseline +
other). CO, NOX, and O3 units = ppm; PM2.5 unit = mg m−3; GMD unit = nm

Axis Smoke-inuenced days Non-smoke-inuenced days

y x Slope Intercept r2 slp_unc int_unc Slope Intercept r2 slp_unc int_unc

PM2.5 CO 115.43 −6.95 0.77 1.44 13.93 15.12 3.83 0.29 0.28 4.68
NOX CO 0.02 0.01 0.20 0.00 0.01 0.12 −0.01 0.89 0.00 0.01
GMD PM2.5 0.98 106.41 0.43 0.03 32.61 0.61 67.55 0.03 0.04 18.19
GMD CO 110.05 100.49 0.32 3.68 35.73 −6.62 73.13 0.01 1.10 18.46
PM2.5 O3 340.41 15.64 0.05 35.56 28.49 −53.53 8.66 0.03 3.70 5.49
CO O3 0.21 0.32 0.00 0.28 0.22 −6.65 0.42 0.35 0.11 0.16
NOX O3 −0.25 0.02 0.29 0.01 0.01 −1.00 0.05 0.45 0.01 0.01
GMD O3 497.92 114.10 0.04 52.81 42.31 152.27 66.93 0.02 12.34 18.31
PM2.5 NOX 684.81 23.74 0.04 78.18 28.60 104.96 4.84 0.25 2.20 4.84
GMD NOX −329.16 140.43 0.00 118.09 43.20 −93.72 73.66 0.02 8.33 18.34
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any clear correlations during smoke-inuenced days or during
baseline and other days (Fig. 5e–j).

GMD during smoke-inuenced days increased with PM2.5

concentrations (Fig. 5c). The non-smoke-inuenced days
showed a similar trend, although with a weaker dependence of
GMD on PM2.5 concentration. A similar relationship between
CO and GMD was observed during smoke-inuenced days, with
a much weaker relationship observed on non-smoke-inuenced
days.

Fig. 6 shows the particle number distribution (Fig. 6a) and
the particle volume distribution (Fig. 6b) during smoke-
Fig. 6 Particle (a) number and (b) volume distributions during smoke-
influenced days, baseline days, and the other days. Red lines represent
smoke-influenced days, green lines represent baseline days, gray lines
represent the other days, solid lines represent the particle size distri-
bution from ambient data, and dashed lines represent the modeled
particle size distribution. The y-axis on the left is for smoke-influenced
days, and the y-axis on the right is for baseline days and other days.

© 2025 The Author(s). Published by the Royal Society of Chemistry
inuenced days, baseline days, and other days. The gure also
includes tted multimode log-normal distributions and the t
parameters are provided in Table 3. During smoke-inuenced
days, the main mode of the number PSD (212 nm) was signi-
cantly greater than that during the baseline days and the rest of
the campaign (74 nm and 48 nm, respectively). The volume PSD
(339 nm) was also greater than during the baseline days (173
nm) and the other days (226 nm), which is in line with the
observed differences in GMD (Fig. 4). Fig. 6 conrms that traffic
and wildres have different number and volume distributions,
which is contrary to the results of Sandradewi et al.76

The particle number distribution during smoke-inuenced
days in this study has the mode at diameters larger than the
modeled young-plume distribution (59 to 94 nm) but compa-
rable to the ∼1 to 2 days aged distributions (230 nm) in the
study from Sakamoto et al.77 Our number PSD is also compa-
rable with the number distribution mode at approximately 200
to 250 nm in the Williams Flats Fire for smoke with ages
between 1.2 and 3.1 hours.78 However, the mean number PSD
measured in our study is larger than the diameter of 140 nm
observed during smoke-inuenced days in Spain.25 This
discrepancy could probably be due to variations in the distances
between the wildres and the measurement site. The volume
Table 3 Parameters of fitted normalized number (dN/d lgD) and
volume (dV/d lgD) PSD during the smoke-influenced days, the base-
line days, and the other days. GMD = geometric mean diameter; sg =
geometric standard deviation; Ntot = total number concentration per
mode, cm−3

Mode GMD sg Ntot

Number Baseline 1 36.5 2.184 1161.3
2 91.5 1.621 602.5

Other 1 36.5 1.822 990.3
2 94.1 1.791 734.9

Smoke 1 71.1 2.703 1149.6
2 228.5 1.534 1147.1

Volume Baseline 1 196.5 1.784 1.14
Other 1 267.9 1.955 1.75
Smoke 1 373.6 1.513 17.72
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PSD observed in this study during smoke-inuenced days is
smaller than the long-range transported BB aerosols measured
in Europe with a volume distribution mode between 420 and
500 nm.79 However, the measurement range of our study did not
extend that far to exclude the presence of a larger mode. Our
observations are slightly larger than the mode at diameters
between 220 and 300 nm reported for re seasons in the
Amazon Basin.80

The larger PSD during smoke-inuenced days could enhance
the Fine-mode Aerosol Optical Depth (FAOD), which at least in
part could be a reason for the FAOD trend observed in the
western United States, as demonstrated by Luo et al.81 The
higher concentrations and larger sizes of wildre-emitted
aerosols could also potentially contribute to the formation of
coarse mode aerosols through processes such as coagulation
and condensation, thus inuencing the Coarse-mode Aerosol
Optical Depth (CAOD). However, since our measurements were
limited to aerosols with diameters smaller than 400 nm, such
contributions cannot be conrmed.
3.2 Factor analysis

To investigate whether specic sources, including wildres,
have a characteristic PSD, the collected PSD data was analyzed
using a home-written Python PMF program. The PMF was run
for 5 to 13 factors, and 9 factors were chosen for the analysis
presented in this paper because a higher number of factors
provides only a marginal improvement in explaining the
observed variability (Fig. S1†). Fig. 7 shows the PSD factors.
These factors were then analyzed to assess whether they corre-
spond to different PM sources, such as wildres and traffic. It
should be noted that the PMF results were found to be robust to
measurement uncertainties, which was checked using 100
Monte Carlo simulations, where the input PSD were perturbed
by 10% random errors (Fig. S2†).

In addition to the PSD analysis, the EPA PMF was used to
analyze daily pollutant concentrations (including PM2.5, CO, O3,
NO, NO2, K, EC, and OC) collected from December 2015 to May
Fig. 7 The normalized PSD of each factor in a nine-factor analysis durin

510 | Environ. Sci.: Atmos., 2025, 5, 502–516
2022. The PMF factors were then tted to hourly chemical data
(including PM2.5, CO, O3, NO, NO2) using non-negative least
squares (NNLS) to obtain hourly contributions of each of the
PMF factors. Four factors were selected based on the results of
error estimation analysis: no swap occurred in DISP, all factors
had 100% mapping in BS, and a change in the goodness-of-t
parameter Q was less than 0.5% with no swap in BS-DISP.

Fig. 8 shows a comparison of PSD factor contributions
during smoke-inuenced days and all the other days 8. The
letters “P” and “E” in front of the factor numbers stand for
“PSD” and “EPA,” respectively, to distinguish factors from the
Python PMF program using PSD data and the EPA PMF program
using air pollutant concentrations. Contributions of Factor P8
and Factor P9 during the smoke-inuenced days are signi-
cantly higher (p < 0.001) than during the other days, and
therefore are likely to represent re-emitted PSD. These factors
have the largest modes and GMD, which agrees with the
observation that the smoke-inuenced days tended to have the
mode and GMD at larger particle sizes than the baseline or
other days (Fig. 4 and 6). The other factors likely represent PSD
from traffic and other sources. Factor P7 had a slightly higher
contribution during the smoke-inuenced days than the other
days, but it was excluded as a wildre-related factor because it
was considered representing a mixed source – such as a mixture
of wildre emissions, traffic emissions, and domestic wood-
burning emissions – or that several sources could have
a similar PSD.

Based on the species prole (Fig. 9; a detailed prole plot is
provided in Fig. S3,† the uncertainty estimates are shown in
Fig. S4†) and the contribution plots (Fig. S5†) from the EPA
PMF, Factors 1 to 4 represent different emission sources. Factor
E1, which is the EPA PMF wildre-related factor, had the
highest PM2.5 concentration along with the highest potassium
and OC concentration. Potassium is oen used as a tracer for
wildre emissions.82 The prole of Factor E2 is associated with
ozone and had signicant contributions during summer and
low contributions during winter, indicating that this prole
g the whole study period.

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 8 The boxplot of the contribution (weight) for each factor during smoke-influenced days (red) and non-smoke-influenced (baseline +
other) days (gray). Wildfire-related factors are marked by an asterisk (*).

Paper Environmental Science: Atmospheres

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

3 
M

ar
ch

 2
02

5.
 D

ow
nl

oa
de

d 
on

 7
/3

0/
20

25
 1

0:
27

:1
7 

PM
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online
represents secondary sources. Factor E3 contributions showed
a clear increase and decrease in winter and summer, respec-
tively, following the variation of the vertical atmospheric mix-
ing. The prole of Factor E3 displayed the highest values of NOX

(NO + NO2) and CO. This suggests that Factor E3 is a traffic-
related factor. Factor E4 had a similar contribution plot as
Factor E1 but with higher contributions during winter and
lower contributions during smoke-inuenced months in 2017
and 2018. It had the highest EC, some OC and PM2.5, and
a small amount of CO and NO2. This suggests that Factor E4 is
a mixture of domestic wood burning and wildre emissions.
According to the results from the EPA PMF, during re season
(July, August, and September), wildres (Factor E1) contributed
56% to 65% to PM2.5 concentrations, 18% to 26% to CO
concentrations (Fig. S6†). This also demonstrates the signi-
cant contribution of wildres to PM2.5 concentrations during
the re season.
Fig. 9 Species profile of the EPA PMF for all four factors. The approxim
multiplied by 10 or 100 to make them easier to see.

© 2025 The Author(s). Published by the Royal Society of Chemistry
The contribution of the wildre-related factor (Factor E1)
from the EPA PMF was compared with the nine PSD factors to
conrm the relationship between PSD and wildres (Fig. 10).
The temporal variability of the two wildre-related PSD factors
(Factors P9 and P8) had strong correlations with the temporal
variability of the EPA PMF wildre-related factor (Fig. 10j), with
correlation coefficients of 0.84 and 0.72 respectively. This
further conrms that Factor P9 and Factor P8 are very likely
wildre related. The differences between Factor P8 and Factor
P9 could be caused by different distances between res and the
measurement location: a larger distance from re can lead to
larger particles due to the growth and formation of particles
during the transport.83,84 In this study, isolation and quanti-
cation of distance-specic effects was challenging due to the
frequent concurrent inuence of multiple wildres at varying
distances on the measurement site. This will be the subject of
a follow-up study.
ated values of the profile are displayed on the top. O3, K, and EC were
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Fig. 10 Hourly contribution plots of (a)–(i) factors from PSD PMF and (j) the wildfire-related factor from EPA PMF. The shadowed area represents
the smoke-influenced days.
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Factor P7 in PSD PMF had similar contributions in August
2020 as the EPA PMF wildre-related factor, but it had higher
contributions during winter compared to the EPA PMF wildre-
related factor, which suggested that it contained other emission
512 | Environ. Sci.: Atmos., 2025, 5, 502–516
sources in winter, such as traffic and domestic wood burning. In
addition, the correlation coefficient between Factor P7 and the
EPA PMF wildre-related factor was rather low (0.33). Therefore,
Factor P7 likely represents a mixture of different sources. All
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 11 Monthly averaged daily pollutant ((a) PM2.5, (b) O3, (c) NOX, and (d) CO) concentrations during 2015 to 2022 with EPA PMF contributions
of each factor and 2019 in Reno, NV. The wildfire-related factor is indicated by an asterisk (*).
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non-re-related PSD PMF factors did not match the EPA PMF
wildre-related factor (the correlation coefficient ranged from
−0.14 to −0.0048). It should be noted that the Python PMF
applied to the EPA data produces re-related factors that
correlate well with those from the EPA PMF (Fig. S7†). This
further conrms that the two factors with the largest GMD are
associated with wildre emissions.

The impact of wildres on air quality in Reno, NV, is notable
when observing the monthly averaged data of PM2.5 and other
air pollutant concentrations averaged over 6.5 years (December
2015 to May 2022), as presented in Fig. 11. The contributions of
each factor from EPA PMF are also shown in the plot. The
differences between the sum of factor contributions and the
ambient concentrations are due to the residual matrix (E). For
comparison, the pollutant concentrations measured in 2019,
a relatively smoke-free year, are also shown in Fig. 11 to indicate
monthly variations with little to no wildre impact.

During re months (mainly July, August, and September in
Reno, NV), especially during August and September, the mean
PM2.5 concentration showed a clear increase over the 2019
concentration (by 113%, 234%, and 186% in July, August, and
September, respectively), with the difference closely matching
the contribution of the wildre factor and the average sum of
three non-wildre factors (Factor E2, E3, and E4) being
comparable to the 2019 values. Winter PM2.5 monthly mean
concentrations were high, but still lower than concentrations
during the re months. The seasonal prole of PM2.5 concen-
trations in the winter followed the atmospheric mixing-driven
inuence of local sources.85 On a yearly basis, wildres
contributed 35–47% of PM2.5 concentrations in Reno, NV from
2016 to 2021 (the data for 2015 and 2022 covers less than a full
year).

The highest concentrations of O3 were in summer (June, July,
and August) and the lowest concentrations were in winter. The
© 2025 The Author(s). Published by the Royal Society of Chemistry
seasonal variations of O3 follow the photochemical activity,86–88

which is strongest in summer and weakest in winter. Wildre
emissions had a smaller contribution to O3 than to PM2.5

concentrations, as indicated by Factor E1, with increases
ranging from 11% to 20% from July to September. This nding
aligns with the observations reported by McClure & Jaffe.89

Wildre emissions can contribute to photochemical reactions,90

which could contribute to O3 production. The yearly contribu-
tion of wildre emissions to O3 concentration is estimated to be
6% to 13% during 2016–2021.

The increases in CO concentrations attributable to wildre
contributions were also relatively modest, ranging from 18% to
26% from July to September and 5% to 12% on an annual basis
from 2016 to 2021. In contrast, no signicant change was
observed in the NOX concentration trend. In winter (December,
January, and February), especially in December and January,
NOX and CO concentrations were highest, reaching 36.89 ppb
and 0.38 ppm in December, respectively. In general, NOX and
CO seasonal proles could be explained by seasonal variation in
vertical atmospheric mixing. During winter months, atmo-
spheric mixing is weakest,85 leading to the accumulation of
pollution from local combustion sources, such as traffic.
4. Conclusion

In this study, ambient measurements in Reno, NV, from July
2017 to October 2020 were used to identify differences in PSD
and air pollutant concentrations between smoke-inuenced
days and the non-smoke-inuenced days. A PMF method was
applied to identify the main source contributions, as well as the
PSD and pollutant proles corresponding to these sources.
Wind back-trajectories and satellite images were used to iden-
tify the smoke-inuenced days.
Environ. Sci.: Atmos., 2025, 5, 502–516 | 513
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A comparison between smoke-inuenced and non-smoke-
inuenced days shows that wildres have a signicant inu-
ence on PSD and air pollutant concentrations. In this study, the
smoke-inuenced days were characterized by substantially and
statistically signicantly larger GMD and higher Vtot and PM2.5

concentrations than the non-smoke-inuenced days. The
average number GMD during the smoke-inuenced days (139
nm) was approximately two times larger than that during the
non-smoke-inuenced days (72 nm). The smoke-inuenced
days showed an average PM2.5 concentration (31 mg m−3)
approximately four times higher than that of non-smoke-
inuenced days (7 mg m−3).

The PMF techniques successfully separated wildre emis-
sions from other sources using both PSD data and the air
pollutant concentrations. During the re months (July, August,
and September), between 52% to 58% of PM2.5 concentrations,
14% to 23% of CO concentrations, and 10% to 19% of O3

concentrations were attributed to wildre emissions according
to the PMF analysis. On an annual basis, wildre emissions
contributed 35% to 47% of PM2.5 concentrations, 5% to 12% of
CO concentrations, and 6% to 13% of O3 concentrations.
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