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Addressing misconceptions in dithiocarbamate
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Dithiocarbamates are monoanionic chelating ligands, easily prepared from CS2 and secondary or primary

amines, that find widespread use in agriculture, medicine, materials science and coordination chemistry.

This is (in part) due to their ability to stabilise metals in a wide range of oxidation states, a result of soft

(dithiocarbamate) and hard (thioureide) resonance forms. However, in the many thousands of publications

on dithiocarbamate chemistry, some common misconceptions have arisen, often being accepted as

truth. In this perspective we address some of these in the hope that, moving forward, the wider commu-

nity will better grasp the nuances of the chemistry of this important ligand type.

1. Introduction

Dithiocarbamates, their complexes, and oxidised counterparts
the thiuram disulfides (Fig. 1) find widespread uses in a
diverse range of areas including: agriculture,1,2 analytical
chemistry,3–7 coordination chemistry,8–18 environmental
remediation,19–23 medicine,24–29 enzyme inhibition,30–36

medical imaging,37–39 living polymerisation,40–43 materials
science44–48 and as precursors to metal-sulfide
nanomaterials.49–52 They are a subset of the widely studied 1,1′-
dithiolate ligands and close relatives of thiocarbamates and
carbamates.8,9 Despite being known for at least 150 years they
remain an area of significant research activity. For example,
with the recent identification of a new cell death mechanism
termed cuprotosis,53 the anti-cancer activity of [Cu(S2CNEt2)2],
which has been known for over 40 years,54–59 has once again
come under the spotlight.60–64 Thus, tetraethyl thiuram di-
sulfide (Et4TDS), better known as Disulfiram (Antabuse), is a
drug that finds widespread use in the treatment of alcohol-
ism.65 It is rapidly metabolised in the gut (it is normally given
orally) or in blood66 to give diethyldithiocarbamate, which in
turn can bind to Cu(II) to afford [Cu(S2CNEt2)2] in situ.

Dithiocarbamates are easily prepared, generally in high
yields, upon reaction of CS2 with secondary or primary amines
generally in the presence of an added base.8 Water is often
used as the solvent, although reactions also proceed in MeOH
and some other organic solvents. Reactions can be carried out
in air, making dithiocarbamates easily accessible in less soph-
isticated lab environments. Consequently, this has led to an
extremely large volume of research output: a search for “dithio-

carbamate” in SciFinder© giving almost 25 000 hits and for
“dithiocarbamato” another ca. 1500. Many of these publi-
cations are of excellent quality, some being cited thousands of
times. However others contain errors and misconceptions,
some of which are repeated so frequently as to be erroneously
accepted as truth.

As researchers who are active in the area67–72 and have
written significant reviews,8,24,49 we have read and closely scru-
tinised a considerable number of papers on dithiocarbamate
chemistry. In doing so we have seen some errors-misconcep-
tions being regularly repeated. In this contribution we address
these, with the hope that they may appear less frequently in
the future. In general, our intention is not to highlight individ-
ual contributions where errors have been made or perpetuated,
however at times this is unavoidable. We accept that the
majority are made in good faith and hope to avoid demonising
individuals.

2. Synthesis of dithiocarbamates
(i) Amines are deprotonated by base, and it is the amide that
undergoes nucleophilic attack at CS2 to afford the
dithiocarbamate

Primary and secondary amines are extremely basic, having
pKbs of ca. 4. Consequently, they are not acidic and have pKas
of ca. 40. Thus, upon dissolution in water (or an organic
solvent), even following the addition of a strong base such as
NaOH, they are not deprotonated. They are, however, nucleo-
philic and like many N-based nucleophiles can react directly
with the electrophilic carbon in CS2.

73 This generates a zwitter-
ion which cannot be isolated or spectroscopically identified,
presumably since the equilibrium lies to the left-hand side. It
can, however, be deprotonated by the added base, which if it is
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a hydroxide then simply affords water and the desired dithio-
carbamate (Fig. 2).

Unfortunately, there are many examples in the literature
that show the secondary (or primary) amine being deproto-
nated by the base and then suggesting that it is the generated
amide [NR2]

− or [NHR]− that reacts with CS2. As stated above,
most bases used in the formation of dithiocarbamates are not
basic enough to deprotonate the amine, and even if they were,
the generated amides are very susceptible to hydrolysis and
would immediately regenerate the amine. We note that alkali
metal amides such as LiNMe2 are highly pyrophoric and
should be handled in a rigorously anhydrous environment
(also see section 2-iii).

(ii) In the absence of an added base, CS2 reacts with a
primary or secondary amine to afford the dithiocarbamic acid

Many secondary and primary amines react directly with CS2
and do not require added base. Thus, it is tempting to suggest
that the reaction furnishes the free dithiocarbamic acid. This
is, however, erroneous and rather this reaction generates the
corresponding ammonium salt of the dithiocarbamate (Fig. 3).

Thus, it can be viewed in the same way as that above
(Fig. 2), with the zwitterion being deprotonated by the amine
which acts as both nucleophile and base. Thus, the overall
stoichiometry is not 1 : 1 but rather 2 : 1, amine to CS2.

74–76

Indeed, three purported crystal structures of dithiocarbamic
acids have been reported77–79 (one later revised).80 The crystal
structure of an adduct of hexylamine (HexNH2) and the dithio-
carbamic acid, HexNHCS2H

78 is really the ammonium salt
(Fig. 4a), but the proton has been incorrectly located on sulfur
rather than hexylamine. Likewise, in the proposed amino acid

derivative (Fig. 4b) the proton is actually located on the basic
nitrogen.79

Sometimes, even when a second base has been added, the
ammonium dithiocarbamate is (in part) generated in the reac-
tion especially when the amine is a strong base, as the two
compete to deprotonate the zwitterion. This is the case in the
reaction of iBu2NH and CS2 in water with added NaOH, a reac-
tion we have carried out numerous times in our lab. Thus, the
off-white ammonium salt has poor water solubility and can
precipitate, often being observed as a “scum” in the reaction
vessel. Simply stirring in a warm (ca. 50–60 °C) water bath for
20–30 min leads to complete dissolution and formation of a
clear pale-yellow solution of NaS2CNBu

i
2.

Nice illustrations of an amine acting as both a base and a
nucleophile are in the reaction of diamines with CS2. For
example, reaction of piperazine with CS2 affords as the major
product a zwitterionic product (Fig. 5) together with a small
amount (ca. 5–10%) of the (so-called) double salt, thus provid-
ing an elegant method of desymmetrising a cheap diamine
which can then be used to build up novel multimetallic
arrays.81–86

(iii) Reactions of diarylamines with CS2 in the presence of
MOH afford diaryldithiocarbamates

Anilines are nucleophilic enough to react directly with CS2 and
thus dithiocarbamates, [ArNHCS2]

− are readily available.87 In
contrast, diphenylamine and other diarylamines are not
nucleophilic enough and will not react directly with CS2 in the
presence of standard bases. Thus, to prepare [Ar2NCS2]

−, the
corresponding amides [NAr2]

− need to be accessed; these are
nucleophilic enough to react with CS2. Reagents that are basic

Fig. 1 Dithiocarbamates, their complexes and thiuram disulfides.

Fig. 2 Reaction of secondary amine with CS2 in the presence of MOH as a base.

Fig. 3 Reaction of secondary amine with CS2 in the absence of a second base.
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enough to deprotonate Ar2NH include nBuLi,88,89 NaBH4,
90

sodium amide91,92 and KOBut.67 All require water-free con-
ditions otherwise the neutral amines will simply be regener-
ated. Thus, we have recently developed a preparation88 that
uses nBuLi in thf to afford LiNAr2 at low temperatures, which
in turn react with CS2 to form LiS2CNAr2 in (essentially) quan-
titative yields67 (Fig. 6). Once formed these dithiocarbamate
salts are very stable and can be stored indefinitely as solids in
air. We have also had success with using KOBut in thf but
found this not to be reproducible in regular lab grade solvents.
As stated above, other authors have used NaBH4 but in our
hands this was not successful.

(iv) Amides such as phthalimide and succinimide react with
CS2 to generate dithiocarbamates

As discussed above, amines need to be relatively nucleophilic
if a dithiocarbamate is to be made directly, and amides are not
nucleophilic enough to react directly with CS2. Despite this,
several publications claim the synthesis of amide-derived
dithiocarbamates and their complexes,93–97 some of which we
have failed to reproduce.93,94 As highlighted for diarylamines,
a second approach is to initially deprotonate to yield the more
nucleophilic anion. In this way, we have tried reacting com-
mercially available sodium phthalimide with CS2 under a

variety of conditions but in all instances, we found no evidence
for the formation of the corresponding dithiocarbamate
(Fig. 7).

In contrast, 2-pyrrolidone does react with CS2 in the pres-
ence of bases such as KOH, to afford a dithiocarbamate which
can be quenched with electrophiles to give the corresponding
ester.98–100 Formamide also reacts with CS2 in the presence of
base as confirmed by the crystal structure of KS2CNH(CHO).101

There is a short paper on metal complexes of 2-pyrrolidone
dithiocarbamate,102 which suggests this ligand type could be
further developed, along with that of iso-indolinone, for which
the dithiocarbamate has not been reported but is likely
accessible.

There are several authenticated examples of amide-functio-
nalised dithiocarbamate complexes, being accessible via

Fig. 5 Reaction of piperazine with CS2.

Fig. 6 Generation of diaryldithiocarbamate salts upon addition of CS2 to LiNAr2.

Fig. 4 Actual and proposed forms of crystallographically characterised “dithiocarbamic acids”.

Fig. 7 Unsuccessful reaction of phthalimide with CS2.
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dithiocarbimate complexes.103 For example, deprotonation of
the corresponding primary amine-derived nickel complexes,
[Ni(S2CNHR)2], followed by quenching with electrophiles such
as acetic anhydride and benzoyl chloride (Fig. 8).104–107 These
amide-dithiocarbamate complexes are very stable and show
interesting physical properties, something we have recently
been reinvestigating in our own research.107

3. Stability of dithiocarbamates and
thiuram disulfides
(i) Dithiocarbamic acids are stable and isolable entities

A major misconception in dithiocarbamate chemistry, being
especially prevalent in the biological domain, is that dithiocar-
bamic acids are stable entities. Thus, as has been well studied,
disulfiram is rapidly reduced in vivo to give two equivalents of
diethyldithiocarbamate, which is often erroneously written as
the free acid.108 Chemists are also not immune to this mistake
and often (as noted above) the direct reaction of an amine with
CS2 is purported to give the dithiocarbamic acid rather than
the ammonium salt of the dithiocarbamate.77–79,109–112

Dithiocarbamates are basic, especially those with two alkyl
substituents, and at pH 7 or below (indeed even above this in
some cases) they are protonated to give the dithiocarbamic
acids. However, these are unstable and, in most cases, decom-
pose rapidly to give CS2 and the corresponding ammonium
salt (Fig. 9). Many publications have addressed the decompo-
sition process, and mechanistic aspects have been
elucidated.113–124 Here is not the place to go into detail but the
main decomposition route involves a hydrogen-bonded inter-
mediate, rather than zwitterion formation resulting from
proton transfer from sulfur to nitrogen. Decomposition is
accelerated upon lowering the pH and this is why dithiocarba-
mates are generated under basic conditions. Recently, the

generation and decomposition of dithiocarbamic acids has
been repurposed as a route for the release of CS2.

125 These
studies show that their lifetimes are highly dependent upon
the nature of the substituents, those with two aryl groups
being stable for up to 24 h at pH 7.4.125 Dithiocarbamic acids
of primary amines are especially unstable119 but still appear in
the literature.126 Dithiocarbamates of primary amines are
widely used as precursors for the generation of organic
isothiocyanates127,128 and other sulfur-containing
organics.129,130

(ii) Dithiocarbamate halides are accessible

A relatively uncommon misconception, but one that is increas-
ingly appearing in the literature, is the idea that halides of
dithiocarbamates, especially the iodide, are accessible.131 It is
well known that iodine acts as an oxidising agent, converting
dithiocarbamates into thiuram disulfides, rather than forming
the corresponding iodide (Fig. 10). With primary amine dithio-
carbamates this (likely) generates the unstable thiuram di-
sulfide (see below), and not the iodide.132,133

It is worth adding that, while not a misconception, the
redox chemistry of the dithiocarbamate ligand is often over-
looked, which can lead to an over-simplification of discussion
of redox events when coordinated to metal centres. Examples
are reactions of [M(S2CNR2)2] (M = Zn, Cd) with I2.

134,135 Thus,
reduction of iodine is rapid at the non-redox active Zn(II)
centre as it is the dithiocarbamate that is oxidised, on metal,
to form the corresponding thiuram disulfide complexes
(Fig. 11).

(iii) Thiuram disulfides of primary amines are stable

Thiuram disulfides generated from secondary amines are gen-
erally very stable and can be easily isolated, purified and
stored. Indeed, they are often easier to store than the corres-
ponding dithiocarbamates and can then be reduced in situ to

Fig. 8 Synthesis and molecular structure (R = iBu) of amide-functionalised nickel bis(dithiocarbamate) complex.

Fig. 9 In situ generation and decomposition of dithiocarbamic acids.
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provide a source of dithiocarbamate. In contrast, oxidation of
primary amine dithiocarbamates affords thiuram disulfides
with poor stability, decomposing to afford isothiocyanates
and/or thioureas, depending upon the reaction conditions
used127,136–140 (Fig. 12).

4. Accessibility and air-stability of [M
(S2CNR2)2]

One of the beauties of doing transition metal dithiocarbamate
chemistry is their ease of synthesis, isolation, and purification,
much of which can be carried out in air. Thus, complexes nor-
mally have moderate to good solubility in polar organic sol-
vents, and many can be crystallised in air, either by slow evap-
oration or the (careful) addition of an anti-solvent such as
hexane or petroleum ether. In this way, the crystal structures
of thousands of dithiocarbamate complexes have found their
way into the Cambridge Crystallographic Data Centre
(CCDC).141 However, not all dithiocarbamate complexes are air
stable. For example, while bis(dithiocarbamate) complexes, [M
(S2CNR2)2] (M = Ni, Cu, Zn) are air and moisture stable, in con-
trast those of the other first row transition elements can only
be prepared (if at all) under rigorously oxygen-free
conditions.142–144 Thus, generally, if they can be prepared, [M
(S2CNR2)2] complexes are readily oxidised in air, with M(III)
complexes being favoured. Below we discuss each metal type
individually as their chemistry differs. We also describe some
related chemistry (where appropriate) to provide context.

(i) M = Ti, V, Cr

The chemistry of titanium is dominated by the +4 and +3 oxi-
dation states, and dithiocarbamates are no exception. A Ti(II)

complex has briefly been mentioned in the literature,145 reac-
tion of [Ti(NEt2)3] and CS2 being reported to give a mixture of
[Ti(S2CNEt2)2] and [Ti(S2CNEt2)4]. However, no characterising
data or reaction details were given. The existence and stability
of red Ti(IV) complexes [Ti(S2CNR2)4] are without doubt, being
prepared upon insertion of CS2 into [Ti(NR2)4],

146 or upon
addition of LiS2CNR2 to TiBr4.

147 Both [Ti(S2CNEt2)4]
148 and

[Ti(S2CNPr
i
2)4]

147 have been crystallographically characterised.
One report suggests that reaction of NaS2CNR2 with TiCl3 in
EtOH affords [Ti(S2CNR2)3] as brown- or yellow-green solids,149

but there are no later mentions of this type of complex in the
literature. Thus, the stability of [Ti(S2CNR2)3], their potential
disproportionation to [Ti(S2CNR2)2] and [Ti(S2CNR2)4], and
structure and stability of the former remain issues that require
clarification. Interestingly, it has recently been established that
dithiocarbamates can coordinate to Ti(0), thus, oxidation of
[Ti(CO)6]

2− by thiuram disulfides affords [Ti(CO)4(S2CNR2)]
−

which adopt an unexpected trigonal prismatic geometry.150

There may yet be new things to discover in titanium dithiocar-
bamate chemistry.

The only V(II) dithiocarbamate complex reported is light
brown [V(S2CNEt2)2], formed under rigorously oxygen-free con-
ditions upon addition of two equivalents of NaS2CNEt2 to VCl2
in MeCN in a dry box.143 Unfortunately, no characterising data
was given, but it was reported to be soluble in warm 1,2-
dichlorobenzene, so may be worthy of reinvestigation. In air,
addition of [R2NH2][S2CNR2] to VBr2·6H2O affords [V
(S2CNR2)3].

151 The diethyl derivative has been crystallographi-
cally characterised152 and magnetic measurements show a S =
1 ground state with two unpaired electrons.153 Possibly, [V
(S2CNR2)2] are fleetingly formed but readily oxidised, and puta-
tive [V(S2CNR2)2]

+ reacts with further dithiocarbamate. The
reduction chemistry of [V(S2CNEt2)3] has been investigated and
reveals a reversible one-electron process.154 Eight-coordinate
V(IV) complexes, [V(S2CNR2)4], are accessible from the insertion
of CS2 into [V(NR2)4],

155 but upon heating they undergo intra-
molecular electron transfer resulting in elimination of thiuram
disulfide and formation of [V(S2CNR2)3]. Formal oxidation pro-
ducts of [V(S2CNR)2], namely vanadyl complexes [VO
(S2CNR2)2], are easily prepared156 and have been extensively
investigated as potential insulin mimetics157 and molecular
qubits.158 Thus, akin to the titanium chemistry, even the

Fig. 11 I2 addition to [Zn(S2CNR2)2] and formation of a thiuram disulfide
complex.

Fig. 10 I2 oxidation of dithiocarbamate to thiuram disulfide.

Fig. 12 Formation and decomposition of primary amine thiuram disulfides.
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simple dithiocarbamate chemistry of vanadium requires
further investigation.

Chromium bis(dithiocarbamate) complexes are indisputa-
bly accessible, but extremely air sensitive, so unless rigorous
experimental methods are utilised it is the analogous d3 Cr(III)
complexes, [Cr(S2CNR2)3] that are isolated.159–161 The first syn-
thesis of [Cr(S2CNEt2)2] was reported by Fackler and Holah in
1966,162 being described as a pyrophoric yellow-green solid. It
has subsequently been prepared from thermolysis of [Cr(CO)6]
and [Hg(S2CNEt2)2].

163 In solution [Cr(S2CNEt2)2] is extremely
sensitive to air oxidation, converting rapidly to blue [Cr
(S2CNEt2)3]. Very few derivatives have been prepared and there
are no crystal structure determinations, thus molecular struc-
ture(s) of [Cr(S2CNR2)2] remain unknown, although most likely
they are polymeric in the solid state, and tetrahedral in the gas
phase or solution. Electrochemical studies of [Cr(S2CNR2)3]
show that they undergo a one-electron reduction, with the gen-
erated [Cr(S2CNR2)3]

− rapidly losing a dithiocarbamate to give
[Cr(S2CNR2)2]

164 (Fig. 13). However, all attempts to isolate or
characterise [Cr(S2CNR2)2] generated in this way have led only
to rapid back oxidation and regeneration of [Cr(S2CNR2)3],
again highlighting their extreme air-sensitivity.

Non-homoleptic Cr(II) dithiocarbamate complexes can be
prepared. For example, room temperature addition of [CpCr
(CO)3]2 and tetraethyl thiuram disulfide affords [CpCr
(CO)2(S2CNEt2)] in good yields.165

(ii) M = Mo, W

We briefly consider the heavier group 6 homologues, [Mo
(S2CNR2)2] and [W(S2CNR2)2]. The synthesis and X-ray crystal
structure of [Mo(S2CNEt2)2] has been claimed166 but is erro-
neous: the structure presented is that of [Ni(S2CNEt2)2] with a
misassigned metal atom.167 Complexes of the stoichiometry
Mo : dithiocarbamate 1 : 2 are known. Thus, reactions of [Mo2(μ-
OAc)4] with four equivalents of dithiocarbamate afford [Mo2(μ-
S2CNR2)4] as green solids.168 However, the latter are thermally
unstable and upon heating undergo C–S bond scission to yield
Mo(V) thiocarboxamide complexes, [Mo(μ-S)(S2CNR2)(SCNR2)]2
as shown crystallographically (R = iPr).169 Related W(II) com-
plexes, [W(S2CNR2)2], remain unreported, but both cis-[W
(CO)2(S2CNR2)2] and [W(CO)3(S2CNR2)2] are known170 as are the
corresponding Mo(II) carbonyl complexes.171

(iii) [Mn(S2CNR2)2]

Bright yellow [Mn(S2CNR2)2] complexes can easily be prepared,
but both the reaction and work-up must be carried out under

rigorously inert conditions.172,173 The molecular structure of
only one example, namely [Mn(S2CNEt2)2], has been reported
(Fig. 14).174 It is a coordination polymer containing octahedral
Mn(II) centres resulting from the dithiocarbamates binding in
a bridging manner.

Many papers detail reactions of two equivalents of dithio-
carbamates with Mn(II) salts that have been carried out in
water and air, and invariably the generated products are dark
(often violet-purple) paramagnetic solids formulated as [Mn
(S2CNR2)2]. Authors often cite elemental analysis data as proof
of this formulation. Indeed, fits with calculated values are
often good, albeit in many cases a small amount of bound
water (between 0.5 and 2 molecules) are suggested. Recently,
this issue has been addressed, and it is now unequivocally
established that the dark product described is a Mn(III) oxygen
adduct.175 The precise nature of this adduct is less clear, with
the authors suggesting it is monomeric, but a recent crystal
structure (Fig. 15) has shown that (at least in part) it is a
dimeric oxygen-bridged complex.176

The colour of the oxygen adducts is very similar to that for
Mn(III) complexes, [Mn(S2CNR2)3], generated upon addition of
three equivalents of dithiocarbamate to Mn(II) salts in air, as is
the spectroscopic data. Thus, it is not easy to differentiate
between the two. If two equivalents of dithiocarbamate are

Fig. 13 Formation of [Cr(S2CNR2)2] via reduction of [Cr(S2CNR2)3] and back oxidation.

Fig. 14 Part of the polymeric structure of [Mn(S2CNEt2)2].
174
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added to Mn(II) salts in water under argon then heavy yellow
precipitates result, which are unequivocally [Mn(S2CNR2)2].
Further, later exposure to oxygen (bubbling through solution
works best to ensure full oxidation) reliably affords the pure
oxygen adduct.175 Addition of more dithiocarbamate salt to
the latter gives [Mn(S2CNR2)3], although it is hard to know
exactly when the reaction is complete and to ensure that it is, a
slight excess of dithiocarbamate is recommended.175

Manganese dithiocarbamate complexes are becoming
widely used as single source precursors (SSPs) to manganese
sulfide nanomaterials.177–180 In this respect, the accidental use
of the oxygen adduct may be advantageous. Thus, oxygen
adducts have a higher manganese content than [Mn(S2CNR2)3]
and, as shown by thermogravimetric analysis (TGA) for the
diethyl derivatives (Fig. 16), decompose at lower temperatures.
Indeed, TGA is a good way of differentiating between these two
Mn(III) dithiocarbamate complexes.176 Finally, we note that
[Mn(S2CNR2)3] decomposes in a two-step process, the former
being associated with loss of a dithiocarbamate and in situ for-
mation of [Mn(S2CNR2)2], thus negating the need to isolate air
sensitive Mn(II) complexes.

An early application of dithiocarbamates was as fungicides,
with manganese containing Maneb© being widely used. It is
formed from the reaction of Mn(II) salts with Nabam©, the bis
(dithiocarbamate) generated from ethylene diamine (Fig. 17).

More recently it has been linked to the development of
Parkinson’s disease181,182 and since 2009 has been banned in
the European Union, a fate also experienced by the zinc
complex, Zineb©, which was also previously used as a
pesticide.

Maneb© and Zineb© were used in agriculture for many
years and are proposed to have polymeric structures, as has
the double hydration product of Maneb© namely [Mn
(S2CNHC2H4NHCS2)·2H2O]n. Recently a good quality molecular
structure of the dimethylformamide (dmf) adduct [Mn
(S2CNHC2H4NHCS2)·2dmf]n was reported183 (Fig. 18) and con-
firms this. Manganese is in the +2 oxidation state but, impor-
tantly, has an octahedral coordination geometry with coordi-
nation of two cis dmf molecules (there are another two non-co-
ordinated dmfs not shown). Likely hydrated Maneb© has a
very similar structure except with bound water. Another inter-
esting observation is that while pure samples of this adduct
and Maneb© are yellow, the latter ages over time, becoming
dark.

(iv) [Fe(S2CNR2)2]

Like their manganese counterparts, [Fe(S2CNR2)2] can be pre-
pared and isolated but are extremely air sensitive and should
be handled in a dry box or a high quality Schlenk line environ-
ment. When prepared under the correct conditions they are
described as chocolate brown,162 pink142 or red184 solids.
Crystal structures of two polymorphs of [Fe(S2CNEt2)2]

185,186

show that it adopts a dimeric structure in the solid state
(Fig. 19). Each iron centre is 5-coordinate, being best described
as a distorted trigonal bipyramid. No other molecular struc-
tures have been determined, but there is some early evidence
from Mössbauer studies that some derivatives may be coordi-
nation polymers.187,188

As with the manganese chemistry described above, many
authors describe the purported synthesis of Fe(II) bis(dithiocar-
bamate) complexes in air, and thus their assignment is clearly
wrong. Unlike the manganese chemistry, however, it is less
clear exactly what they have made if only two equivalents of
dithiocarbamate are used. Thus, oxygen adducts of [Fe

Fig. 15 Oxidation of [Mn(S2CNR2)2] with proposed Mn(III) adducts and
the molecular structure of [Mn2(S2CNEt2)4(μ-O2)].

175,176

Fig. 16 TGA data for [Mn(S2CNEt2)3] and [Mn2(S2CNEt2)4(μ-O2)].
176
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(S2CNR2)2] have not been reported. These complexes do
undergo rapid addition, for example addition of bis(perfluoro-
methyl)-1,2-dithietene affords Fe(III) complexes (Fig. 20)
showing how prone they are to oxidation.189 It is also known
that [Fe(S2CNR2)2] react with excess dithiocarbamate to afford
yellow [Fe(S2CNR2)3]

−, which are also extremely air sensitive,
being rapidly oxidised to brown Fe(III), [Fe(S2CNR2)3].

190 Thus,
it is most likely that reaction of two equivalents of dithiocarba-
mate with Fe(II) salts in air simply gives reduced yields of [Fe
(S2CNR2)3] along with some unreacted Fe(II) salt.

Bis(dithiocarbamate) complexes [Fe(S2CNR2)2] also bind
neutral donor ligands, as shown in crystal structures of a dmf
adduct of the morpholine-dithiocarbamate complex
(Fig. 21a)191 and a DABCO adduct of [Fe(S2CNEt2)2] which co-
crystallises with C60

144 (Fig. 21b). Thus, from aqueous solu-
tions, it may be that a species [Fe(S2CNR2)2·H2O] precipitates
out. Interestingly, an NMR spectrum of [Fe(S2CNC4H8O)2·dmf]
run in CDCl3 was found to be identical to that of paramagnetic
[Fe(S2CNC4H8O)3], suggesting oxidation and ligand arrange-
ment upon dissolution in this weakly acidic solvent.191 Thus,
it might be that Fe(II) is reducing enough to convert H+ into H2

with concomitant formation of Fe(III).

The Fe(II) oxidation state can be also stabilised by binding
of carbonyls in cis-[Fe(CO)2(S2CNR2)2]

192,193 and NO in [Fe(NO)
(S2CNR2)2].

194,195 Indeed, the binding of NO to [Fe(S2CNEt2)2],
as determined by the distinctive EPR spectrum of [Fe(NO)
(S2CNEt2)2], is an accepted way of determining the presence of
this important signalling gas.196–198 It is noteworthy, however,
that reaction of NO with [Fe(S2CNEt2)3] also affords [Fe(NO)
(S2CNEt2)2] (together with thiuram disulfide as a bypro-
duct).198 Photolysis of [Fe(S2CNEt2)3] also results in elimin-
ation of thiuram disulfide and formation of [Fe(S2CNEt2)2],
which can be trapped with bis(diphenylphosphino)ethane
(dppe) to afford [Fe(κ2-dppe)(S2CNEt2)2].199 This suggests that
there is a fine redox balance between the reducible Fe(III)
centre and the oxidisable dithiocarbamate. Indeed, we have
found using in situ EXAFS, that upon warming [Fe(S2CN

iBu2)3]
in oleylamine at 60 °C, reductive elimination of thiuram di-
sulfide results with concomitant formation of the corres-
ponding Fe(II) complex.193 Further, TGA measurements show
that cis-[Fe(CO)2(S2CNR2)2] lose both carbonyls at relatively low
temperatures to afford [Fe(S2CNR2)2]. Thus, [Fe(S2CNR2)2], [Fe
(S2CNR2)3] and cis-[Fe(CO)2(S2CNR2)2] are all effectively equiva-
lents when used as SSPs193 thus negating the need to isolate
air sensitive [Fe(S2CNR2)2].

Neither [M(S2CNR2)2] (M = Ru, Os) appear in the reliable lit-
erature, with both metals favouring the M(III) state [M
(S2CNR2)3], but like iron, carbonyl-stabilised M(II) complexes
cis-[Ru(CO)2(S2CNR2)2]

200 and cis-[Os(CO)2(S2CNR2)2]
201–203 are

accessible.

(v) [Co(S2CNR2)2]

The theme continues into the chemistry of cobalt. Like iron
and manganese, cobalt forms stable M(III) tris(dithiocarba-
mate) complexes [Co(S2CNR2)3], the low spin d6 electronic con-
figuration allowing NMR characterisation.204–206 In contrast,
while the corresponding M(II) species [Co(S2CNR2)2] are acces-
sible, they are extremely air-sensitive and paramagnetic, with
[Co(S2CNEt2)2] being described as a dark green-brown solid.142

Fig. 17 Formation of Nabem© and reaction with Mn(II) salts to produce Maneb©.

Fig. 18 Part of the polymeric structure of [Mn(S2CNHC2H4NCS2)·2dmf]n.
183

Fig. 19 The molecular structure of [Fe(S2CNEt2)2]2.
185
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It is telling that there are no crystal structures of [Co(S2CNR2)2]
and examples of authentic syntheses and characterisation are
rare. Most authors report the formation of green precipitates
from reactions of dithiocarbamate salts with CoCl2·6H2O in
air, i.e. they actually generate [Co(S2CNR2)3]. Recently, Khitrich
and co-workers provided some evidence for the formation of
[Co(S2CNR2)2],

207 suggesting that, provided pH is kept between
6–7, then even in air aqueous solutions of [CoCl2] react with
two equivalents of NaS2CNR2 to afford [Co(S2CNR2)2] and note
that in the solid state they are air stable. Good elemental ana-
lysis data are presented, and powder X-ray diffraction studies
reveal (for those that are not amorphous) the absence of [Co
(S2CNR2)3]. Further, magnetic moments of 2.19–2.45 BM
suggest that they have one unpaired electron, consistent with a
square planar geometry. Interestingly, when dissolved in

organic solvents they oxidise rapidly with formation of [Co
(S2CNR2)3] and [Co(OH)2] (Fig. 22). Clearly more work in this
area is warranted.

Electrochemical reduction of [Co(S2CNR2)3] leads to dithio-
carbamate loss to give [Co(S2CNR2)2], but back oxidation is
facile.208 Chemical reduction of [Co(S2CNR2)3] by excess Zn/Hg
in CH2Cl2 results in a slow (ca. 3 h) darkening of the green
solution and when canulated under nitrogen onto PhI = NTs,
the Co(II) complexes react via insertion into the Co–S bonds to
afford crystallographically characterised [Co{TsNSC(NR2)
SNTs}2]

209 (Fig. 23). Thus, it is chemically possible to prepare
[Co(S2CNR2)2] in organic solvents but oxygen must be rigor-
ously excluded.

We note that there are no authentic examples of [Rh
(S2CNR2)2] or [Ir(S2CNR2)2] complexes,210,211 all purported

Fig. 20 Reactions of [Fe(S2CNR2)2] with a dithietane resulting in oxidation, and addition of further dithiocarbamate followed by oxidation.

Fig. 21 Molecular structure of (a) [Fe(S2CNC4H8O)2·dmf]191 and (b) [{Fe(S2CNEt2)2}2DABCO] as part of a large structure with C60·2DABCO.144
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syntheses being likely that of the analogous [M(S2CNR2)3]
complexes.212,213 Electrochemical reduction of [Rh(S2CNR2)3]
is irreversible and shown to be a two-electron process with for-
mation of [Rh(S2CNR2)2]

− and dithiocarbamate being
suggested.214

5. Structure and stability of
dithiocarbamate complexes
(i) [M(S2CNR2)2] (M = Mn, Fe, Co) are all square planar

In solution or the gas phase, the molecular structures of group
10 bis(dithiocarbamate) complexes and [Cu(S2CNR2)2] are
square planar. In the solid state, the 4-coordinate square
planar arrangement is maintained for [M(S2CNR2)2] (M = Ni,
Pd, Pt), but the precise metal coordination environment for
copper varies with substituents due to secondary Cu⋯S
interactions.8,13 The solution and gas phase structures of [M
(S2CNR2)2] (M = Mn, Fe, Co) remain unknown, although some
authors suggest that all are square planar. This seems highly
unlikely for [Mn(S2CNR2)2] as for a d5 electronic conformation
one would not expect the difference in crystal field stabilis-
ation energies (CFSEs) between tetrahedral and square planar
geometries to override steric effects, even when the preferred
bite angle for dithiocarbamates is less than 90°. An early com-
munication suggested that, in ethanol, [Mn(S2CNEt2)2] adopts
a spin quartet state, i.e. has 3 unpaired electrons,215 although
it was later shown that this result was erroneous, as measure-
ments had been made on a partially oxidised sample. Upon
rigorous exclusion of air, magnetic measurements on [Mn
(S2CNEt2)2] and other derivatives show that they adopt a
ground state with 5 unpaired electrons.172 Thus, it seems likely
that [Mn(S2CNR2)2] have a distorted tetrahedral coordination
geometry, although a recent DFT study suggests a square-
planar arrangement, which may be a local minimum.216 In a
similar vein, iron complexes, [Fe(S2CNR2)2], with a d6 elec-
tronic configuration have been shown to have 4 unpaired elec-

trons,186 being inconsistent with a square-planar array.
Nevertheless, recent DFT calculations propose a local FeS4 geo-
metry with D2h symmetry, consistent with a square planar geo-
metry.217 Clearly, accurate calculations are required to corrobo-
rate the actual coordination geometry. The absence of any crys-
tallographic data makes it harder to predict the molecular geo-
metry of d7 [Co(S2CNR2)2], but they are likely square-planar, as
supported by the magnetic susceptibility measurements and
DFT calculations.218

(ii) Ru(III) complexes [Ru(S2CNR2)3] and [Ru(S2CNHR)3] are
diamagnetic

Iron tris(dialkylDTC) complexes, [Fe(S2CNR2)3], have been
widely studied as spin crossover complexes as they can adopt
either high spin (HS) 6A1 or low spin (LS) 2T2 electronic con-
figurations, the position of the equilibrium being affected by
the nature of the alkyl-substituents and external factors such
as temperature and pressure.219–222 Receiving less attention
are analogous Ru(III) complexes, [Ru(S2CNR2)3], although a
number of early papers established their fluxional distorted
octahedral structures223 and paramagnetic nature,224,225 the
latter being as expected for a d5 electronic configuration.
Nevertheless, several publications claim to have prepared dia-
magnetic Ru(III) tris(dithiocarbamate) complexes of both sec-
ondary and primary amines, characterised by (almost perfect)
elemental analysis data and 1H NMR peaks in the standard
0–10 ppm range.226–228 Interestingly, 1H NMR spectroscopy
can be used to part-characterise [Ru(S2CNR2)3], although peaks
are observed across a ca. 40 ppm range, as expected for a weak
(low spin) paramagnetic system.229–231 Diamagnetic complexes
can be formed from the reaction of RuCl3 and dithiocarba-
mates, indeed many studies have reported mixtures of para-
magnetic [Ru(S2CNR2)3] and diamagnetic [Ru2(S2CNR2)5]

+

(which can exist in two isomeric forms) from these
reactions.229–232 Thus, it may be that such diamagnetic cations
are the real products of the reactions described above.226–228

Akin to their ruthenium analogues, osmium complexes, [Os

Fig. 22 Proposed decomposition of [Co(S2CNR2)2] in organic solvents.207

Fig. 23 Reductive generation of [Co(S2CNR2)2] and trapping via multiple NTs insertion in the Co–S bonds.

Dalton Transactions Perspective

This journal is © The Royal Society of Chemistry 2025 Dalton Trans., 2025, 54, 11464–11494 | 11473

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

0 
Ju

ne
 2

02
5.

 D
ow

nl
oa

de
d 

on
 1

/2
3/

20
26

 2
:3

9:
34

 A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5dt01085c


(S2CNR2)3], are also low spin d5 systems that show resonances
across a wide chemical shift range in their 1H NMR spectra
and are easily oxidised.233

(iii) Stable dithiocarbamate complexes of high-valent metal
oxides are always accessible

One of the major benefits of the dithiocarbamate ligand is its
ability to stabilise metals in a wide range of oxidation states,
being (in simple terms) attributed to the accessibility of dithio-
carbamate and thioureide resonance forms. Thus, the former
is a relatively soft (strong field) and the latter a hard (weak
field) donor. While not unique to dithiocarbamates, some
ligand sets, for example the related xanthates (ROCS2

−),
cannot adopt the latter form as the oxygen is too electronega-
tive to act as an electron-pair donor.234 Adoption of the thiour-
eide form also accounts for the partial double bond character
of the backbone C–N vector which leads to hindered rotation
about it.235 Thus, rotamers of complexes [M(S2CNR

1R2)2] (M =
Ni, Pd) can be distinguished, and their rate of interconversions
measured.236 The thioureide form can also account for the
stability of high-valent species such as of Mo(VI) and W(VI)
complexes.8,9 However, one should not forget that the dithio-
carbamate is redox active, being relatively easily oxidised, and
thus when bound to a highly oxidised metal centre, the system
is on a cliff edge, as beautifully illustrated by a series of publi-
cations from Stiefel and co-workers.237–241

While a wide range of metal centres and oxidation states
can be tolerated by dithiocarbamates,8 this does not extend to
the most oxidising. For example, reaction of dithiocarbamate
salts with potassium dichromate, K2[Cr2O7], affords a mixture
of two Cr(III) products: ring-expanded [Cr(S2CNR2)2(OS2CNR2)]
as the major component together with [Cr(S2CNR2)3] (R = Me,
Et)242 (Fig. 24). Thus, (at least formally) three equivalents of
dithiocarbamate act as one-electron reducing agents and the
other three as ligands. The precise mode of formation of the
ring-expanded complex is not clear. In related work, Farmer
and co-workers showed that addition of H2O2 to [Ru(κ2-2,2′-
bipy)2(S2CNMe2)]

+ afforded both ring-expanded sulfur-oxidised
isomers but they did not interconvert, suggesting that they are
formed via two separate pathways,243 although in other work
they showed that [Zn(S2CNEt2)(OS2CNEt2)] was a product of
the oxygenation of [Zn(S2CNEt2)2], a transformation that can
be reversed upon addition of a phosphine.244 Interestingly,
reaction of chromate with excess dithiocarbamate has been
repurposed as an analytical method of measuring relative
amounts of Cr(III) and Cr(IV).245–247 Thus, Cr(III) reacts to

form [Cr(S2CNR2)3] and Cr(VI) a mixture of this and the ring-
expanded products. Importantly the two products have
different chromatographic retention times and thus by under-
standing the precise ratio of products formed from the Cr(VI)
reaction it is possible to determine relative amounts of Cr(III)
and Cr(VI), although not all publications seem to do it this way,
with some suggesting that Cr(III) is unreactive towards
dithiocarbamates.

Likely dithiocarbamates cannot stabilise high oxidation
states such as Os(VIII) and Re(VII), since these metal centres are
powerful oxidising agents. There are reports of Os(VI) dithiocar-
bamate complexes, trans-[OsO2(S2CNR2)2],

248,249 which show
distinctive vibrations at 839 and 888 cm−1 in the IR spectrum,
being assigned to asymmetric and symmetric trans-OsO2

vibrations respectively.249 Further investigations are needed to
unequivocally establish the validity of these claims, but they
seem quite likely to be correct given that the trans-[Os(VI)O2]
moiety is particularly stable, being found for example in com-
plexes such as trans-[OsO2(CO)4]

2+ and trans-[OsO2(OH)4]
2−.

(iv) Au(III) complexes, [Au(S2CNR2)2]
+ and [AuCl2(S2CNR2)],

are easily prepared in their pure forms

Gold(III) dithiocarbamate complexes of the type
[AuX2(S2CNR2)] (where X = Cl, Br, I) have been widely studied
as potential anti-cancer metallo-pharmaceuticals. Structurally
they are comparable to cis-platin and the mechanism of action
is suspected to be similar.250 These compounds were first syn-
thesised in 1964 by oxidation of the Au(I) complex [Au
(S2CNR2)]n with elemental X2.

251 This supposedly afforded the
Au(III) dithiocarbamate [AuX2(S2CNR2)] as a single compound
in solution. Alternatively, the addition of one equivalent of
dithiocarbamate to Au(III) halides is claimed to result in the
sole formation of [AuX2(S2CNR2)]. In a similar fashion,
addition of two equivalents of dithiocarbamate to Au(III)
halides supposedly resulted in the sole formation of the cat-
ionic complex [Au(S2CNR2)2]

+.9 Often in this system X− is
invoked as the counterion, but a haloaurate species is more
likely to be present.

We recently investigated the [AuX2(S2CNR2)] system
thoroughly and discovered that the established reactivity is not
correct.252 The series of compounds [AuX2(S2CNR2)] where X =
halide cannot be isolated as a single species in solution;
instead, they exist in an equilibrium with [Au(S2CNR2)2][AuX4]
(Fig. 25). This equilibrium is present irrespective of the
method of synthesis, or the ratio of dithiocarbamate to Au(III).
A careful look at the older literature reveals that this equili-

Fig. 24 Cr(III) complexes from reaction of dithiocarbamates and K2[Cr2O7].
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brium has always been present even though it had not pre-
viously been acknowledged. For example, the 1H and 13C{1H}
NMR spectra of dibenzyl-dithiocarbamate- and methyl-
sarcosine-dithiocarbamate-derived Au(III) complexes both
clearly show the presence of two dithiocarbamate environ-
ments, one for the neutral species and one for the ion
pair.253,254 Mass spectrometry of [AuX2(S2CNR2)] revealed that
the cation [Au(S2CNR2)2]

+ was also present in the sample,
although it was explained as decomposition in solution.255 A
single crystal containing [AuCl2(S2CNiPr2)], two [Au
(S2CNiPr2)2]

+ cations and two [ClO4]
− anions was obtained,

showing that both components of the equilibrium were
present in a single reaction mixture.256 Recently, it was shown
that an equilibrium mixture where [Au(S2CNiPr2)2][AuCl4] was
the majority product could be converted to a mixture where
[AuCl2(S2CNiPr2)] was the majority product by refluxing in
acetone.257

We note here that it is possible to obtain [Au(S2CNR2)2]
+ as

a single species in solution, but the counterion must be
chosen with care and haloaurate anions should be avoided.
For example, use of a weakly coordinating anion such as [BF4]

−

led to the isolation of [Au(S2CNR2)2][BF4] which showed no
sign of existing as an equilibrium, even upon standing in solu-
tion for several weeks. However, as soon as the anion was
metathesized to [AuCl4]

−, the equilibrium restarted.252 In a
similar vein, it is possible to isolate [AuX2(S2CNR2)] as a single
pure product in solution by avoiding the use of halide ions:
stable systems are known to exist for X = Me, C6F5, mesityl and
thiolate, for example.258–261

The above notwithstanding, it is possible to fractionally
crystallise [AuX2(S2CNR2)] as a single compound. The
neutral species forms orange crystals (in contrast to the ion
pair, which is yellow); these are indefinitely stable in the solid
phase, but as soon as the crystals are dissolved in an organic
solvent then the equilibration process resumes. Researchers
are urged to be cautious here by not mistaking this for a
single pure product in solution.261 It is also noteworthy that
elemental analysis is not a useful characterization technique
since the two components of the equilibrium, namely
[AuX2(S2CNR2)] and [Au(S2CNR2)2][AuX4], have identical
empirical formulae and cannot be used to distinguish the two
isomers.262

(v) Primary amine-derived dithiocarbamate complexes are
always stable

The majority of dithiocarbamate chemistry focuses on those
derived from secondary amines. There are several reasons for

this, one being their greater stability vs. those derived from
primary amines. Thus, while all dithiocarbamates are unstable
in acidic media, the relatively acidic nature of the unique
proton in RNHCS2

− also makes them prone to instability in
basic media. Nevertheless, there are some relatively simple
and highly reproducible syntheses of primary amine dithiocar-
bamate salts. Examples of these are group 10263–265 and group
12266–269 [M(S2CNHR)2] complexes, but also [Co
(S2CNHR)3]

270,271 and 99mTc complexes with radiopharmaceu-
tical applications.272–274 The authenticity of homoleptic
primary amine dithiocarbamate complexes of other metals is
far less certain and likely the majority are too unstable to be
isolated.

Upon metal binding the acidity of the backbone proton is
retained, its removal generating the dianionic dithiocarbimate
(or imidomethanedithiolate) ligand, S2CvNR2−. Such ligands
form complexes with a wide range of metals,103 being
especially prevalent for Group 10 elements and when the sub-
stituent is strongly electron-withdrawing, for example aryl or
cyanide. For Group 10 elements, as discussed earlier (Fig. 8),
double deprotonation upon addition of a strong base of [M
(S2CNHAr)2] and [M(S2CNHR)2] affords the corresponding
dithiocarbimate dianions that, provided they are kept under
anhydrous and oxygen-free conditions, have significant life-
times and can be used to prepare functionalised dithiocarba-
mate derivatives. Stability of the dithiocarbimate complexes
(presumably) results from delocalisation of the excess electron
density into the vacant d-orbital. However, this is not the case
for most other metals. For example, addition of base to Group
12 complexes [M(S2CNHR)2] and [M(S2CNHAr)2] (M = Zn, Cd)
results in rapid decomposition to give ZnS or CdS
nanomaterials.266–268 Indeed, this is advantageous, as is the
case for [Ni(S2CNHR)2]

275 as they provide low temperature
routes to these nanomaterials (Fig. 26).

For organic chemists reading this it may ring bells as the
base-induced decomposition of primary amine dithiocarba-
mates to afford organic isothiocyanates is a well-developed pre-
parative method.276–278 Indeed, often a metal ion is added to
facilitate the process. Thus, such complexes are not stable, cer-
tainly under basic conditions, rapidly decomposing to afford
the isothiocyanate. Nevertheless, there are (purported)
examples of [Fe(S2CNHR)3]

279,280 and [Cu(S2CNHR)2]
281–285 in

the literature, some of the latter being touted as enzyme
inhibitors.285 We have recently looked more closely at both
systems in our laboratory and will publish our results in due
course. The iron system is complex and is not appropriate to
discuss here, but [Fe(S2CNHR)3] have at best a fleeting stabi-

Fig. 25 Equilibrium between [Au(S2CNR2)2][AuCl4] and [AuCl2(S2CNR2)].
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lity. Reactions of copper(II) salts with a range of primary amine
derived dithiocarbamates in water leads to isolation of high
yields of bright yellow polymeric Cu(I) complexes, [Cu
(S2CNHR)]n (R = Bu, Cy) along with the corresponding
thiourea.286 Their poor solubility hinders full characterisation,
but simple addition of a slight excess of PPh3 affords the
soluble and crystallographically characterised complexes, [Cu
(S2CNHR)(PPh3)2]

286 (Fig. 27). In this regard we note that [Cu
(S2CNHPh)(PPh3)2] has previously been prepared from reaction
of [Cu(BH4)(PPh3)2] with PhNCS.287 Thus, primary amine
dithiocarbamates are stable at a Cu(I) centre but not Cu(II).

We briefly note here that [NH4][S2CNH2] is easily
prepared288,289 and has been used to generate a range of stable
homoleptic complexes, including crystallographically charac-
terised: [Ni(S2CNH2)2],

290 [Zn(S2CNH2)2],
291 [Cr(S2CNH2)3],

292

[Co(S2CNH2)3],
288,293 [Rh(S2CNH2)3],

288 [Ag(S2CNH2)],
294 [Au

(S2CNH2)],
295 [Au(S2CNH2)2][SCN],

296 [Cu(S2CNH2)]
297 and [Cu

(S2CNH2)2][NH4].
297 Considering the discussion above, the

finding that this ligand is only stabilised at the Cu(I) centre is
interesting. Further several non-homoleptic Ru(II) derivatives
have been prepared and crystallographically characterised288

suggesting that there is a relatively rich coordination chemistry
of this ligand still to be explored.

(v) Complexes with two different dithiocarbamate ligands
and dithiocarbamate-containing mixed-ligand complexes are
(easily) accessible in a pure state

Many homoleptic dithiocarbamate complexes are known,
being easy to prepare even in the most basic of laboratory

settings.8,9 In developing this chemistry further, it is tempting
to consider preparing related complexes in which two (or
more) different dithiocarbamates bind to a single metal
centre, thus providing easy tuning of chemical and physio-
chemical properties. Consequently, over the past decade, there
has been an increasing number of publications claiming the
formation of pure complexes containing two different dithio-
carbamate ligands of Ni(II),298 Cu(II),299–301 zinc and
mercury302–306 and other transition metal307–309 and main
group310–315 elements. In all these reports, the simple addition
of equimolar equivalents of two different dithiocarbamates to
a metal salt is reported to (cleanly) afford the mixed-ligand
complex, without any explanation as to why a mixed-ligand
complex might be thermodynamically preferable to either the
two homoleptic complexes or a statistical mixture of homo-
and heteroleptic complexes. Very few of these reports are sup-
ported with single crystal X-ray data, or compelling characteris-
ing data. Crystal structures of [Hg(S2CNMePh)(S2CNEtPh)]

304

and [Zn(S2CNMePh)(S2CNEtPh)(2,2′-bipy)]
305 are in the litera-

ture but in both there is a significant disorder of the Me/Et
groups. The only good quality (non-disordered) example of a
molecular structure of a heteroleptic dithiocarbamate complex
is that of the anion [Cd(S2CNPr2)2(S2CNMeBu)]−, formed (in a
similar manner to other examples) upon addition of pyrrolidi-
nium salts of [S2CNMeBu]− to [Cd(S2CNPr2)2].

316 However,
while the crystal structure shows a well-ordered mixed-dithio-
carbamate complex, both 1H and 13C{1H} NMR spectra show
that in solution multiple products are present, resulting from
ligand-exchange. Thus, while complexes with two different

Fig. 26 Base-induced decomposition of [M(S2CNHR)2] to afford RNCS and nanoscale metal sulfides.

Fig. 27 Formation of [Cu(S2CNHR)]n and subsequent reaction with PPh3.
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dithiocarbamates are accessible as part of a mixture and can
(at least potentially) be selectively crystallised out, they are not
accessible in pure form in solution.

For diamagnetic species, NMR spectroscopy should be a
simple way of probing such equilibria, however, the (relatively)
slow timescale coupled with low intensity of the quaternary
backbone carbon signal in the 13C{1H} NMR spectrum and its
insensitivity to substituent changes317 renders it unsuitable. In
contrast, HPLC has been shown to be an excellent analytical
tool for investigating these systems, being used effectively, for
example, by Moriyasu and Hashimoto,318–320 Liska and co-
workers321,322 and others.323 Thus, Moriyasu and Hashimoto
mixed homoleptic bis(dithiocarbamate) complexes of nickel
and copper (which can’t easily be studied by NMR spec-
troscopy) and in all cases found that they were labile and in
equilibrium with the mixed-ligand counterpart (Fig. 28). Rate
constants depend on both metal and substituents, for Ni(II)
being of the order of 101–102 M−1 s−1 and for Cu(II) slower at
ca. 103 M−1 s−1.317–320 These studies were later extended to
other metals and in all cases, the dithiocarbamates were
found to be labile with equilibrium constants being ca. 4, i.e. a
statistical mixture of the three complexes.324 Similar equilibria
have also been noted between homoleptic nickel complexes of
primary and secondary amines, affording [Ni(S2CNR

1
2)

(S2CNHR2)],318–320 and also between [Ni(S2CNR2)2] and
xanthate complexes, [Ni(S2COR)2].

325 Most studies support a
bimolecular exchange process likely proceeding through a
dimeric intermediate, the form of which is common in crystal-
lographic studies of [Zn(S2CNR2)2] and [Cu(S2CNR2)2].

8 Rapid
dithiocarbamate exchange has also been noted at Fe(III)326–328

and Hg(II)329,330 centres.
For low spin d6 [Co(S2CNR2)3] complexes, the CFSE is so

high that exchange rates are slow331 and isolation of mixed-
ligand complexes is possible. Thus, addition of a dithiocarba-
mate salt, NaS2CNR

1
2 to [Co2(S2CNR

2
2)5]

+ affords a mixture of
[Co(S2CNR

1
2)(S2CNR

2
2)2] and [Co2(S2CNR

2
2)3]

332 (Fig. 29).
Further, adding equimolar amounts of two different dithiocar-
bamates to Co(III) salts in water affords a statistical mixture of

products,333 and a similar mixture of products can be obtained
upon heating equimolar amounts of [Co(S2CNEt2)3] and [Co
(S2CN

iPr2)3] either in the solid-state or at 155 °C in chloro-
naphthalene for 4–5 h.333 Importantly, these mixtures can be
fully separated by column chromatography allowing their indi-
vidual characterisation. Interestingly, while it is hard to differ-
entiate them by 1H or 13C{1H} NMR spectroscopy, they can be
distinguished by 59Co NMR spectroscopy and mass spec-
trometry and have tuneable oxidation potentials.333

The ease of accessibility of mixed-ligand complexes contain-
ing dithiocarbamates also needs some careful consideration.
There are many such examples8,9 but for solution stability in
their pure form they need to feature either a relatively non-labile
metal centre with either bulky non-dithiocarbamate ligands that
preclude formation of a bimetallic intermediate or secondary
inter-ligand interactions (e.g. hydrogen-bonding). Following on
from the discussion above, Co(III) is a good example of a non-
labile metal centre. Thus, [Co2(S2CNR2)5]

+ reacts with a range of
nucleophiles to afford [Co(S2CNR2)3] and a mixed-ligand
complex, a recent case being the formation of Co(III) bis(dithio-
carbamate)dithiolane complexes from addition of dithiones
(Fig. 29).334 Other examples of a high CFSE leading to stable
mixed-ligand complexes relate to the iron dithietane com-
plexes189 (Fig. 20) which exist in temperature-dependent spin-
equilibrium between the singlet (S = 0) ground state and a low-
lying triplet (S = 1) excited state. Thus, not only are these mixed-
ligand complexes stable, but their NMR spectra are also accessible.

However, simultaneously adding a dithiocarbamate and a
different ligand to a metal salt will not automatically afford
the mixed-ligand species as has been suggested in several
publications.335–338 Just as for complexes with two different
dithiocarbamates, it is hard by simple spectroscopic methods
to tell the difference between a 1 : 1 mixture of two homoleptic
complexes and a mixed-ligand species, and in many cases the
three likely co-exist. A recent publication highlights this nicely
(Fig. 30).339 Thus, while insertion of an imide group into a
Ni–S bond of [Ni(S2CNR2)2] affords mixed-ligand complexes,
examples of which can be crystallographically characterised,

Fig. 28 Equilibrium between homoleptic and mixed ligand bis(dithiocarbamate) complexes.

Fig. 29 Synthesis of heteroleptic Co(III) dithiocarbamate complexes.
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upon dissolution they are shown to be in equilibrium with the
two homoleptic complexes.

(vi) Reacting two different dithiocarbamate complexes gives a
pure mixed metal product

Given the extremely large number of homonuclear transition
metal dithiocarbamate complexes that are known, it is
perhaps surprising that dithiocarbamate-bridged heteronuc-
lear complexes are rare. Thus, as shown by Robinson,340 com-
plexes obtained by successive addition of metal salts MX2 (M =
Zn, Cd or Hg) and M′Y2 (M′ = VO, Mn, Fe, Co, Ni, Cu or Zn) to
a solution of a sodium dithiocarbamate are not heterobimetal-
lic [{M′M(S2CNR2)4}n] but rather contain a mixture of homo-
nuclear complexes. Likewise, reactions of Pd(II) salts [PdCl2L2]
(L = PhCN, L2 = dppe) with a series of homoleptic dithiocarba-
mate complexes affords palladium-dithiocarbamate cations
[Pd(S2CNR2)L2]

+ with the second metal being incorporated
into the counterion.341–343 More recently, Torimoto and co-
workers added Na(S2CNEt2) to mixtures of metal salts and
used the ensuing “complex” as a precursor to a range of nano-
scale metal sulfides with quantum dot properties.344–347 While
the method is effective and efficient, the suggestion that a
mixed-metal complex is formed is erroneous. Rather the pre-
cursor “complex” is an intimate mixture of several different
complexes. There are some well-authenticated examples of
dithiocarbamate-bridged heterobimetallic complexes, being
especially prevalent amongst the coinage metals348–351 and
there are also a small number of other dithiocarbamate-con-
taining heteronuclear complexes that have been crystallogra-
phically characterised.352,353 Nevertheless, the vast majority of
dithiocarbamate complexes contain a single metal type.

6. Dithiocarbamate complexes as
single source precursors

Dithiocarbamate complexes find widespread use as single
source precursors for a range of nanoscale and thin film metal
sulfides.49–52 Thus, simply heating, either in the solid-state or
solution, the complex or mixture of complexes, results in S–C
and other bond scission(s) affording the thermodynamically
stable metal-sulfide(s) and various organic species, the latter
(normally) being easily removed either by washing or evapor-
ation. The utility of this simple approach is that air-stable
dithiocarbamate complexes from across the periodic table can
be (relatively easily) prepared and stored, and by judicious
control of reaction conditions and stoichiometry a wide range
of binary, ternary and quaternary metal sulfides can be

accessed. A nice example of this is their use towards the syn-
thesis of Cu2ZnSnS4 (CZTS) a quaternary semiconductor with a
power conversion efficiency of ca. 10% that has been suggested
as a viable material for thin film solar cells. Thus, decompos-
ing mixtures of copper, zinc and tin dithiocarbamates leads to
the formation of CZTS thin films or quantum dots.354,355

However, such transformations are not as simple as they
might appear. Firstly, in the solid state, thermogravimetric
analysis studies have shown that temperatures of between
200–400 °C are required to cleave the S–C (and other) bonds
within dithiocarbamate complexes.356–359 Decomposition
temperatures can be tuned (normally within a small range)
upon changing substituents, and there is also a correlation
between the ease of thermal decomposition and ionic radius
of the metal ion; the smaller the metallic ionic radius, the
greater the thermal stability.360 In solution, decomposition
temperatures can be significantly lower than in the solid-
state.275,361,362 For example, the water-soluble SSP [Cu{S2CN
(CH2CO2H)2}2] decomposes at 180 °C in the solid state but at
ca. 80 °C in water.362 Another issue to address when preparing
ternary, quaternary or multinary sulfides, is matching of
decomposition temperatures, such that all SSPs decompose
within a relatively small range, thus ensuring that the different
molecular building blocks are all available at the nucleation
stage. This is nicely exemplified by O’Brien’s synthesis of
CZTS.363,364 Thus, as the decomposition temperature of [Sn
(S2CNEt2)2] (174 °C) is significantly lower than those of [Cu
(S2CNEt2)2] (220 °C) and [Zn(S2CNEt2)2] (240 °C), heating this
mixture will lead to the premature formation of tin sulfides
and hence the tin precursors was replaced by the Sn(IV) SSPs,
[Sn(S2CNBu2)4]

363 and [Bu2Sn(S2CNBu2)2]
364 which decompose

at higher temperatures. A study by Torimoto and co-workers
nicely highlights the need to carefully control decomposition
conditions.365 Thus, for the synthesis of Ag(InxGa1−x)S2
quantum dots, simply heating a mixture of silver, indium and
gallium precursors initially results in formation of polydis-
perse Ag2S as the silver dithiocarbamate decomposes at lower
temperatures than others, and upon further heating as indium
and gallium SSPs decompose they give a shell of these sulfides
around the Ag2S (Fig. 31a).366 However, when a silver source is
injected into the decomposition reaction then co-nucleation of
all components occurs, initially to give a core–shell structure,
while further heating affords the desired ternary phase sulfide
as quantum dots.365

Given these complications and constraints, it is surprising
that there are an increasing number of reports seemingly
suggesting that simply preparing mixtures of dithiocarbamates
at room temperature results in the formation of metal sulfides

Fig. 30 Formation of mixed-ligand complex in equilibrium with homoleptic complexes.
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i.e. there is no mention of a heating or other decomposition
process367–371 although decomposition appears to be sup-
ported by powder X-ray diffraction data. Further, many of these
“decompositions” are proposed to give composite mixtures of
individual metal sulfides, some of which such as BaS3, are nor-
mally prepared at 400 °C.372 Clearly such reports require some
scrutiny and perhaps further explanation(s) from the authors.

7. Summary and conclusions

In this perspective we have tried to address common miscon-
ceptions and errors that we have found in the literature on
dithiocarbamates and their complexes. Amongst the chal-
lenges faced by those working in this area are the vast number
of publications and patents, and the widespread reach of this
simple ligand type across many different fields of research.
Thus, it is hard for anyone to fully keep up to date and under-
stand all aspects of their chemistry. Likely many misconcep-
tions-errors that have crept into the literature result are further
exacerbated by the recent (seemingly unstoppable) prolifer-
ation of scientific journals. It is a testament to the wide appli-
cability of dithiocarbamate chemistry that this perspective
cites over 200 different journal titles: some of us long for the
days when our library reading covered 10–15 journals, each
with a clear remit. Thus, we need to understand that newco-
mers to this mature field of research have a lot of reading and
understanding to do to get up to speed with what has gone
before. Dithiocarbamate chemistry has been an active area of
research for over 150 years and unlike some fields of scientific
research, some early papers have relevance today. For example,
while recently developing a primary-amine derived dithiocar-
bamate as a H2S release-vector we came across a paper from

1891373 which had effectively already studied this and provided
us with invaluable insight into our work.

Having said this, there is also some evidence of tardy work
in the dithiocarbamate literature, with researchers either
cutting corners, or not being totally honest in reporting their
findings-data. Sadly, this appears to be an issue that has prolif-
erated through all aspects of scientific research and one that
seriously undermines the efforts of those who play fair. It is
hard to understand why anyone would deliberately mis-rep-
resent their work, but undoubtably the high speed of modern
living and (sometimes) excessive pressures put on academics
to publish may be part of the problem. Linking publication to
financial gain or making it a pre-requisite for promotion will
tempt some to cut corners.
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Fig. 31 Schematic illustrations of the synthesis of Ag(InxGa1−x)S2 quantum dots form (a) heating of the precursor mixture and (b) injecting a silver
source into the decomposition mixture.365
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