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Aluminum-doped polycyclic aromatic hydrocarbons (PAHs) are underexplored despite the broad appli-
cations of boron-containing PAHSs in areas such as catalysis and optoelectronics. We disclose the donor-
free, sterically unprotected 9-methyl-9-aluminafluorene (Me-AlFlu; 2), synthesized by heating a 9,9-
dimethyl-9-stannafluorene and AlMes in hexanes. The compound is a dimer, (2),, with trans-positioned
AlMe substituents in the solid state. In solution, (2), shows a dynamic cis/trans-interconversion rather
than a monomer-dimer equilibrium (Tol-dg, RT). Lewis bases L cleave (2), into monomeric adducts 2:-L
(L = OEty, thf, pyridine). Lewis acidic AlBrs transforms (2), into a 2,2'-(Br,Al),-1,1'-biphenyl (3), crystallo-

Received 11th November 2024, graphically characterized as dimeric (3),. (3), is a synthetic equivalent for the elusive free Br-AlFlu:

Accepted 29th November 2024
DOI: 10.1039/d4dt03148b

Treatment with donor molecules furnishes Br-AlFlu-L adducts (L = OEt,, pyridine); the three-coordinate,
monomeric aluminafluorene Mes*-AlFlu was prepared from (3),, Mes*Li, and a 2,2'-dilithio-1,1"-biphenyl
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Introduction

Doping organic n-electron systems with other p-block elements
is an effective strategy to impart new chemical and physical
properties to these species." Specifically, the combination of a
polycyclic aromatic hydrocarbon (PAH) such as fluorene with
boron as a dopant to generate 9-borafluorenes (BFlus) can
have a particularly pronounced effect,”® as a conjugation
barrier (i.e., the CH, fragment in the carbonaceous species) is
removed and a vacant B(p,) orbital is introduced instead,
which can now: (i) mediate electron delocalization and bring
about optoelectronic  properties,’ (i) facilitate
reduction,>® and (iii) act as a Lewis acid to promote bond-acti-
vation reactions’ or the expansion of the five-membered
central borole ring.®

Compared to the extensive research on BFlus, their heavier
homologues, the 9-aluminafluorenes (AlFlus),”' are far less
well explored. This is unfortunate, because AlFlus are expected
to exhibit a lower degree of aryl-heteroatom double-bond char-
acter than BFlus,'" leading to a greater propensity to form
structurally intriguing aggregates through Al---n(Ar) complexes
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in quantitative yield (Mes* = 2,4,6-(tBu)sCgH>).

or Al-C-Al' two-electron-three-center (2e3c) bonds. Relative to
open-chain arylaluminum compounds, AlFlus should possess
a structurally enforced enhanced Lewis acidity due to their
small endohedral C-Al-C angle. This angle (108° in a regular
five-membered ring) deviates more from the ideal 120° angle
of three-coordinate AIR; species than from the corresponding
angles of perfectly tetrahedral (109.5°) adducts. By the same
token, the behavior of Al-based Lewis acids is more diverse
than that of their B-based counterparts, as Al sites, unlike B
centers, can readily accommodate coordination numbers
larger than four.

In 1962, Eisch et al reported the formation of Ph-AlFlu
through the metalative cyclization of o-biphenylyl(diphenyl)
aluminum at 200 °C. Their claim was mainly based on the ana-
lysis of hydrolysis and iodinolysis products.'®'* The topic lay
dormant until 2015, when Chujo and Tanaka used salt-meta-
thesis protocols to synthesize AlFlus carrying Al-bonded
phenyl rings with one or two chelating (dimethylamino)methyl
substituents at their ortho positions (Fig. 1). Their research
focused on the emission properties of the obtained four- and
five-coordinate AlFlus.'*'> More recently, Braunschweig et al.
disclosed the synthesis of various aluminafluorenes R-AlFlu
[R = 1,2,4-(tBu);CsH, (92%; Fig. 1), Ph,(¢Bu)Si (44%), 2-C,H;S
(79%), tBu (23%; Fig. 1), Br (53%)]. The compounds were
again prepared from 2,2'-dilithio-1,1"-biphenyl by salt-meta-
thesis reactions and isolated and structurally characterized as
their ether adducts - with the exception of the n’>-cyclopenta-
dienide derivative, which is monomeric in the solid state, and
the tBu derivative, which crystallizes as a dimer."®
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Fig.1 Known mono- and dimeric 9-aluminafluorenes featuring 2,6-bis
[(dimethylamino)methyllphenyl (BDMAPh), 1,2,4-(tBu)sCsH, (Cp®Y), and
tert-butyl (tBu) substituents.

One aim of our study outlined herein was to develop
straightforward, high-yield synthesis protocols for base-free
R-AlFlus featuring (i) the small substituent R = Me to minimize
steric shielding of the Al center, and (ii) the reactive substitu-
ent R = Br for late-stage derivatization. Particular emphasis
was placed on the molecular structure of Me-AlFlu in non-
donor solvents and in the solid state, as well as on the syn-
thesis of the first base-free, three-coordinate, monomeric alu-
minafluorene, Mes*-AlFlu (Mes* = 2,4,6-(tBu);C¢H,). All our
AlFlus were equipped with ¢Bu groups in their 2,7-positions to
enhance solubility in non-polar solvents and to facilitate NMR-
spectroscopic analysis.

Results and discussion
Syntheses

The base-free Me-AlFlu (2) was synthesized by heating the 9,9-
dimethyl-9-stannafluorene 1 with 1 equiv. of AlMe; " in either
hexanes or CgHg/toluene (Scheme 1). The only by-product
formed is the volatile and relatively inert SnMe,.'*'® An advan-
tage of using hexanes as the solvent is that the dimer (2), precipi-
tates in pure form already upon cooling the reaction mixture to
room temperature (yield: 74%); when CgHg/toluene is employed,
the yield of (2), is higher (91%), but some further workup is
required. In the presence of the donor molecules Et,O, THF, or
pyridine, (2), is cleanly split into its constituting monomers to
furnish the monoadducts 2-OEt,, 2-thf, or 2-py (Scheme 1).

Treatment of (2), with 4 equiv. of AlBr;'” in C¢H, results
not only in quantitative AlMe/AIBr exchange but also in the
incorporation of two AlBr; molecules to afford dimeric 2,2-
(Br,Al),-1,1"-biphenyl [(3),, 95%; Scheme 1]. Upon addition of
Et,0 to (3), in C¢Hg, the donor adduct of Br-AlFlu, 4-OEt,, pre-
cipitates quantitatively as a colorless solid. In terms of yield,
our overall synthesis cascade to 4-OEt, improves upon the pub-
lished protocol'® by about 40 percentage points. Although pyri-
dine can also reconstitute the AlFlu scaffold from (3),, it
proved challenging to separate the target product 4-py from by-
products such as [AlIBr,(py)4[X] ([5][X]; X = Br~, AlBr,;
Fig. S44 and S457).

A particularly notable application of (3), as a synthetic equi-
valent of donor-free Br-AlFlu is the preparation of Mes*-AlFlu
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Scheme 1 Synthesis of donor-free (2), through Sn/Al exchange
between the 9-stannafluorene 1 and AlMes (ArH: CgHg/toluene). The
addition of AlBr3 to (2), furnishes (3),. Lewis bases (L: Et,O, THF, or pyri-
dine), cleave (2), or (3), into the monomeric adducts 2:-L or 4-L. (i)
Hexanes, 140 °C, 3 d (74% yield) or CgHg/toluene, 120 °C, 3 d (91%
yield); sealed glass ampoule. (ii) C¢He, room temperature, 1 d (95% yield).
(iii) 2-OEt,: in Et,O, room temperature; 2-thf: C¢Dg, room temperature;
2:py: CgHg, room temperature (quantitative conversions). (iv) 4-OEt,:
CeHs, room temperature (quantitative conversion); 4-py: CgDe, room
temperature (not isolated). Note: in (3),, four bonds were arbitrarily
chosen as formally intermolecular (highlighted in orange) to facilitate
the distinction between the monomers M and M".

(6): sequential addition of Mes*Li (4 equiv.) and 2,2"-dilithio-
4,4'-di-tert-butyl-1,1"-biphenyl (2 equiv.) to (3), in C¢Hg gave 6
in 97% yield (Scheme 2).

Solid-state structures

In the solid state, Me-AlFlu forms centrosymmetric dimers,
with the Al-bonded Me substituents adopting a trans-configur-
ation (trans-(2),; Fig. 2).>° The individual monomers, M and
M/, are linked by two Al---C interactions, resulting in two Al(1)
---Al(1)’ bridging aryl rings (Ar;,) and two terminal rings (Ary),
with bridging [C(11)] and terminal [C(21)] ipso-C atoms. The
position of Ary, is asymmetric between Al(1) and Al(1)', as indi-
cated by the differing angles Al(1)-C(11)---C(14) = 153.13(17)°
and Al(1)-C(11)---C(14) = 128.38(16)°. The fact that the

1) 4 Mes*Li
2)2
tButBu By fBu
Br, Brs
e S Lilp
ALl
77X CgH,
B 87 Br>Br —=° >4 mu Bu
1
Al Al ® Al
N tBu Q O tBu
Bu— T )—<=—1Bu
(3)2 6

Scheme 2 Synthesis of Mes*-AlFlu (6) using (3), as a synthetic equi-
valent of the elusive Br-AlFlu. (i) C¢Hs, room temperature, 1 d (97%
yield).
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trans-(2), (H-BFlu),

Fig. 2 Top: molecular structure of trans-(2), in the solid state; H atoms
omitted for clarity (C: black, Al: turquoise). Bottom: structural formulae
of trans-(2), and of the comparable 9-borafluorene dimer (H-BFlu),.

Al(1)'-C(11)-C(14) angle is significantly closer to 90° than the
Al(1)-C(11)-C(14) angle can still be viewed as a remnant of the
initial intermolecular Al---n(Ar) complex when the two hetero-
fluorene units first encountered each other. Correspondingly,
the ‘intermonomer’ Al(1)'-C(11) bond (2.148(3) A) is longer by
0.055 A than the ‘intramonomer’ Al(1)-C(11) bond (2.093(3) A;
¢f. Al(1)-C(21) = 1.971(3) A). The range of C-C bond lengths in
Ary, (1.382(5)-1.427(5) A) is close to that in Ar, (1.389(5)-1.409(5) A),
indicating that the bridging mode does not lead to a systema-
tic bond-length alternation. However, the two C-C bonds invol-
ving the bridging C(11) atom are slightly longer than the other
four (1.409(4) and 1.427(5) A vs. 1.382(5)-1.401(5) A). Finally,
we note that trans-(2), has very similar structural parameters to
Braunschweig’s (tBu-AlFlu),,'® while the comparable 9-bora-
fluorene dimer (H-BFlu), shows one B-(u-H)-B two-electron-
three-center bond and one B---B'-bridging aryl ring (the three
other rings remain terminally bonded).”*

X-ray crystallography reveals that the compound (3), no
longer contains the 9-aluminafluorene motif but instead forms
a centrosymmetric 2,2'-(Br,Al),-1,1"-biphenyl dimer (Fig. 3).

C(12) C(22)
6

()2

Fig. 3 Left: molecular structure of (3), in the solid state, viewed from
two different perspectives; tBu-groups in the 2,7-positions of the biphe-
nyl backbones and H atoms omitted for clarity. Right: molecular struc-
ture of 6 in the solid state; H atoms omitted for clarity (C: black, Al: tur-
quoise, Br: brown).

This journal is © The Royal Society of Chemistry 2025
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The two Br,Al substituents in each monomer adopt an
approximate s-trans configuration with a torsion angle
Al(1)-C(11)-C(21)-Al(2) of 129.55(19)° [Al(1)-C(11) = 1.945(5) A,
Al(2)-C(21) = 1.956(4) A]. Four Br atoms occupy bridging posi-
tions between Al centers of different monomers, assembling
the cage-like structure of (3),. The underlying structural
feature, a four-membered R(Br)Al-(p-Br),-Al(Br)R ring, is
common not only for aluminum tribromide (R = Br) but also
for numerous dibromo(organo)alanes.>

The 2,4,6-(tBu);CsH,-substituted Mes*-AlFlu (6) exists as a
monomeric species with a three-coordinate Al center in the
crystal lattice (Fig. 3). The sum of C-Al-C angles is 360°, con-
firming a trigonal-planar ligand environment, although the
endocyclic C(11)-Al(1)-C(21) bond angle is nearly rectangular
(91.79(6)°). All three Al-C bonds are of equal length, regardless
of whether they are endo- or exocyclic, or whether the respect-
ive ipso-C(p,) orbital is positioned parallel or orthogonal to
the vacant Al(p,) orbital [Al(1)-C(11)/C(21)/C(31) = 1.9611(14)/
1.9516(14)/1.9606(13) A]. Within the five-membered AIC, core,
the length of the central C(12)-C(22) bond (1.5024(19) A)
approaches that of a typical C-C single bond (1.54 A),>* while
the benzannulated bonds are significantly shorter
[C(11)-C(12)/C(21)-C(22) = 1.4208(18)/1.4134(18) A]. The other
ten C-C bonds within the biphenyl fragment fall within a
narrow range of 1.389(2)-1.4041(19) A, closely matching the
corresponding bonds in C¢Hg (1.39 A).2* Taken together, this
analysis of bond lengths suggests that the AlFlu moiety of 6
preserves two largely unperturbed Clar sextets within its two
CeH; fragments, with no indication of a delocalized (antiaro-
matic) n-system, nor any significant Al(1)=C(11)/C(21) double-
bond character in the AIC, heterocycle.

The donor adducts 2-OEt,, 2-py, and 4-py were subjected to
X-ray analysis to confirm that (2), and (3), can indeed serve as
precursors of Me-AlFlu and Br-AlFlu, respectively (Fig. S40,
S41, S43%). Furthermore, compared to donor-free 6, the C-C bond
lengths within the CeH3;-C¢H; units of 2-py and 4-py were
found to differ by no more than 3¢ (and much less for most
bonds).>® This observation again suggests that the vacant
Al(p,) orbital exerts no significant electron-withdrawing meso-
meric effect on the n-electron system.

NMR analysis

At room temperature, 2 gives severely broadened "H NMR
signals, providing limited diagnostic value (Tol-dg; Fig. 4 and
S77). At 70 °C, two sharp resonances are detectable in the ali-
phatic region of the spectrum (integral ratio 3H : 18H); the aro-
matic region contains one broad feature and two doublets
with coupling constants of about 8.2 Hz (Fig. 4 and S67). At
—30 °C, the 'H NMR spectrum of 2 is characterized by two
well-resolved sets of signals attributable to two different but
closely similar components (Fig. 4 and S8t); the same is true
for the *C{"H} NMR spectrum (Fig. S91). The proton-integral
values of the two sets indicate a minor-to-major component
ratio of approximately 0.12:1 (Fig. S8t). Focusing on the
major component, the "H NMR spectrum reveals one singlet at
—0.67 ppm (6H), and two additional singlets at 1.47 and

Dalton Trans., 2025, 54, 2301-2307 | 2303
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Fig. 4 Aromatic regions of H NMR spectra of (2), in Tol-dg
(500.2 MHz). Top: 70 °C. Middle: room temperature. Bottom: —30 °C. @:
trans-(2),. ©: cis-(2),.

1.28 ppm (2 x 18H), assignable to two equivalent AlMe substi-
tuents and two pairs of non-equivalent ¢tBu groups, respect-
ively. In the aromatic region, four doublets (4 x 2H; 2 x *Jy y =
8.2 Hz, 2 X ¥y u = 2.2 Hz) and two doublets of doublets (2 x
2H) are observed, indicative of two pairs of non-equivalent
CeH; fragments. In principle, these NMR features would align
with both the molecular structure of the cis- and trans-(2),
dimer (as observed in the solid state). Vice versa, the minor
signal set likely arises from trans- or cis-(2),. At low tempera-
tures, both isomers are present in an (essentially) static
mixture, while some dynamic rearrangement equilibrium is
established at higher temperatures. This preliminary con-
clusion raises two questions: (i) Does cis- or trans-(2), domi-
nate at low temperatures? (ii) Is the dynamic equilibrium at
high temperatures due to monomer/dimer association/dis-
sociation, or is it the result of a rapidly interconverting cis/
trans dimeric form of (2),?

To address question (i), quantum-chemical calculations
predict that the crystallographically characterized trans-(2), is
1.6 kcal mol™' more favorable in energy than cis-(2),
(Scheme S17; experimental value, determined at —30 °C from
the proton-integral values of the minor/major component: AG®
= 0.7 keal mol™"). Furthermore, the relative proportion of the
minor component increases with solvent polarity, consistent
with the existing dipole moment of cis-(2), ("H NMR spectro-
scopic control; Table S1 and Fig. S1, S27). Finally, the com-
puted ’C chemical shift values for cis/trans-(2), align more
closely with the assumption that the major component is
trans-(2), rather than vice versa (Tables S9-S11%). It is therefore
safe to assume that the major component in an equilibrating
cis/trans-(2), mixture is the trans isomer.

Regarding question (ii), we note that the computed energy
required for cleaving trans-(2), into its constituting monomers
is 19.4 kecal mol™ (in CH,Cl,). In contrast, the computed
energy barrier of the cis/trans interconversion of (2), is only
AG* = 14.8 kecal mol™, which agrees well with the value of
~14.5 kcal mol™" experimentally determined from the coalesc-
ence temperature (7) in conjunction with the maximum peak
separation (Av) in the slow-exchange limit (CD,Cl,; see the
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ESIt for full details). The observed NMR features are therefore
more convincingly attributed to a dynamic cis/trans equili-
brium rather than to a monomer/dimer association/dis-
sociation equilibrium.

In the temperature range of —30 to 70 °C, (3), exhibited
only extremely broadened signals in the "H and C{"H} NMR
spectra, providing no structural information.

The 'H and "C{"H} NMR spectra of all adducts formed
between our R-AlFlus and Lewis bases are in accord with the
proposed molecular structures, as is the case for ligand-free 6
(see the ESIT for the fully assigned spectra). In addition to
aiding in structure elucidation, **C{*"H} NMR spectroscopy is
also a valuable tool for mapping the n-charge density distri-
bution in conjugated systems, as the shielding of a specific
C(sp®) atom depends linearly on the corresponding n-electron
density at that position.*® Given this background, we compared
the *C chemical shift values of the C atoms constituting the
CeH3-CgH; fragment of 6 with those of the equivalent atoms
in the corresponding fragments of the adducts 2-OEt,, 2-thf,
2-py, 4-OEt,, and 4-py. Except for the Al-bonded ipso-C atoms,
whose shift differences varied from §(6)-5(adduct) = 3.3 to
—4.7 ppm without a systematic trend, the A5(**C) values for all
other structurally analogous C atoms were less than +1.8 ppm.
In other words, we found no evidence of an overall “C-
deshielding effect or m-electron depletion in 6 that could be
attributed to a mesomerically electron-withdrawing Al(sp®)
center.

BC{'H} NMR spectroscopy on 2-py and 4-py provides a
method to evaluate the relative Lewis acidities of free, mono-
meric Me-AlFlu and Br-AlFlu: in pyridine complexes of main-
group elements, stronger acids induce increased shielding of
the C-2,6 and deshielding of the C-3,4,5 nuclei of the ligand.?”
For 2-py/4-py, our observations consistently indicate that Me-
AlFlu is the stronger acid, comparable in this respect to
BPh;.?® X-ray crystallography, however, offers a contrasting
view: 4-py exhibits a shorter AI-N bond and a more pyramida-
lized Al center, implying higher Lewis acidity for Br-AlFlu.>®
Given the small differences in the key NMR and structural
parameters between 2-py and 4-py, these conflicting obser-
vations highlight the limitation of relying on a single method
to determine Lewis acidity, emphasizing the need for comp-
lementary approaches.

Conclusions

We synthesized the donor-free 9-aluminafluorene Me-AlFlu (2),
which was characterized as its dimer (2), through X-ray crystal-
lography and VT NMR spectroscopy (Tol-dg). The key to this
success was the highly selective reaction between the 9,9-
dimethyl-9-stannafluorene 1 and AlMe;,"”'® which proceeds in
non-donor solvents and releases volatile SnMe, as the sole by-
product. Unlike the bulky tert-butyl group in tBu-AlFlu,'® the
sterically less demanding methyl substituent in Me-AlFlu
allows relatively unhindered access to the electrophilic Al
center, as demonstrated by the straightforward formation of

This journal is © The Royal Society of Chemistry 2025
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various base adducts 2-L (L = OEt,, thf, py). In terms of an
umpolung of the Al center, exploring the reduction of 2 on a
preparative scale could be promising (a non-benzannulated
alumole has previously been reduced to its corresponding
dianion).'® The resulting product, [2]*~, could potentially serve
as an Al-centered nucleophile - analogous to the [H-BFlu]*~
dianion, which is a valuable B-centered nucleophile.>®>°

Treatment of (2), with AlBr; furnishes the 2,2'<(Br,Al),-1,1'-
biphenyl (3),. Although this ring-opened product no longer
retains the AlFlu motif, it rearranges back to afford Br-AlFlu
adducts, such as 4-L (L = OEt,, py), in the presence of Lewis
bases. The use of Mes*Li, which provides the extremely bulky,
negatively charged Lewis base [Mes*]”, grants unprecedented
access to three-coordinate, monomeric aluminafluorenes,
specifically Mes*-AlFlu (6), via LiBr elimination. This reaction
proves the utility of (3), as a synthetic equivalent for the still-
elusive free Br-AlFlu. A comparison of characteristic structural
and NMR features of 6 with those of 2:L/4-L reveals that the
three-coordinate Al center exerts only a negligible rn-electron
withdrawing effect and does not mediate significant n-electron
delocalization.
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