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Molybdenum containing enzymes play a pivotal role in the global
carbon and nitrogen cycles using a common molybdopterin cofac-
tor. Mechanistic studies have revealed a great deal about molyb-
denum enzymes but have yet to detail the impact the secondary
binding interactions have on catalysis. Herein, we describe a
double variant of formate dehydrogenase from Cupriavidus
necator (CnFds) that changes the electrostatic and hydrogen
bonding to the ligands to molybdenum resulting in a complete
loss of formate oxidation activity, which occurs by outer sphere
hydride transfer, and gain of nitrate reduction activity, which is
proposed to follow an inner sphere oxygen atom transfer mecha-
nism. We have assigned these observed changes to the stability of
the terminal ligand which in turn directs the catalytic outcome.
The results here illustrate the importance of the secondary sphere
interactions in directing oxygen atom transfer vs. hydride transfer
mechanisms in molybdenum containing enzymes.

Molybdenum (Mo) containing enzymes are widely distributed
in nature playing integral roles in the global carbon, sulfur,
and nitrogen cycles." The largest and most diverse family of
Mo-containing enzymes is the dimethylsulfoxide reductase
(DMSOR) family.> In the DMSOR family, the Mo cofactor
(MoPDT) is made up of two equivalents of a pyranopterin gua-
nosine dinucleotide (PDT) which ligates Mo by the dithiolene
moiety. Additionally, there is often a ligand from the peptide
and a terminal oxo or sulfido ligand, Fig. 1. To accommodate
the vast substrate scope catalyzed by members of the DMSOR
family, the MoPDT is likely tuned via covalent and non-
covalent interactions between the cofactor and peptide
binding pocket. Primary and secondary sphere interactions
within an enzyme active site can have profound effects on the
reactions catalyzed by the enzyme, especially in enzymes that
utilize metallocofactors.>” In the case of Mo-containing
enzymes, the roles of these secondary sphere interactions in
modulating the reactivity of the metal site are poorly under-
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stood. X-ray crystal structure models of members of the
DMSOR family have highlighted some of these differences
with peptide-cofactor interactions that include direct ligation
of the metal by a peptide residue such as cysteine, aspartate,
or serine, hydrogen bonding to the PDT, including the dithio-
lene thiols, or electrostatic and/or n-stacking interactions with
the planes of the PDT.5™*°

The impact of the primary and secondary coordination
sphere can be highlighted by two structurally related enzymes
with fundamentally different reactivities, periplasmic nitrate
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Fig. 1 Proposed mechanism for NapA (top) and formate dehydrogen-
ase (bottom). NapA catalyzes an oxygen atom transfer mechanism
where nitrate displaces a bound water and oxygen from nitrate is trans-
ferred to Mo followed by reduction of Mo and protonation of the term-
inal oxo.?! Fdh follows a hydride transfer mechanism where the hydride
is proposed to originate from the terminal sulfido ligand.'® The structure
of the pyranopterin dinucleotide has been simplified to the dithiolene
moiety. The full lignad is shown with an “R" group that is typically gua-
nosine bound through the phosphate group.
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reductase (NapA) and formate dehydrogenase (Fdh). In
general, Mo-containing enzymes typically catalyze oxygen atom
transfer reactions to (or from) a variety of substrates." This is
not the case for Fdh which catalyzes an intrinsically different
reaction, reversible hydride transfer between formate and the
MoPDT to yield CO,.>'*"® The hydride transfer mechanism
requires a terminal sulfido in place of the terminal oxo typi-
cally found in the Mo coordination sphere DMSOR family,
Fig. 1."®?° In contrast to the generally agreed upon mechanism
and coordination sphere of Mo in Fdh, there has been con-
siderable debate over the primary coordination environment
and mechanism of NapA. Recent efforts investigating NapA
from Campylobacter jejuni using a variety of spectroscopic and
kinetic techniques have demonstrated a terminal oxo is found
in the functional enzyme.>'* This difference in the terminal
ligand, sulfido in the case of Fdh and oxo in the case of NapA,
is likely a key feature that facilitates the very different reacti-
vates observed in the respective enzymes.

Despite the different chemistries catalyzed by NapA and
Fdh, the enzymes share a superimposable protein structure,
Fig. SI1, a conserved [Fe,S,] cluster adjacent to the MoPDT,
and share a nearly identical binding pocket for the MoPDT
that includes many highly conserved residues that include
hydrogen bond donors and acceptors, and aromatic n-stacking
to the PDT ligands.>>*® While not a substrate for Fdh, nitrate
is commonly used as a protectant during purification to limit
the inactivating effect of oxygen on the active site.”” Nitrate,
which is also a competitive inhibitor during formate oxidation,
is thought to bind near the Mo center limiting oxygen
access.”® Phylogenetically, NapA is described as more closely
related to formate dehydrogenase and arsenite oxidase than
other DMSOR family members.** Recent work investigating
variants to a conserved lysine in both NapA and Fdh impairs
or inhibits catalysis depending on the variant.”**° The lysine
hydrogen bonds one of the two pyranopterins and a conserved
[Fe,S,] cluster that shuttles electrons to or from the MoPDT in
both enzymes and is thought to affect the electron transfer
between the two cofactors in a similar way. These similarities
highlight that it is subtle differences between the two enzymes
that stabilize a differentiated terminal ligand and the intrinsic
mechanism catalyzed by these two enzymes.

Previous investigations of the residues in the secondary
coordination sphere of Fdh from Rhodobacter capsulatus
(RcFdsDABG) identified three residues: His387Met, Arg597Thr,
and a deletion of Arg®®’ that were able to impart nitrate
reductase activity to RecFdsDABG when changed to the corres-
ponding residues in NapA.>® His®®” is likely to be involved in
hydrogen bonding interactions with the Cys ligated to Mo,
Fig. 2. Arg®®” and Arg®”” are located further away near the sub-
strate access tunnel and likely orient the substrate or partici-
pate in transition state stabilization. Unfortunately, these var-
iants also retained formate dehydrogenase activity resulting in
an unclear model for what drives the stability of the terminal
ligand (oxo or sulfido) that is necessary to drive the different
reactivities. Here, we describe a double variant of formate
dehydrogenase from Cupriavidus necator (CnFdsDABG) which
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Fig. 2 Active site of RcFdsA (PDB: 6TGA) in orange and NapA (PDB:
3ML1) in gray highlighting residues in this study. The residues are within
hydrogen bonding distance of the ligating Cys (His and Met in FdsA and
NapA respectively) or the thiol in the ligating proximal dithiolene (Asn
and His in FdsA and NapA respectively). The structures were aligned in
Pymol according to sequence and fold which resulted in with overlap-
ping MoPDT, only the MoPDT from NapA is shown for clarity. Distances
between residues and coordinating sulfurs are in angstroms.

changes the intrinsic reactivity from a formate oxidation to a
nitrate reduction with complete loss of detectable formate oxi-
dation activity.

While the secondary structure of NapA and Fdh are highly
conserved there are a few residues that differ between Fdh and
NapA but remain conserved within the two enzyme types. One
of the residues discussed above, the His proximal to the ligat-
ing cysteine is highly conserved in Fdh while this residue is a
highly conserved methionine in NapA, Fig. 2 and Fig. SI2. In
CnFdsDABG, His®”® (equivalent to His*®” in R. capsulatus)
makes a hydrogen bond with the ligating Cys while the lone
pair on the sulfur of the conserved Met of NapA points toward
the cysteine sulfur in an electrostatic interaction, Fig. 2. A
second residue that is highly conserved in NapA is a His that
hydrogen bonds with one of the ligating dithiolene sulfurs of
the proximal pyranopterin (relative to the conserved [Fe,S,]
cluster), Fig. 2. In Fdh, the interacting residue is not strictly
conserved but tends to be polar (glutamine, serine, or aspara-
gine), suggesting an electrostatic interaction, likely from the
ketone or alcohol oxygen of the residue. When both His*”® and
Asn®”’ in the FdsA subunit of CnFdsDABG are changed to Met
and His respectively, as is found in NapA, the enzyme loses its
ability to oxidize formate with no apparent reaction when

Dalton Trans., 2025, 54,12766-12771 | 12767


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5dt01559f

Open Access Article. Published on 07 August 2025. Downloaded on 10/20/2025 8:53:09 PM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Communication

using NAD+, benzyl viologen, or methyl viologen as an electron
acceptor monitoring the reduction of the electron acceptors
over several hours. Conversely, the enzyme is active in nitrate
reduction when using methyl viologen cation radical (MV) as
an electron donor. Steady-state assays monitoring the observed
rate of MV oxidation against nitrate concentration can be fit
with the Michaelis—-Menten equation to yield a turnover rate
(kea)) Of 0.68 s™' and Michaelis constant (K,) of 1.57 mM,
Fig. 3. The reaction rate varies slightly with pH with a
maximum near pH 8, similar to the optimum Fdhs and NapaA,
SI Fig. 3. We note dithionite (reduction potential of ~—400 to
—600 mV) can act as an electron donor with a turnover rate
monitoring the bleaching of the dithionite absorbance at
314 nm that is similar to MV (—446 mV) while assays monitor-
ing the consumption of NADH (—320 mV) are active but ~10x
slower.® Next, considering nitrate is an effective inhibitor in
the wild-type enzyme against formate oxidation, we examined
if formate could act as an inhibitor to the reduction of nitrate
by varying the concentration of formate and nitrate. While we
observe no significant effect on the overall rate with increasing
formate concentrations, we observe a more pronounced
impact on the K, for nitrate which decreases in the presence
of formate, Fig. 3, to approximately 0.3 mM suggesting coop-
erative binding. Further investigations to clarify the role of
formate in this mechanism are ongoing.

As discussed above, previous investigations of the residues
in the secondary coordination sphere of RecFdsDABG identified
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three residues (H387M, R587T, and a deletion of Arg®®’) that
were able to impart nitrate reductase activity when changed to
the corresponding residues in NapA.>® The turnover rates (kca)
of these individual and combination variants ranged from
0.06 min~" (0.001 s7') in the case of H387M to 2.23 min~"
(0.037 s7%) for the R587T/R-597* variant. These variants also
retained significant formate dehydrogenase activity with rates
that approximated the wild-type in the case of the H387M
variant. It was noted that desulfo RcFdsDABG, which has a
terminal oxo in place of the terminal sulfido required for the
hydride transfer during formate oxidation, is active to nitrate
reduction at a rate of 0.31 min™" (0.005 s™'). We investigated
the CnFdsDABG for nitrate reductase activity in the as-purified
enzyme and do indeed detect trace activity that varies on the
enzyme purification, consistent with what was observed in the
RcFdsDABG homolog. Under the proposed nitrate reductase
mechanism, a terminal oxo is required for catalysis, not the
terminal sulfido present in the wild-type enzyme. To remove
the terminal sulfido we incubated the wild-type enzyme with
KCN which is known to remove the terminal sulfido to yield a
terminal oxo, similar to the primary coordination sphere of
nitrate reductase.'”*”*> Following inactivation with 2 mM
KCN for two hours, we observe a loss of formate dehydrogen-
ase activity, but gain significant nitrate reductase activity com-
pared to the inactivated RcFdsDABG at a rate of 0.41 s™*. This
suggests that indeed the oxo, and not sulfido, form of the
enzyme is needed to reduce nitrate. We attribute the varying
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Fig. 3 Steady state kinetics of FAsDABG. Plots of the observed rate of methyl viologen cation radical (MV) consumption by FdsDABG in the presence
of varying nitrate concentrations in the absence (A and B) or presence of formate (C and D). The steady state kinetics of the H379M/N827H double
variant (A) can be compared against the CN inactivated wild-type (B). While both have nitrate reductase activity, the rate of the double variant is
improved compared to that of the inactivated wild-type. The rates were corrected for background oxidation of MV by trace oxygen in the glovebox,
enzyme functionality, and the ratio of methyl viologen oxidation to nitrate reduction (2 : 1) to reflect the rate of nitrate reduction by FdsDABG. The
data was fit to a hyperbolic function (black) reflecting the Michaelis—Menten equation yielding a k., and K,,, for the reaction. 95% confidence inter-

vals of the fits are indicated.
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trace nitrate reductase activity in the as-purified enzyme to
some population of the desulfo enzyme, inactivated by air.*”
While the wild-type enzyme requires KCN inactivation to gain
nitrate reductase activity, we observe no change in the rates of
the H379M/N827H double variant suggesting the terminal
ligand is present as an oxo upon purification of the double
variant enzyme. We note the expression vector used here for
the wild-type and double variant are the same, both possessing
FdsC which sulfurates the Mo prior to the cofactor insertion
into the enzyme suggesting the double variant is intrinsically
less stable at the terminal ligand site and prone to exchange
with water.

Our working model to rationalize these observed changes,
keeping the respective proposed mechanisms for formate oxi-
dation or nitrate reduction in mind, is that the residues high-
lighted here serve an important role in the stability of the
terminal ligand and the resulting mechanism the enzyme
facilitates, Fig. 4. We propose that the residues under investi-
gation act as modulators to sulfur ligands of Mo. By changing
the hydrogen bonding and electrostatic interactions we envi-
sion a pseudo-Jahn Teller effect where shortening of the sulfur
bonds (increased bonding character) of the cysteine thiol and
one of the PDT thiols, which happen to be roughly trans from
each other in the Mo coordination sphere would then weaken
the bonding interaction of the terminal ligand allowing for dis-
placement during the oxygen atom transfer reaction that takes
place for nitrate reduction. Conversely, in wild-type Fdh, the
hydrogen bonding interactions allow for a more stable
bonding interaction with the terminal ligand which is necess-
ary to stabilize the terminal sulfur required for formate oxi-
dation and CO, reduction via outer sphere hydride transfer.

To summarize, we have identified two key residues that
work synergistically to direct the catalytic outcome in two
highly similar molybdenum enzymes, NapA and Fdh. The
double variant removes the ability of Fdh to catalyze the oxi-
dation of formate by hydride transfer and allows for nitrate
reduction by oxygen atom transfer. The oxygen atom transfer
mechanism in all Mo-containing enzymes requires substrate
to displace a terminal water ligand at Mo. We propose these
residues impact the lability of the terminal ligand to Mo thus
shifting catalysis from the outer sphere native hydride transfer
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Fig. 4 A graphical summary of our hypothesis of how the hydrogen
bonds between the peptide and the MoPDT interact to either stabilize or
destabilize the terminal site in the case of formate dehydrogenase or
nitrate reductase respectively.
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to inner sphere oxygen atom transfer. Our results here high-
light the importance of secondary sphere, non-covalent, inter-
actions in tuning the MoPDT to accommodate the impressive
substrate scope of Mo-containing enzymes and the intrinsic
activity (oxygen atom transfer vs. hydride transfer) of the
enzyme.
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