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Electrocatalytic urea synthesis from NO and CO,
on In4Pd single atom alloys

Tingting Wu,*® Zihan Tian,? Ziyang Zhang,® Ye Tian (22 and Ke Chu @ *°

Electrocatalytic urea synthesis from CO,/NO co-electrolysis (EUCN) has emerged as a promising strategy
for sustainable urea production, while simultaneously mitigating greenhouse gas emissions and NO pollu-
tants. Herein, we have developed single-atom In; alloyed Pd (In;Pd) as a high-performance EUCN catalyst,
delivering a remarkable FE,, Of 45.9% and a urea yield rate of 55.2 mmol h™ gt in a membrane elec-
trode assembly electrolyzer. The combination of in situ spectroscopic measurements and theoretical cal-
culations reveals the synergy of In; and Pd, which enables the co-activation of CO,/NO and their C-N
coupling while hampering the competing reactions, leading to greatly enhanced EUCN activity and

rsc.li/dalton selectivity.

Urea is a vital nitrogen fertilizer that is widely used in global
agriculture."™ Currently, the Bosch-Meiser process serves as
the primary industrial route for urea synthesis, accounting for
over 2% of global energy consumption and generating sub-
stantial CO, emissions.*”® Electrocatalytic urea synthesis from
co-reduction of CO, and NO (EUCN) has emerged as a promis-
ing strategy for sustainable urea production, while simul-
taneously mitigating greenhouse gas emissions and NO pollu-
tants.” However, the EUCN process involves a complex multi-
step reaction pathway requiring the activation of inert CO, and
NO molecules and enhanced C-N coupling kinetics, posing
significant challenges for catalyst design.'® Current catalysts
still suffer from low urea faradaic efficiency (FEyre,) and poor
selectivity due possibly to the competitive side reactions (i.e.,
the hydrogen evolution reaction (HER)) and independent
reduction pathways.’ Therefore, the development of high-per-
formance catalysts with high activity, selectivity and durability
is crucial to advance the practical application of EUCN.
Single-atom alloys (SAAs), which combine the merits of
single-atom catalysts and alloy catalysts, have garnered signifi-
cant attention in various electrocatalytic reactions involving
both carbon and nitrogen cycles,*™* thus demonstrating their
considerable potential for electrocatalytic urea synthesis from
CO,/NO co-electrolysis (EUCN). Among them, Pd-based
materials have shown particular efficacy attributed to their
unfilled d-electron orbitals (4d'’) that facilitate optimized
adsorption/desorption behavior of key intermediates.’* ™
Nevertheless, Pd-based catalysts often suffer from insufficient
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co-activation capability toward both nitrogen and carbon
sources. Additionally, Pd exhibits a strong tendency for H
adsorption,'” which competes with the C-N coupling reaction
and diminishes both EUCN activity and selectivity for urea syn-
thesis. Notably, these limitations may be effectively mitigated
by incorporating p-block metals such as indium (In). By virtue
of its partially occupied p-orbitals, In can intrinsically hinder
H binding,"® while promoting CO, reduction to generate and
stabilize C-intermediates beneficial for coupling with
N-intermediates towards urea generation.'®*' Motivated by
these insights, we propose that single-atom In alloyed with Pd
(In,Pd) may serve as a highly promising catalyst, enabling
enhanced activity and selectivity for efficient EUCN.

In this study, we developed In;Pd as a highly active and
selective EUCN catalyst for urea electrosynthesis. Notably, the
In,Pd catalyst exhibits exceptional performance in a mem-
brane electrode assembly (MEA) electrolyzer, delivering a
remarkable FE,., of 45.9% and a urea yield rate of 55.2 mmol
h™ g7 at —0.7 V. The catalytic EUCN mechanism of the In,Pd
catalyst is further elucidated through combined in situ spectro-
scopic measurements and theoretical calculations, revealing
that the enhanced EUCN efficiency of In;Pd stems from the
synergistic effect of In; and Pd, which promotes the co-acti-
vation of CO, and NO to *CO/*NH, and their C-N coupling.

In,Pd was synthesized via a one-pot wet chemistry method.
The XRD patterns (Fig. 1a) reveal that In,Pd retains the crystal-
line structure of pristine Pd (JCPDS No. 65-2867), suggesting
that In, incorporation does not change the crystalline phase of
pristine Pd. The TEM image (Fig. 1b) shows that In,Pd exhibits
a typical graphene-like morphology. Elemental mapping
images of In,Pd (Fig. 1c) illustrate a uniform distribution of
In, atoms on Pd. The coordination structure and electronic
characteristics of In;Pd are systematically characterized via

This journal is © The Royal Society of Chemistry 2025
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Fig. 1 Characterization of In;Pd: (a) XRD patterns, (b) TEM image, (c) elemental mapping images, (d) In K-edge XANES, (e) EXAFS spectra and (f) WT

analyses of In;Pd and reference samples.

X-ray absorption spectroscopy. The XANES analysis at the In
K-edge (Fig. 1d) reveals that the absorption edge of In,Pd lies
between In foil and In,0O; reference samples, indicating an In
oxidation state between 0 and +3, which arises from electron
transfer from In, to Pd due to the lower electronegativity of In
(1.78) relative to Pd (2.20). The EXAFS spectra (Fig. 1e) show
that In,Pd exhibits a prominent In-Pd coordination peak at
2.75 A, with no observable In-In or In-Pd coordination bonds,
confirming the atomic dispersion of In on the Pd
substrate.””>* The corresponding wavelet transform (WT) ana-
lysis (Fig. 1f) displays a single In-Pd coordination peak at
6.5 A, further verifying the monoatomic In dispersion within
the Pd matrix.

The electronic structure of In,Pd is systematically investi-
gated using DFT calculations. Electron density difference ana-
lysis (Fig. S1a) reveals a distinct electron transfer from In; to
Pd, in line with the XANES result (Fig. 1d). This interfacial
In;-Pd electron interaction guarantees the robust bonding
between In; and the Pd substrate, which endows In;Pd with
exceptional structural stability. The corresponding PDOS ana-
lysis (Fig. S1b) presents favorable orbital overlapping between
the 5p orbital of In; and the 4d orbital of Pd, offering a theore-
tical foundation for the efficient charge transfer and robust
structural stability.”> Additionally, ab initio molecular
dynamics (AIMD) simulation results (Fig. S2) indicate that
In,Pd maintains stable energy and temperature profiles

This journal is © The Royal Society of Chemistry 2025

throughout the simulation, further validating its excellent
thermal stability.>®~°

The EUCN performance of In,Pd is assessed in a MEA cell
containing 0.1 M KHCO; catholyte saturated with humidified
NO and CO,. Gas and liquid products are quantified by gas
chromatography and colorimetry, respectively (Fig. S3). LSV
curves (Fig. 2a) show a relatively low current density of In,Pd
in sole CO,-saturated electrolyte. Strikingly, the current density
is significantly enhanced in the presence of both NO and CO,,
suggesting the high catalytic EUCN activity of In,;Pd toward
urea synthesis. The EUCN performance of In,Pd is quantitat-
ively evaluated after 1 h of electrolysis. Remarkably, In,Pd
achieves the highest FE ., of 45.9% at —0.7 V, with a corres-
ponding urea yield rate of 55.2 mmol h™ g™ (Fig. 2b), sur-
passing most recently reported catalysts for urea electrosynth-
esis (Fig. S4 and Table S1). Control experiments are conducted
to validate the nitrogen and carbon sources (Fig. S5). No urea
formation is observed under conditions lacking NO or CO,, or
at the open-circuit potential (OCP), effectively ruling out the
possibility of system contamination as C/N sources of urea.
Further >C and "N isotope tracing via nuclear magnetic reso-
nance (NMR) spectroscopy, using *CO, (Fig. 2¢) and >NO
(Fig. 2d) as tracers, reveals the characteristic signals of *CO
(NH,), and CO('*°NH,),, respectively, further confirming that
the synthesized urea originates exclusively from the EUNC
process catalyzed by In,Pd.
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Fig. 2 (a) LSV curves of In;Pd under different conditions. (b) Urea yield rates and FE,., of In;Pd at various potentials. (c) *C NMR spectra of the
BCO(NH,), standard sample and those fed by *CO, after electrolysis at —0.7 V. (d) *H NMR spectra of the CO(**NH,), standard sample and those
electrolyzed in ®NO electrolyte at —0.7 V. (e) Urea yield rates and FE,e, during eight cycling tests at —0.7 V. (f) Comparison of urea yield rates and

FEurea between pristine Pd and In;Pd at —0.7 V.

The selectivity of In,Pd toward ECNU is evaluated by quan-
tifying the FEs of other byproducts (CO, H, and NH,"). At the
optimal applied potential of —0.7 V, FE,., remains signifi-
cantly higher than the FEs of all byproducts (Fig. S6), confirm-
ing the exceptional ECNU selectivity of In,Pd for urea syn-
thesis. For stability evaluation, we conducted an eight-cycle
test, which shows that both urea yield rate and FE,., exhibit
minimal fluctuations (Fig. 2e), confirming the excellent cataly-
sis durability of In,Pd.>**™* Comparative analysis shows that
the pristine Pd catalyst (Fig. 2f) exhibits a much inferior ECNU
performance relative to In,Pd, highlighting the critical syner-
gistic interaction between In; and the Pd substrate in boosting
the ECNU activity.

To elucidate the fundamental understanding of the signifi-
cantly improved EUCN performance of In;Pd, we employed
in situ FTIR and online differential electrochemical mass spec-
trometry (DEMS) to identify the reaction intermediates. First,
in situ FTIR measurements are conducted on In,Pd over the
potential range from the OCP to —0.7 V. As shown in Fig. 3a-c,
the characteristic peak at 1396 cm™" is assigned to the sym-
metric stretching vibration of the *COOH intermediate, while
the C=0 stretching peak at 2017 cm™" corresponds to the gen-
erated *CO intermediate®® (Fig. 3b). Notably, additional peaks
observed at 1695 cm ' and 1433 cm ™"
*CONH, intermediates and C-N bonds, respectively
(Fig. 3c), indicating that EUCN proceeds via *NH, + *CO —
*NH,CO. Meanwhile, the enhanced peak intensity of urea
(1610/1195 em™") with increasing potentials indicates that the

are attributed to
34-36
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generated *NH,CO intermediates are readily converted into
urea.’® In addition, online DEMS measurements (Fig. 3d)
show the prominent m/z signals corresponding to key inter-
mediates and products, including *CONH, (m/z = 44), *CO
(NH,), (m/z = 60), *NO (m/z = 30), *NH, (m/z = 16), *CO (m/z =
28) and *COOH (m/z = 45). These DEMS results are in line with
in situ FTIR data, collectively providing compelling evidence
that In,Pd facilitates the efficient co-reduction of CO, and NO
to urea through a sequential relay catalysis mechanism
(Fig. S7), where In,Pd first promotes the co-activation of CO,
and NO, forming critical *CO and *NH, intermediates. These
*CO/*NH, intermediates then undergo C-N coupling to gene-
rate *CONH,, which is ultimately converted into urea.

DFT calculations are utilized to unravel the atomic-level
EUCN mechanism of In,;Pd. Given that the adsorption and
activation of NO/CO, represent the initial step of the catalytic
EUCN process, our analysis first focused on NO/CO, adsorp-
tion behaviors on both In, and Pd sites of In,Pd. As illustrated
in Fig. S8, the adsorption free energy calculations reveal that
In, sites are more favorable for CO, adsorption (—0.26 eV),
while Pd sites are more favorable for NO adsorption (—0.48
eV), suggesting that during the EUCN process, In, sites primar-
ily facilitate CO, reduction while Pd sites dominate NO
reduction.

We then constructed the free energy diagram for the conver-
sion of CO, to *CO on In; sites (Fig. 4a), with the corres-
ponding intermediate configurations shown in Fig. S9.
Calculation results reveal that the rate-determining step (RDS)

This journal is © The Royal Society of Chemistry 2025
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for CO, — *CO reduction is the first CO, hydrogenation (*CO,
+ *H —» *COOH), with an energy barrier of 0.38 eV. Notably,
the *CO desorption energy barrier on In, sites is significantly
lower (0.19 eV) than that required for further hydrogenation
(*CO + *H — *COH, 0.54 eV), indicating that *CO generated on
In, sites is more inclined to desorb and spontaneously migrate
closer to Pd sites and participate in the C-N coupling reaction.

Subsequently, we constructed the free energy diagram for
the entire EUCN process on Pd sites, with the corresponding
intermediate configurations shown in Fig. S10. As illustrated
in Fig. 4b, the RDS of this pathway is also the initial NO hydro-
genation (*NO + *H — *NHO, 0.29 eV). Further analysis of the
energy barriers for the competing reactions, such as *NO +
*CO — *NOCO and *NO + *CO, — *NOCO,, reveals that com-
pared to direct C-N coupling with *CO or *CO,, *NO tends to
undergo hydrogenation reduction via the NHO pathway.
Significantly, after stepwise *NOH reduction to *NH,, the gen-
erated *NH, intermediate is more likely to undergo C-N coup-
ling with *CO to form *NH,CO relative to other competing
reactions (*NH, + H — *NHj3, *NH, + CO, — *NH,CO,). The
generated *NH,CO can be spontaneously converted into urea.
These findings correlate closely with the above in situ FTIR
and DEMS results (Fig. 3).

For the critical *NH,CO intermediate on both pristine Pd
and In,Pd surfaces (Fig. S11), the charge density difference
map displays that In,Pd provides more electrons to *NH,CO
than pristine Pd does, suggesting the significantly enhanced
*NH,CO stabilization on In,Pd. Further PDOS analysis (Fig. 4c
and Fig. S12) reveals that compared to pristine Pd, the overlap
region of electron orbitals between In,Pd and *NH,CO is
much expanded, further verifying the stronger *NH,CO acti-
vation capability of In,Pd. These results indicate that the intro-
duced In; not only promotes the reduction of CO, to *CO but
also modulates the electronic structure of the Pd substrate and
enhances *NH,CO stabilization and activation towards urea
conversion. Given the HER as the major competing reaction
for the EUCN," we examined the adsorption characteristics of
*H on In,Pd. Fig. 4d shows that In, sites are more favorable
for adsorbing *CO, over *H, while Pd sites exhibit a stronger
tendency to adsorb *NO over *H. Molecular dynamics (MD)
simulations (Fig. S13) further reveal a more pronounced
enrichment effect of *NO on the In,;Pd surface, and the corres-
ponding radial distribution function (RDF, Fig. S14) shows
that the NO/In,Pd interaction is stronger than the H/In,Pd
interaction. These results demonstrate that In;Pd can well
hamper the competing HER towards the selective conversion
of CO,/NO to urea.

In summary, In;Pd is demonstrated as a high-performance
EUCN catalyst for urea electrosynthesis. Combined in situ spec-
troscopic measurements and theoretical calculations reveal
that the enhanced EUCN performance of In;Pd stems from the
synergy of In, and Pd, which enables the co-activation of
CO,/NO and their C-N coupling, while hampering the compet-
ing reactions. Impressively, In,;Pd exhibits an unprecedented
urea synthesis performance with urea yield rate up to
55.2 mmol h™ g™ and FE., of 45.9% in a MEA cell. This
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work provides in-depth insights into the EUCN mechanism
and opens up a new avenue for developing efficient and robust
catalysts.
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