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Introduction

The precise role and magnitude of electronic effects in olefin
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In olefin polymerization, even seemingly simple concepts like the influence of electronic effects have
sometimes eluded qualitative understanding despite 70 years of continuing research in the field. Of
course, the intimate coupling of electronic and steric effects that olefin polymerization is so famous for
might be simply too complex, with data science approaches — which are rapidly gaining adoption in cata-
lysis — being the only way to solve the puzzle. Data science relies on machine-readable features or
descriptors that encode essential aspects of the catalysts, and the accuracy of models depends both on
the quality of data and featurization. Here, we show that some of the basic assumptions used so far (in
any kind of modelling) may be flawed to the extent that they prevent accurate evaluation (and separation)
of steric and electronic effects. We undertake a comprehensive analysis of the suitability of different
model structures for data science approaches and analyze the performance, reliability, and data spacing
of common electronic descriptors determined thereof for several group 3 and group 4 metal complexes.
The insight developed in this work points not only to the complexity of the underlying chemistry being
problematic but also to the inefficiency of many commonly employed descriptors in properly capturing
electronic effects relevant for olefin polymerization. Recognizing the strengths and weaknesses of various
approaches may help researchers select appropriate features/descriptors and better understand the
scope of models beyond the initial training data.

selectivity in propene polymerization,* comonomer affinity
in ethene/l-alkene copolymerization,>*” molar mass
capability,”>° and activity."'"** In general, electronic effects

polymerization catalysis remain largely subject to ongoing
debate."™® Certain mechanisms - in particular enantio-
morphic site control in primary insertion of a-olefins - are
understood to be dominated by steric effects;'” ™™ and the
understanding of such effects is clear. However, for example in
propene polymerization with C,-symmetric catalysts for the
synthesis of isotactic polypropylene (i-PP), chain epimerization
(which is considered to be strongly dependent on electronic
effects) can limit stereoregularity and may be the most impor-
tant contribution to stereoerror formation,?*”>* at higher temp-
eratures. Other catalyst performance indicators that are
thought to be influenced (also) by electronic effects are regio-
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are undoubtedly important but, with few exceptions, authors
usually state a variation of “the observed differences between the
performance of different catalysts are likely the result of a subtle
balance of steric and electronic effects”. This uncertainty can be
traced to the fact that we do not have universally accepted ways
of quantifying electronic and steric effects, much less even sep-
arating them.

It is important to note that in olefin polymerization cataly-
sis, the roles of metal, ligand set, monomesr(s), desired product
and reaction conditions are intimately tied, a phenomenon
observed for nearly the entire transition metal series.'* The
only generally accepted prerequisite for polymerization reactiv-
ity according to the Cossee-Arlman mechanism is an open
coordination site and a metal-carbon bond in mutual cis
arrangement;”>”° in practice, an electron count of 14 or lower
appears to be required. For industrial applications, group 4
based molecular catalysts are most relevant due to their high

This journal is © The Royal Society of Chemistry 2025
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activities, but some of the most inspiring approaches to the
synthesis of chain end functionalized polyolefins, with
medical application potential, have involved the rare earth
metals of group 3.%”

The active species derived from group 3 (oxidation state +3)
are isoelectronic with group 4 (oxidation state +4) analogs and
development of ligand backbones has largely proceeded in
concert over the years. Even considering only early transition
metals, almost identical polymers can be prepared from cata-
lysts with vastly different features (metal, ligand set, substitu-
ents, see Fig. S1, SI). However, a number of “perfect” ligand/
metal pairings exist (Fig. 1).">?%73°

Predicting the performance of a given ligand/metal pairing in
olefin polymerization by DFT is challenging, in part because of
the required accuracy (<1 kcal mol™) but also for the large
number of transition states needed to predict selectivity, account-
ing for several olefin and chain orientations. Additionally,
solvent, anion, and other effects like scavenger presence can
complicate the picture. Data science approaches have been used
in olefin polymerization for decades but often target focused
datasets,?>?*3%39 Jacking diversity and depth. Models usually
need to be retrained for different metal centers, catalyst classes,
or reaction conditions. In part, this can be traced to the fact that
olefin polymerization is also extremely sensitive to exact reaction
conditions;'®>%?*%%*? gcreening conditions vary widely and as a
result, literature databases are heavily fragmented. This notwith-
standing, data science approaches for the prediction of organic
or organometallic selectivity are increasingly powerful,**” even
for small datasets. "%

General (or global) predictive models - of any kind, be it
quantitative-structure-property  relationships ~ (QSPR),”* ">
machine learning (ML),*”**>* artificial intelligence (AI) or deep
learning (DL) - that incorporate more than one metal and cata-
lyst class and use organically growing standardized experimental
databases as training data could have a tremendous appeal in
olefin polymerization. Such models could indicate when and
under which conditions, for example, a metal change might
make sense for a given ligand set. Moreover, we envision that
they would easily incorporate new datapoints (requiring only
minimal retraining), even if significantly diverse from the pre-
vious ones. However, building such models requires a conscious
effort, both from the experimental and the modeling side.

All data science approaches rely on machine readable infor-
mation, ie. a set of features/descriptors that encode relevant
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Fig. 1 Selected ligand classes and most important metals for indust-
rially relevant group 4 metals emphasize the importance of pairing a
ligand with the “right” metal.
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aspects of the catalysts (or other relevant reaction variables).
The challenge from the data science perspective is that as the
generality of a model increases, the number of common recur-
ring features/descriptors,® which can quantify electronic and
steric differences of the various catalysts, decreases. For steric
effects this has been partially addressed through the introduc-
tion of 3D-steric descriptors, such as Cavallo’s buried
volume,*®”” but it remains for electronic effects. For example,
atomic charges on the ligand or chemical shifts for ligand
atoms are common electronic descriptors, but evaluating
Fig. 1, it is obvious that there is no transferability between
different ligand sets. Furthermore, a question arises what
species to choose to derive electronic descriptors from; the
standard choice in the field is often the catalyst precursor, i.e.
at a stage where absolute identity is still known, under the
implicit assumption that electronic and steric effects transfer
well from precursor to the (real) active species.

Herein, we systematically approach the question of elec-
tronic descriptors/features for statistical models in olefin
polymerization catalysis by early transition metal complexes,
specifically for group 3 (Sc and Y), and 4 (Ti, Zr, Hf). We ana-
lyzed whether the assumption that electronic descriptors
derived at the precursor stage give similar trends to those
derived for a putative active species is justified. Moreover, we
examined the suitability of different electronic descriptors like
charges and frontier molecular orbital energies for broader
models. Finally, we show that analyzing the descriptor spacing
allows insight into strengths and weaknesses of descriptors
before any modeling is even attempted. In particular, we show
that the data is often clustered - originating from one effect
(metal or ligand change) dramatically outweighing the other -
which can limit the application ranges of models derived
thereof.

Results and discussion
Initial considerations

Even considering only group 4 metal species, the diversity in
catalyst design with respect to ligand backbones is tremen-
dous. The development of molecular catalysts for olefin
polymerization started with metallocene catalysts which have
pseudotetrahedral, “sandwich”, geometry, where two cyclopen-
tadienyl n-ligands occupy two coordination positions.>® Typical
precursor species for industrially relevant group 4 species are
dichloride, dimethyl, or dibenzyl species (Cp,MX,), giving an
overall 16-electron (16e) species (6e each from the Cp frag-
ments, 2e each from the X-type ligands).'* Activation, that is
cationization, produces the polymerization active cationic 14e
species (6e each from the Cp fragments, 2e from the metal-
carbon bond).”® In ansa-metallocenes, a bridge between the
two m-ligands, for example -SiMe,- ensures rigidity.*® In half-
metallocenes one of the =-ligands is replaced by an X-type
ligand, as in the case of the so-called constrained geometry
catalysts (CGC),*" originally introduced for group 3 metals by
Bercaw'? and for group 4 metals by Okuda,®® where one Cp is
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replaced by an amide, and at least formally, the electron count
is lowered as the amide can donate a maximum of 4 electrons,
resulting in a formally 12e species. In post-metallocenes,®®
both n-ligands are replaced and for example McConville’s bis
(amide) catalysts® are formally 10e species. It should be noted
here that even Basset’s Zr-hydride species immobilized on
silica, which are formally 8e species, are polymerization
active.®® Reviews regarding ligand design have been published
for example by Mecking®® (half- and post-metallocene systems)
and Cavallo and Resconi'® (metallocenes).

Certain ligand/metal pairings appear to be privileged. For
example, the development of metallocenes and ansa-metallo-
cenes focused largely on Zr'® and, occasionally, on the corres-
ponding Hf species.””®”®® The poor success of Ti (the active
metal in Ziegler-Natta heterogeneous catalysts) can be traced
to the ease with which reduction, and therefore deactivation,
to a Ti(w) species occurs in the presence of the typical alumi-
num alkyl species used as scavengers.>” Then again, for half-
metallocenes, Ti can be the only relevant group 4 metal, e.g.
for phosphinimide catalysts®® and CGC catalysts,*® for which
only Ti-based systems show high molar mass capability.
Reversing the trend again, post-metallocene [OOOO]-type cata-
lysts are generally Hf- and Zr-based,’’* while Ti species are
almost inactive.

Group 3 vs. group 4. Despite sharing the same propagation
mechanism and ligand sets, group 3 and group 4 based cata-
lysts differ in some important aspects, which become even
more pronounced when it comes to descriptor evaluation.
First, precursor LMX/LMX, species are neutral in both cases (L
= dianionic ligand or two monoanionic ligands) but group 4
species need to be cationized by Lewis acids (and alkylated in
the case of dihalide species) and the active species are ion
pairs; instead, LMX species in the case of group 3 are already
polymerization active, if X is a carbon based substituent like
methyl, benzyl or -CH,TMS.

Ligand sets. For the main body of the analysis, we chose
three different ligand sets: a prototypical ansa-metallocene
(rac-Me,Si(2-Me-indenyl),,® Fig. 2a), a Stephan-type half-metal-
locene with a Cp phosphinimide with ‘Bu substituents on
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Fig. 2 Ligand sets. (a) rac-Me,Si(2-Me-indenyl), ansa-metallocene, (b)
Cp phosphinimide with N=P(‘Bu)s, (c) Kol-type Salan.
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phosphorus (Fig. 2b),°® and a prototypical minimal Kol-type
Salan’® complex with Me-substituents on the amine linker
(Fig. 2c). For these ligands sets, we investigated the complexes
with Sc and Y (group 3) and Ti, Zr, and Hf (group 4).

Model structures. Traditional data science approaches in
olefin polymerization often utilize a single pre-catalyst struc-
ture, from which steric and electronic descriptors/features of
the catalyst are determined. For group 4 catalysts, Cavallo has
popularized the use of neutral dichloride precursor structures,
LMCl,, under the explicit assumption that the precursor geo-
metry is representative of the TS.*® Although being ideal from
the perspective of determining steric descriptors — chloride
substituents do not allow for hydrogen-heteroatom bonding
that could distort the structure - this model structure might
be less suited for the evaluation of electronic descriptors, if
only because it lacks the metal-carbon bonds necessary for
polymerization activity. The most natural strategy to make up
for this weak point would be to switch to the neutral dimethyl
precursor species.

Translating this approach to group 3 LMX complexes,
which only possess one M-X bond, is not trivial and could be
problematic from the perspective of evaluating sterics reliably
(the MX, fragment in group 4 complexes can be used to unequi-
vocally orient the metal complexes in a coordinate system, while
a M-X fragment can only define one axis). More importantly, for
group 3 (and the lanthanides) the polymerization active species
LMMe is uncharged while the isoelectronic group 4 species
LMMe" is an ion pair. How this affects electronic descriptor
determination for models aiming at describing d° polymeriz-
ation active systems in general is not clear a priori.

Monomer capture’'”* is an important part of the mecha-
nism and a more general model for the active species might
incorporate an olefin. Finally, the TS for the insertion of an
olefin into a metal-carbon bond is the only true prerequisite
for polymerization activity.

For the purpose of the present study, we chose to consider
three levels of structures. Our “best” level uses the fully-opti-
mized insertion TS (TS model, TSM). The next level uses the
structure of the olefin complex, i.e. the “activated complex just
before insertion” (activated complex, ACM). To avoid compli-
cations arising from different possible orientations of a realis-
tic growing chain model”®> and/or of a 1-alkene, we chose
ethene and a metal-methyl bond for these two model struc-
tures. Another step down leads to the precursor model (PM),
which uses the LMCI, or LMMe, (x = 1 for group 3, x = 2 for
group 4) as model structures. The whole set of considered
model structures is depicted in Fig. 3. To our best knowledge,
there are so far no reports on ACM or TSM models; our results
hopefully clarify how sensitive these models are. Importantly,
as we will discuss in more detail later, TSM is the only truly
universal one when aiming at general models.

Computational details. All structures were optimized at the
TPSSh/cc-pVDZ-(PP) level of theory.”” The absence of imagin-
ary frequencies for minima and one imaginary frequency for
TS corresponding to the reaction coordinate was checked to
confirm the nature of minima and TS. Single point energy cal-

This journal is © The Royal Society of Chemistry 2025
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Fig. 3 The four different model structures chosen for electronic
descriptor determination in this work. *Often passivated with a Lewis
base, e.g. PMes, in precursor species.

culations were then conducted either within IBOview’®”” or

with Gaussian 16”® at the MN15-L/TZ level of theory”® (TZ: cc-
pVTZ-(PP) for Gaussain 16, and def2-TZVP for IBOview) and
the electronic descriptors were collected from the output files
utilizing python scripts detailed in the SI. For the ACM and
TSM structures, the isolated cation approximation was
employed.® For additional details see SI.*>*'°

Targeted electronic descriptors. Considering electronic
effects, the choice of “charge” based descriptors, frontier mole-
cular orbital energies, and bonding situation seems a logical
one. For charges, there are many different options, hinting at
the problem of reliably quantifying them, and it is not given
that all possible choices are equally consistent in the context
of model building. Specifically, we targeted descriptors that
are transferable between the different model complexes and
have been used for modeling in the past.® We considered
metal and ligand charge, g\ and gy, determined by different
methods, ie., intrinsic bond orbital theory (IBO), natural
population analysis (NPA),*" quantum theory of atoms in mole-
cules (QTAIM) as implemented in IBOview,*” Mulliken,®
Charge Model 5 (CM5)** and Hirshfeld.®® Furthermore,
Wiberg bond indices®® and bond composition as determined
by IBO and natural bond orbital theory (NBO) as well as
HOMO, LUMO and HOMO-LUMO gap energies were con-
sidered. For the ACM and TSM model species, some additional
descriptors were collected, that cannot be collected from PM
models. Overall, 105 different electronic descriptors were
collected.

Reproducibility of TS coordination geometries

An overview of key structural parameters of the optimized
structures of group 4 complexes is given in Table S1. As men-
tioned earlier, a key assumption in many statistical modeling
approaches is that the geometry of the model structure reflects
that of the TS. The TSM consistently produces comparable geo-
metries for both group 3 and group 4 catalysts alike, regardless
of the ligand class, reflecting true insertion TS with the olefin
in-plane (or nearly in-plane) of the M-Me bond.

For the other model structures, ligand or metal specific
structural changes were encountered, as detailed in the follow-
ing. For group 4 metal dichloride and metal dimethyl com-
plexes, all optimized structures result in pseudo-tetrahedral

This journal is © The Royal Society of Chemistry 2025
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(ansa-metallocene and Cp phosphinimide) or fac-fac coordi-
nation geometries (for octahedral Salan complexes), meaning
that the two X-type ligands are in mutual cis geometry, in posi-
tions where the chain and the vacant site (or olefin) would be.

Initially, we targeted an even simpler model for the Cp
phosphinimide system, with a less sterically hindering
-N=PMe; ligand. The problem of inadvertent geometry
changes inducing electronic effects is even more pronounced
in this case and therefore worth discussing here. For this
ligand, in only a single instance, i.e. for the Ti dichloride
complex, a change in geometry occurs, not for any of the other
model complexes. In the crystal structures reported by Stephan
in the literature®®®” and in all other complexes modeled here,
Ti-N-P angles close to 180° are found, implying a sp-hybri-
dized N atom that can donate z-electron density to the metal.
In the Ti dichloride complex, the nitrogen of the phosphini-
mide ligand is much more pyramidalized (Ti-N-P 138.14°),
indicative of a substantially sp>-hybridized N and reduced elec-
tron donation to the metal (Fig. 4). Electronic descriptors col-
lected from this structure indicate a substantially more elec-
tron poor Ti center compared to the other Ti models, which
are arguably much more representative of the active species.

Although switching to the -N=P‘Bu; ligand solved the
problem in the precursor species, we encountered a change in
coordination geometry in the ACM for this ligand set. While
for ansa-metallocenes and Salan complexes ethene coordinates
in-plane of the M-Me bond, just as for the TSM, for the Sc, Ti,
Zr and Hf Cp phosphinimide complexes, ethene is coordinated
out-of-plane (Fig. 5).

For descriptor collection pertaining to the two carbons of
the coordinated ethene in these ACM species, we defined the
carbon, with the longer distance to the methyl substituent as a
and the other one as p. This reflects the pathway of easiest
rotation from out-of-plane to in-plane coordination upon
approaching the TS but is less unambiguous than in the case
of in-plane ethene coordination.

Fig. 4 Simpler Cp phosphinimide Ti complexes LTiCl, (a) and LTiMe,
(b), illustrating a sudden switch in the ligand structure (rehybridization)
that affects electronic descriptors. L = —N=PMes. In the LTiCl, (a), the
ligand is a 4e donor, in LTiMe; (b) a 6e donor (according to the anionic
ligand formalism). IBOs visualized with substantial Ti-N contribution
evidencing the change of the one of the IBOs (¢ to =, center top and
bottom) from LTiCl, to LTiMe,. Pictures generated with IBOview.”®
Hydrogens omitted for clarity.

Dalton Trans., 2025, 54,16380-16392 | 16383
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Fig. 5 CpHf(N=P'Bus) ACM model for the active species (a) and TSM
model for the TS (b). In (a) ethene is coordinated out-of-plane in (b) in-
plane with respect to the Hf—~Me bond. Ligand hydrogens removed for
clarity. Pictures generated with IBOview.”®

For group 3 metals, all the precursor complexes LMCI and
LMMe are non-representative for the coordination environ-
ment found in the TS (tetrahedral with in-plane ethene coordi-
nation for the metallocene and the phosphinimide, fac-fac
with in-plane ethene coordination for the Salan). Also, for the
ACM, structural deviations from the geometry in the TS are
observed for group 3 metals, as shown in Table S1 and Fig. 6.

In summary, non-TS model structures have a high chance
of at least occasionally producing geometries that are not
representative of TS; how this influences modeling remains
unknown for the moment, but we believe it is important to be
aware of this possibility.

Fig. 6 Yttrium Salan model. (a) ACM in fac/mer geometry, (b) insertion
TS in fac/fac geometry. Ligand hydrogens removed for clarity. Pictures
generated with IBOview.”®
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Comparison of data trends in different model species

We begin our analysis of the electronic descriptor data col-
lected comparing the data trends in the four different model
structures (LMCl,, LMMe,, ACM, TSM) for the 15 selected cata-
lysts (3 ligand sets x 5 metals). In general, electronic descrip-
tors evaluated on different model structures can carry the
same relative information. For example, the partial charge on
the metal gy determined with the IBO method on the ACM
and TSM species reveals nearly identical data trends (R> =
0.9995, Fig. 7, left). The overall charges change slightly, e.g. for
the ansa-zirconocene we find gz acm = 3.05 Vs, @zrrsm = 3.15,
indicating that different descriptors derived from different
model species should never be mixed, but the data trend, i.e.
the relative differences between the metals and ligands for the
two respective model systems are nearly identical. This indi-
cates that for the IBO derived metal charges gy, the choice of
model is inconsequential: the different model structures
(LMCl,, LMMe,, ACM, and TSM) show identical data trends for
this descriptor. Therefore, this electronic descriptor could be
determined from the simple neutral precursor model com-
monly used for steric analysis and the assumption that elec-
tronic effects transfer from this model to the real active species
is true. This finding holds despite the earlier found coordi-
nation geometry changes between the different models which
are particularly pronounced for group 3 metals.

However, this descriptor insensitivity is not omnipresent,
e.g. for the partial charge on the ligand, determined with the
CM5 method on the LMCl, model vs. the TSM model (Fig. 7,
right R> = 0.87). Here, we can see that not only do the ligand/
metal trends not transfer from one model to another, but the
two different metal groups experience different relative
changes. In this case, the electronic effects determined from
the precursor do not transfer to TSM and for this descriptor
the question arises, which of the models to use to evaluate it.

Partial charges. Full details for the sets of 14 charge descrip-
tors can be found in the SI (Table S2). For group 4 metals
alone, the choice of model to evaluate metal partial charge
trends is inconsequential for several methods: IBO, QTAIM,
CM5 and Hirshfeld. On the contrary, Mulliken charges and
NPA charges are influenced by the choice of model compound.
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Fig. 7 Comparison of the transferability of electronic descriptor trends between model species. Left: plot of partial charge (IBO) of the metal in the
ACM model (gmacm) vs. TSM model (gmsm). Middle: plot of partial charge (CM5) of the ligand in the LMCl, model (g c|) vs. TSM model (g, tsm)-
Right: heatmap for the correlation (R?) between different model structures for the partial charge (CM5) of the ligand.
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For the charge of the ligand, the situation is somewhat more
complex, only for IBO and CM5, model independence is
observed, for all other methods, the choice of the model influ-
ences the trend that is obtained. For the whole dataset of
group 3 and group 4 models, model independence is only
observed for metal partial charges determined with IBO and
QTAIM, while for all other methods and for the ligand
charges, the model influences the observed trend. Almost
always, the ACM and TSM models give very similar if not iden-
tical trends in the partial charges, and the precursor models
give a different trend. This implies that electronic effects in
the precursor do not transfer to the models of the active
species and the transition state and vice versa.

From the perspective of data science, the relevant lesson
from this analysis is that for certain descriptors, analyzing one
model structure carries all the information that can be gath-
ered, and additional species will not offer further relevant
information. However, in most cases surveyed here, the precur-
sor species and the more realistic model structures for the
active species yield different datasets for each electronic
descriptor. Overall, we included 12 variations of charges in the
present work. Half of them are basically consistent between
the different model structures (so that one could use any of
the model species and obtain basically equivalent data) while
the other 6 behave more erratically.

It is seductive to interpret the “consistent set” as somehow
more “true” than the others, but we feel this is not the right
venue to start a discussion of charge definitions.

Wiberg bond indices and bond composition. Metal-Ligand
bonds, which differ between different ligand sets, are not
transferable and thus not suitable as descriptors for general
models. Therefore, we focused on bonds that characterize the
recurring central fragment, i.e., the M-Cl bonds in the LMCI,
models, the M-Cy; bonds in the LMMe, model, and the M-
Cwme, bonds in the MMe(ethene) ACM and the TSM models.
Interestingly, for group 4 model complexes, our analysis indi-
cates that electronic effects, in the sense of metal and ligand
changes, on Wiberg bond indices and bond composition as
determined by the IBO method are insensitive to the bond
identity (Tables S3 and S4). This means that trends in these
two descriptors determined for M-Cl and M-Me bonds in the
LMCI, and the LMMe, precursor models and the cationic ACM
model carry the same information. However, differences to the
values determined for the TSM model, where bonds are
forming and breaking, are large. Therefore, electronic effects
affecting WBI can be extrapolated from one bond to the other
but not from minima to TS. Instead, this is not the case for
WBI determined by the NBO method; in this case, each model
compound generates a different dataset with different trends.
NBO bond composition analysis yields more detailed infor-
mation than the bond composition analysis provided by IBO
and would therefore be very interesting from a descriptor per-
spective. However, natural bond orbitals are closely associated
with elementary Lewis structure diagrams,®® which is why
NBOs provide a direct link to valency and bonding concepts. If
the dominant Lewis structure is ionic, then bond analysis is

This journal is © The Royal Society of Chemistry 2025
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impossible and not performed. Throughout the dataset this
happens irregularly. Manual intervention would be required;
while not impossible, this is hard to automatize.

Frontier molecular orbitals. Frontier molecular orbital ener-
gies are a common descriptor utilized in various statistical
models. Frontier molecular orbital (FMO) theory, pioneered by
Nobel prize winner Fukui,®® provides the basis. Simplified,
FMO posits that reactivity can be predicted analyzing the sym-
metry and energetic similarity of the frontier molecular orbi-
tals: highest occupied molecular orbital (HOMO), lowest unoc-
cupied molecular orbital (LUMO), or single occupied mole-
cular orbital (SOMO) of the reactants. Of course, orbital ener-
gies and locality (spatial extent and orientation) can change, if
the molecule is distorted. A simple example can be found in
the higher reactivity of cyclic alkynes over linear alkynes in
click chemistry,”® as the former are already “electronically
primed” while the latter need to be significantly distorted to
attain the correct FMO symmetry.”’ FMOs are strongly con-
nected with the geometry and reactivity of a molecule and in
click chemistry; HOMO-LUMO gap energies are predictive.

Whether or not HOMO-LUMO gap energies are reasonable
descriptors for olefin polymerization is not granted. It needs to
be recalled here that only reactive bonds are directly transfer-
able between different ligand sets; MOs connected to metal-
ligand binding have no meaning whatsoever in a different
system. MOs energies and/or energy gaps are meaningful only
when the considered orbitals involve the recurring fragment of
a model species. However, unambiguous identification of
these orbitals is no trivial task, as shown in the following.

For the neutral precursor species, the FMOs carry no simi-
larity as they are connected to the metal-ligand interactions,
which is also reflected in the yellow to orange color of some of
those complexes. Similarly, the HOMOs in the ACM (Fig. 8)
model are not connected to the reactive bonds, i.e., the metal—-
carbon bond and the olefin n-orbitals, which in fact are
HOMO-X orbitals (X depends on the ligand). Instead, the
LUMO can often but not always be connected to an empty
metal centered d-orbital and the olefin n*-orbital, but a degen-
erate LUMO+X orbital might be observed. This degeneracy
cannot always be unequivocally deciphered and narrowed
down to the main contribution. Correlation of the energies of
the MOs connected to the insertion chemistry is only possible
for the ACM complex, as in the TSM complex the relevant orbi-
tals are already mixing.

Regarding IBOs, the IBO method localizes the MOs and the
LUMO is generally the ftehene*-orbital (Fig. 9) while the HOMO
is still localized on the ligand. We can therefore conclude that
HOMO and LUMO energies and the HOMO-LUMO gap are
meaningless in the present systems and utilizing them for stat-
istical modeling is at best questionable. Concerning the reac-
tive MOs, the main problem for data collection arises from the
fact that ligand centered n-orbitals (in the present case either
in aromatic ligand parts or P=N bonds) are lying higher in
energy. The problem will be exacerbated by aromatic or hetero-
atom containing substituents on the ligand. The relative posi-
tion of the reactive orbitals is a function of the exact ligand and
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LUMO

HOMO

Fig. 8 Visualization of the HOMO and LUMO calculated with MN15-L/
cc-pVDZ level of theory for the three LZrMe(ethene)* ACM models (left:
ansa-zirconocene, middle: Zr-ONNO, right: CpZrNP'Buz). HOMOs are
generally ligand centered and delocalized, while LUMOs show contri-
butions from an empty d-orbital and the olefin n*-orbital and are degen-
erate (only one MO shown). Pictures generated with IBOview.”®

Fig. 9 Visualization of the FMO IBOs calculated with MN15-L/def2-SV
(P) level of theory for the three LZrMe(ethene)* ACM models (left: ansa-
zirconocene, middle: Zr-ONNO, right: CpZrNP'Buz). HOMOs are gener-
ally ligand centered and delocalized, while LUMOs are centered on the
olefin n*-orbital and non-degenerate. Pictures generated with
IBOview.”®

substituent pattern and cannot be predicted ad-hoc. Reliably
identifying these orbitals is therefore heavily complicated by
the fact that their relative ranking is affected by ligand and
substituent patterns and the metal.

16386 | Dalton Trans., 2025, 54,16380-16392
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In light of these observations, we recommend not using
automatic HOMO-LUMO data collection; at the same time
even human data collection, utilizing orbital visualization to
identify the orbitals connected to reactive bonds, is challen-
ging, as MO degeneracy can complicate the picture.

Analysis of data clustering in electronic descriptors

Before beginning this analysis, it is instructive to recall some
basic concepts. As outlined in the introduction, olefin
polymerization active species are known for almost all the tran-
sition metals. Even focusing only on group 4, there is no privi-
leged metal or ligand set, in fact, “perfect pairings” seem to
exist, and similar polymers can be made with vastly different
catalysts. From a purely theoretical perspective, a descriptor
that can describe metal variations, ligand set changes, and
substituent effects simultaneously must present a continuum
of values rather than small changes in one case vs. large case
in another (clustering).

Fig. 10, bottom depicts the data spacing for one descriptor
(partial charge on the metal determined on the TSM by the
IBO analysis). Clearly visible, all the datapoints for the
Hafnium and Zirconium species nearly coincide. Ligand
changes yield much smaller effects, and three clusters are
present (Sc + Ti, Y and Zr + Hf). A different data spacing is
found for the partial charge on the ligand as determined on
the TSM by the NPA analysis and depicted in Fig. 10, top.
Significant overlap occurs between group 3 and group
4 metals, the spacing between the least electron-rich group
3 metal system (Scandium phosphinimide) and the most elec-
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0.0 0.2 0.4 0.6 0.8 1.0
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Fig. 10 Comparison of continuously vs. clustered data spacing in
different descriptors. Top: plot of partial charge (NPA) of the metal in
the TSM (gm Tsm). Bottom: plot of partial charge (IBO) of the metal in the
TSM model (gmtsm). Highlighted regions indicate the descriptor space
covered by each metal. Only in the top case electronic effects originat-
ing from metal and from ligand changes are of comparable magnitude.
Descriptor values were normalized between 0 and 1.
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tron-poor group 4 system (Hafnium Salan) is minimal.
Moreover, the metal and ligand effect in each group have
similar magnitudes, ie. the systems overlap. In fact, the
descriptor delivers comparable values for the Titanium Salan,
the Hafnium phosphinimide and the Zirconium ansa-
metallocene.

The two discussed descriptor cases are thus examples for
descriptors with a clustered and an evenly spaced dataset,
respectively. In the case of the clustered data, it is highly un-
likely that a model could describe both different catalyst
classes and different metals with a single electronic descriptor,
at least in the specific case of Hafnium vs. Zirconium. In the
second case, a working model should easily be extendable
from one catalyst class to another and from one metal to
another, as well as from one transition metal group to
another.

Tables S5 and S6 list the different descriptors that have
been analyzed here and their tendency to deliver either clus-
tered or spaced datapoints. The visualization plots are pro-
vided in the SI, Fig. S4-S28. The analysis was performed visu-
ally. Mathematical approaches to perform cluster analysis are
known,®” but in this case, we are interested in datapoint dis-
tance and overlap between different metals and ligands and
the group 3 and group 4 metals. Traditional (mathematical)
cluster analysis could deliver a wrong picture, as clustering of
datapoints from different species (metal/ligand combinations)
differs from segregated clusters of one type.

Finally, the inconsistency of metal and ligand effects going
from the precursor species to the active species mentioned
earlier strongly suggests that electronic descriptors have to be
evaluated at the correct point (model) in catalysis and do not
necessarily transfer from one species to another.

Overview of model strengths and weaknesses

Based on the previous discussion, care needs to be taken in
assembling a computational database of descriptors regardless of
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the underlying model species. The following discussion briefly
describes an overview of the strengths and weaknesses of the
different model structures, for a detailed analysis see Table 1.

LMCI, models. Optimized geometries might not be repre-
sentative of the active species. Occasional deviation from the
geometry of the putative active species was observed even in
the small dataset discussed here, which might not always be
obvious. For C,-symmetric group 4 metal-based catalysts, it
has been shown that this model can also be used for the deter-
mination of steric descriptors. Several electronic descriptors
return questionable results when derived from this model pre-
cursor structure, indicating that electronic effects in the pre-
cursor species might differ from the active species. Only the
IBO and QTAIM charge on the metal can be recommended as
an electronic descriptor for models targeting group 3 and
4 metals alike.

LMMe, models. Optimized geometries might not be repre-
sentative of the active species. For example, H-F bonding can
influence geometries which is relevant for Fluorine containing
catalysts.”>"* Several electronic descriptors return questionable
results when derived from this model precursor structure, indi-
cating that electronic effects in the precursor species might
differ from the active species. Only the IBO and QTAIM charge
on the metal can be recommended as an electronic descriptor
for models targeting group 3 and 4 metals alike.

LMMe(ethene)" ACM models. Optimized geometries of the
MMe(ethene) unit are sensitive to the ligand framework.
Ethene coordination can be perpendicular or in-plane to the
equatorial plane of the catalyst and a-agostic interactions can
differ in orientation relative to the ethene (toward or away
from). It remains unclear how and if this affects descriptor
values. In the coarse screening performed in this work, no dra-
matic effects were noticed from a change in ethene orien-
tation. Only some electronic descriptors derived from this
model structure are clearly not suitable for data collection,
such as NPA metal charges and FMO energies.

Table 1 Overview of the strength and weaknesses of different models and derived descriptors depending on whether group 4 or group 3 and
4 models are targeted under the assumption that models target electronic trends of the active species

Possibly reliable descriptors
comparison of 1 neutral,

Model Geometry  Reliable descriptors®

1 cationic model recommended

Questionable descriptors®

Group 4 only

LMCI, Problematic IBO, QTAIM (M), CM5, HF (M)

QTAIM (L), HF (L), NPA (L),

Mulliken, NPA (M), NBO-WBI, FMO

IBO-WBI and BC

LMMe, Problematic IBO, QTAIM (M), CM5, HF (M)

QTAIM (L), HF (L), NPA (L),

Mulliken, NPA (M), NBO-WBI, FMO

IBO-WBI and BC

ACM  Problematic IBO, QTAIM, CM5, HF, Mulliken, NPA (L)

TSM  OK IBO, QTAIM, CM5, HF, Mulliken, NPA (L)

Groups 3 and 4

LMCl, Problematic IBO (M), QTAIM (M)

LMMe, Problematic IBO (M), QTAIM (M)

ACM  Problematic IBO, QTAIM, CM5, Mulliken, HF, NPA  IBO-BC
TSM  OK IBO, QTAIM, CM5, HF, Mulliken, NPA  IBO-BC

IBO-WBI and BC
IBO-WBI and BC

NPA (M), NBO-WBI, FMO
NPA (M), NBO-WBI, FMO

IBO (L), QTAIM (L), CM5, HF, IBO-BC Mulliken, NPA, IBO-WBI, NBO-WBI, FMO
IBO (L), QTAIM (L), CM5, HF, IBO-BC Mulliken, NPA, IBO-WBI, NBO-WBI, FMO

“Identical trends in electronic descriptors compared to the TSM model. ? Significant model dependence of the trends in electronic descriptors.
FMO = frontier molecular orbitals, WBI = Wiberg Bond Index, BC = bond composition, M = metal, L = ligand; when no details are given for IBO,

QTAIM, CM5, HF, Mulliken or NPA charges, both M and L are included.

This journal is © The Royal Society of Chemistry 2025
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LMMe(ethene)" TSM models. As stated eatlier, in order for a
transition metal complex to show polymerization activity, this
species must exist, which can become important when struc-
tures are solely screened in silico to identify novel catalysts.
Often, trends in electronic descriptors derived from these
species coincide with the ones determined from the ACM
species. Bond orders are highly sensitive to the early or late
nature of the TS and possibly better determined in the ACM
model.

Model species closely connected to chemical reactivity. The
ACM and TSM models have one additional significant advan-
tage over the precursor models. Being more closely connected
to the polymerization reactivity, they allow the collection of
more electronic descriptors connected to the incoming alkene
and relevant to the insertion mechanism in general (e.g. WBI
of forming and breaking bonds, charges on the alkene, etc.).
The spacing analysis for selected descriptors, namely TSM
charges on metal and ligand (fragments transferable between
different model structures), on methyl and ethene (fragments
specific of active species) and on the two methylene groups of
ethene, as well as the ACM Wiberg bond indices for the M-Me
(ethene) fragment, are summarized in Table 2.

Model complexes should be chosen by what is to be
modeled. In the case of selectivity of the active species like
stereoselectivity, regioselectivity, comonomer affinity or molar
mass capability, electronic descriptors should be determined
from a closely connected model. However, for activity, acti-
vation might also play an important role. In this case, deter-
mining descriptors from a precursor species and an active
species model might be advisable.

View Article Online
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Data spacing in an expanded dataset

The previous analysis focused on a rather limited ligand set for
practical reasons. Curious about how the situation would evolve
when more ligands are considered, we also conducted a limited
analysis for an expanded ligand set for the TSM model derived
electronic descriptors, including minimal models for additional
classes such as Exxon-type Salan (Fig. 11d), Dow C4-bridged bis
(phenoxy)ether (OOOO, Fig. 11e), CGC (Fig. 11f), and McConville
bis(amide) (Fig. 11g). This expanded set now covers 5 metals and
7 ligands (35 complexes). Fig. 12, show data spacing plots for two
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Fig. 11 Expanded ligand sets. (a) rac-Me,Si(2-Me-indenyl), ansa-metal-

locene, (b) Cp-phosphinimide with N=P('Bu)z, (c) Kol-type Salan, (d)
Exxon-type Salan, (e) C4-bridged OOOQO, (f) CGC, (g) Bis Amide.

Table 2 Detailed performance and clustering analysis for selected descriptors collected from the ACM and TSM models

Total % ligand % metal Group Series Dominant
Method Descriptor spacing spacing spacing overlap overlap influence Clustering
Partial charges (calculated on TSM)
1BO gmlqe 2.122|1.426 7|15 100|100 Yes No Metal 1: Sc, Ti; 2: Y; 3: Zr, Hf
1: Sc; 2: Ti; 3: Y, Zr, Hf
Grtel Fethene 0.352]0.423 17|15 100|100 Yes No Metal 1: Sc, Ti; 2: Y, Zr, Hf
1: Sc; 2: Ti; 3: Y, Zr, Hf
q«|9p 0.355]0.087 1620 100|87 Yes No|Yes Metal|Even 1: Sc; 2: Ti; 3: Y, Zr, Hf|No
QTAIM qm|qr 0.821]1.070 35|29 83|85 Yes Yes Even No
Grtel Fethene 0.160(0.282 35[22 100|100 Yes Yes Metal No|1: Ti; 2: Sc, Y, Zr, Hf
q«|9p 0.191]0.129 19|35 94|80 Yes Yes Metal|Even 1: Ti; 2: Sc, Y, Zr, Hf|No
NPA gmlqL 0.859|1.046 46|37 60|87 Yes Yes Even No
GmelGEthene 0.192]0.262 57|14 87|94 Yes|No Yes Even|Metal No|1: Sc, Y; 2: Ti, Zr, Hf
q«|9p 0.197|0.095 20|22 96|85 Yes|No Yes Metal No|1: Sc, Y; 2: Ti, Zr, Hf
Hirshfeld gm|qr 0.242]0.979 60|25 62|87 Yes|No Yes Even|Metal No|1: Sc, Y; 2: Ti, Zr, Hf
Grte| FEthene 0.140(0.242 52[23 100|79 No Yes Metal 1: Se, Y; 2: Ti, Zr, Hf
q«|9p 0.149]0.101 28(27 84|85 No Yes Metal No|1: Sc, Y; 2: Ti, Zr, Hf
CM5 qmlqL 0.532]1.164 65|40 47|75 Yes|No Yes Even No
Gme|GEthene 0.141]0.270 51|24 100|83 No Yes Even|Metal 1: Sc, Y; 2: Ti, Zr, Hf
9q|qp 0.169]0.101 28|27 89|84 No Yes Metal No|1: Sc, Y; 2: Ti, Zr, Hf
Wiberg bond indices and bond compositions (calculated on ACM)
IBO WBIy-me 0.604 19 100 Yes No Metal 1: Sc; 2: Ti; 3: Y, Zr, Hf
WBIyq 0.201 50 100 Yes Yes Metal 1: Ti; 2: Sc, Y, Zr, Hf
WBI, g 0.239 46 100 Yes Yes Even No
BChrne 0.525 15 100 Metal 1: Sc, Ti; 2: Y, Zr, Hf
NBO WBIy_me 0.390 23 100 No Yes Metal No
WBIs- 0.202 49 100 No Yes Metal No
WBI, g 0.228 46 100 No Yes Metal No
WBIy 0.143 98 99 Yes Yes Metal No
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Fig. 12 Example for continuous data spacing vs. reinforced clustering in descriptors in the expanded dataset. Left: plot of partial charge (NPA) of
the metal in the TSM model (gumsm)- Right: plot of partial charge (IBO) of the metal in the TSM model (gu Tsm). Highlighted regions indicate the
descriptor space covered by each metal. In the left case, clear overlaps between different metal/ligand combinations indicate continuous modu-
lation of electronics through metal and ligand variation. The right case is characterized by minimal influence of ligand variation and dramatic
changes through metal variation. Descriptor values were normalized between 0 and 1.

selected descriptors. For the partial charge (IBO) of the metal in
the TSM model (Fig. 12, right) we find a reinforcement of the
metal differences, indicating that this descriptor does not pick up
ligand differences very well. In contrast, the enhanced coverage of
the chemical space through expansion of the dataset leads to a
continuous data spacing for the partial charge (NPA) of the metal
in the TSM model (Fig. 12, left).

Non-continuous data spacing in descriptors does not mean
that descriptors are useless, in fact, data science often aims to
go above the fray, ignoring interpretability. In the realm of
MLR, one descriptor could pick up ligand differences, while
another could describe metal differences. However, if one
aims at chemically intuitive models, which use a limited set of
descriptors allowing high interpretability, then mixing-and-
matching and increasing the number of descriptors, especially
electronic ones, becomes problematic. For such models,
descriptor space analysis allows to judge core capabilities,
even without a model, similar to traditional hardware tools,
that are chosen for a specific purpose.

Conclusions & outlook

Machine learning wants to accurately predict catalytic selectivity
by using a set of less-than-optimal data, identifying patterns in
large sets of data that are incomprehensible to humans.*’
However, is chemistry always too complex to be reduced to simple
or at least simplified models? From a practical perspective,
especially for a reaction as sensitive to small changes in the reac-
tion conditions as olefin polymerization, the question arises:
what happens when a model fails in predictions?

Reinforced learning, the answer of machine learning, runs
the risk of leading to negative one directional feedback loops.
Bi-directional feedback loops, where the model occasionally
informs experiment require testable hypotheses and we believe
that this is where simple models could shine. Occasionally,
the model might be right and would be confirmed if we repeat
the experiment under more controlled conditions.

This journal is © The Royal Society of Chemistry 2025

We have shown that some of the base assumptions usually
employed in modeling of olefin polymerization catalysts are
likely flawed, including the assumption of transferability of
electronic effects measured on a precatalyst to the active
species. Metal charges are often ill-suited for global models
and FMOs are not connected to the polymerization reactivity.
Models closely related to the true active species in catalysis are
more promising. Only TS models are likely truly transferable
between catalyst classes and metals.

In the end, the very fact that olefin polymerization is a
general feature of the transition metals, but electronic effects
are still ill-understood could also result from problems in iden-
tifying electronic descriptors that are directly connected to the
reactivity. Here, we have approached this topic from a purely
data centric perspective, laying out strength, weaknesses, and
pitfalls of different approaches. Notably, metal charges in pre-
cursor complexes often show clustered data spacing already
within group 4 and especially when looking at the group 3 and
4 metals combined, yet they have been routinely used to
describe substituent effects within small datasets in the field.

Direct computational predictions, for example by DFT, face
significant hurdles, e.g. required accuracy and complexity of the
system, solvent interactions, anions, and the sheer number of TS
needed to predict selectivity, accounting for olefin and chain
orientations. Statistical models are better suited for this purpose.
Every model requires expensive experimental training data. The
strength of general models is that past experimental data can
inform new experiments, even if they come from a different cata-
lyst class or metal. Moreover, the broader the training set
becomes for a general model—covering metal, ligand backbone,
and substituent effects—the more one will almost inevitably be
forced to decipher the true mechanistic underpinnings.
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