The Role of Ancillary Ligands on Benzodipyridophenazine Based Ru(II)/Ir(III) Complexes for Dark and Light Toxicity against TNBC Cells¥

Abstract

The study investigated the impact of benzodipyridophenazine-based Ru(II) and Ir(III) complexes (Ru1, Ru2, Ir1, and Ir2) on their anticancer activity. Metal complexes displayed three significant absorption bands because of intra-ligand charge transfer (ILCT), ligand-to-ligand charge transfer (LLCT), and metal-to-ligand charge transfer (MLCT). Binding studies with biomolecules has been performed with the complexes along with the ligand, and it was found that after attaching with Ru(II)/Ir(III),properties of the ligands has enhanced. In vitro, screening identified that, complex [(η5-Cp*)IrIIICl(κ2-N, N-benzo[i]dipyrido[3,2-a:2',3'-c])phenazine (Ir1) exhibited the highest potency and selectivity (IC50 ~ 2.14 µM, PI > 13) under yellow light irradiation. The photo-toxicity trend was Ir1>Ru1>Ir2>>Ru2, which was found to be directly correlated with the release of singlet oxygen quantum yield (1O2). Chloro-substituted complexes (Ir1, Ru1) are effective for hypoxic tumor treatment, particularly Ir1 which can generate high amounts of reactive oxygen species (ROS, Type I PDT) in cells under photo irradiation. The high value of fluorescence quantum yield (fφ = 0.26) and significant emission at λ = 571 nm of Ir1 certainly helps in a bio-imaging application. Colocalisation study and DCFDA studies with Ir1 revealed that, it can accumulates in the mitochondria, leading to the depolarization of the mitochondrial membrane. These studies confirms the complex Ir1 is a promising candidate for TNBC treatment in hypoxic tumors, with efficacy comparable to the current PDT drug, photofrin.

Supplementary files

Article information

Article type
Paper
Submitted
14 Dec 2024
Accepted
10 Feb 2025
First published
11 Feb 2025

Dalton Trans., 2025, Accepted Manuscript

The Role of Ancillary Ligands on Benzodipyridophenazine Based Ru(II)/Ir(III) Complexes for Dark and Light Toxicity against TNBC Cells¥

T. Nivedya, R. Das, S. K. Ramasamy, S. shanavas, R. Bhaskar, M. Aatif A, C. Mukherjee, R. Roy, J. Sengupta, B. Bose, A. S.K. Kumar and P. Paira, Dalton Trans., 2025, Accepted Manuscript , DOI: 10.1039/D4DT03456B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements