

## CORRECTION

[View Article Online](#)  
[View Journal](#) | [View Issue](#)



Cite this: *Dalton Trans.*, 2025, **54**, 9097

DOI: 10.1039/d5dt90077h  
[rsc.li/dalton](http://rsc.li/dalton)

## Correction: Construction of ternary $\text{TiO}_2/\text{CdS}/\text{IrO}_2$ heterostructure photoanodes for efficient glycerol oxidation coupled with hydrogen evolution

Chenfeng Jiang,<sup>a</sup> Yibo Ding,<sup>a</sup> Jiayu Lin,<sup>a</sup> Yi Sun,<sup>b</sup> Wei Zhou,<sup>a</sup> Xiaoyan Zhang,<sup>\*a</sup> Hongbin Zhao,<sup>a</sup> Weimin Cao<sup>a</sup> and Danhong Cheng<sup>a</sup>

Correction for 'Construction of ternary  $\text{TiO}_2/\text{CdS}/\text{IrO}_2$  heterostructure photoanodes for efficient glycerol oxidation coupled with hydrogen evolution' by Chenfeng Jiang *et al.*, *Dalton Trans.*, 2025, **54**, 2460–2470, <https://doi.org/10.1039/D4DT03048F>.

In the abstract and on page 2467 (right column), the production rate of glycerol conversion to formic acid (FA) on the  $\text{TiO}_2/\text{CdS}$  surface was given as  $\sim 603.0 \text{ mmol m}^{-2} \text{ h}^{-1}$ . The correct value is  $367.6 \text{ mmol m}^{-2} \text{ h}^{-1}$  within 1 h.

Additionally in the abstract, on page 2467 (right column) and in the Conclusion section, the production rate of FA after loading of  $\text{IrO}_2$  nanoparticles was given as  $863.4 \text{ mmol m}^{-2} \text{ h}^{-1}$ . The correct value is  $551.4 \text{ mmol m}^{-2} \text{ h}^{-1}$  within 1 h.

On page 2466, it is stated that the stabilities of the  $\text{TiO}_2/\text{CdS}$  and  $\text{TiO}_2/\text{CdS}/\text{IrO}_2$  photoanodes were investigated using the transient currents ( $I-t$ ) with an applied bias of 0.3 V *vs.* RHE. The correct value is 1.23 V *vs.* RHE. Here it was also stated that Fig. S5 showed that the photocurrent density of the  $\text{TiO}_2/\text{CdS}$  photoanode decreased to 78.6% of its initial value after irradiation of 5500 s. This should read as follows: "As shown in Fig. S8, the photocurrent density of the  $\text{TiO}_2/\text{CdS}/\text{IrO}_2$  photoanode decreased to 78.6% of its initial value after irradiation of 3600 s."

The Royal Society of Chemistry apologises for these errors and any consequent inconvenience to authors and readers.

<sup>a</sup>Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China. E-mail: [xyzhang\\_dd@shu.edu.cn](mailto:xyzhang_dd@shu.edu.cn)

<sup>b</sup>Aerospace Hydrogen Energy (Shanghai) Technology Co., Ltd, Shanghai, 200241, China