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Study of methylene blue removal and
photocatalytic degradation on zirconia thin films
modified with Mn-Anderson polyoxometalates

Jiress Florez,a Carlos Diaz-Uribe,a William Vallejo, *a Freider Duran,a

Esneyder Puello,b Javier Salazar,c Ximena Zarated and Eduardo Schott *c

Recalcitrant pollutants are challenging to degrade during water treatment processes. Methylene blue

(MB), a cationic dye, is particularly resistant to degradation and is environmentally persistent.

Heterogeneous photocatalysis has emerged as a suitable strategy for removing such pollutants from

water. In this work, ZrO2 thin films were modified with Anderson-type Mn-polyoxometalate (MnPOM)

((NH4)3[MnMo6O24H6]), and the efficiency of MB removal from water was studied. ZrO2 was synthesized

by a sol–gel method, with thin films deposited using the doctor blade method, and ZrO2 thin films were

modified using chemisorption method. The synthesized materials were characterized using SEM, EDX,

UV-Vis diffuse reflectance spectroscopy and FTIR. The adsorption kinetics and isotherms for MB were

studied for both bare ZrO2 and ZrO2/MnPOM composites. Optical characterization showed a band gap

energy of 4.02 eV for bare ZrO2, while the ZrO2/MnPOM composite exhibited a band gap of 3.7 eV.

Furthermore, ZrO2 showed lower MB removal capacity (∼8%) than ZrO2/MnPOM thin films (∼29%). The
isothermal adsorption studies indicated that MB adsorption onto both bare ZrO2 and ZrO2/MnPOM fol-

lowed the Langmuir adsorption model (qm = 20.6 mg g−1 for ZrO2 and qm = 62.9 mg g−1 for ZrO2/

MnPOM). Furthermore, the adsorption kinetics of MB were well described by a pseudo-second-order

model. Photocatalytic testing under UV irradiation showed an apparent rate constant (kap) of 2 × 10−3

min−1 for bare ZrO2 and a value of kap 5.4 × 10−3 min−1 for ZrO2/MnPOM after 100 minutes. TD-DFT cal-

culations revealed an LMCT interaction between the ZrO2 nanoparticle and the MnPOM, which likely con-

tributes to the enhanced photocatalytic activity of the ZrO2/MnPOM composite.

1. Introduction

Exponential population growth, industrialization, and unsus-
tainable agricultural practices have intensified the global issue
of water pollution, leading to significant environmental
impacts on both human health and ecosystems.1,2 Industries
such as textiles, cosmetics, food processing, and pharmaceuti-
cals are major contributors to freshwater pollution, primarily
due to their high water consumption and the discharge of dyes

into effluents without efficient water treatment.3,4 Over the
past decade, a special group of compounds called recalcitrant
compounds have emerged as a critical target for environ-
mental research owing to their stability and resistance to
degradation by conventional treatment methods.5,6 MB, a
common cationic dye, is of particular concern due to its
environmental persistence, toxicity, carcinogenicity and muta-
genicity.7 Conventional strategies for water treatment for
addressing such pollutants include (i) adsorption, (ii) fil-
tration, (iii) thermal separation, (iv) coagulation, (v) biological
treatment, (vi) chemical oxidation and (vii) photochemical oxi-
dation.8 Advanced oxidation processes (AOPs) represent green
strategies for the treatment of contaminated samples contain-
ing recalcitrant compounds due to their high oxidative
capacity. These processes are non-selective and versatile and
can be combined with other technologies. However, one of the
drawbacks of AOPs is their substantial energy requirement,
particularly for UV irradiation.9 The physicochemical phenom-
enon of AOPs relies on the generation of reactive oxygen
species (ROS) on the catalyst surface. These ROS are highly
reactive and capable of degrading a wide range of recalcitrant
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chemical compounds.10,11 Heterogeneous catalytic processes
can be considered as AOPs when a semiconductor is used as a
catalyst. Specifically, the semiconductor can generate ROS
upon absorbing radiation with energy exceeding its band gap
value.12,13 Among oxide semiconductors, TiO2 and ZnO are the
most studied photocatalysts in the field, due to their activity
and stability.14,15 However, other semiconductors such as zir-
conia (ZrO2) have great potential to be used as photocatalysts
due to their special and favorable chemical and physical pro-
perties (e.g., acid–base properties and high redox properties,
high density, high resistance to fracture, thermal stability,
photochemical stability, and high refraction index).16 ZrO2 has
a stable bandgap, transparency in the visible and near-infrared
regions of the spectrum, and low photon energy, which
reduces the probability of non-radiative decay due to multipho-
ton relaxation.17 Furthermore, due to its high ion exchange
capacity and redox activity, ZrO2 exhibits a great number of
oxygen vacancies on its surface.18 However, the energy band
gap of ZrO2 is 5.0 eV, thus, this semiconductor in its pure
phase is only photoactive under UV irradiation (∼250 nm).19–21

The strategies to tune the energy band gap value towards lower
energy values include: (i) doping, (ii) changing the defects
number, and (iii) the use of quantum dots.22,23 The change in
the number of defects can increase the specific surface area
and the adsorption capacity of organic molecules.24 After the
modification of ZrO2 with a polymorphic phase (e.g. monocli-
nic m-ZrO2, tetragonal t-ZrO2 and cyclic c-ZrO2), the ions
diffuse through interstitial sites inside the ZrO2 lattice chan-
ging the conduction and valence bands values, reducing the
band gap value.25 Furthermore, reports indicate that use of the
heterostructures of ZrO2 with other materials (metals and non-
metals) is another strategy to optimize its photocatalytic
efficiency.26 The doping process is another typical strategy,
Chen et al. fabricated the Mn-doped catalyst ZrO2/TiO2 for the
photodegradation of rhodamine B. In this report, a removal of
higher than 90% after 50 minutes of UV irradiation was
observed.27 Akilandeswari et al. reported the synthesis of ZrO2

doped with Mn, showing a band gap value of 2.46 eV. After the
doping process, the doped ZrO2 showed a methylene violet
removal of 95% under visible irradiation. Reddy et al. fabri-
cated nanoparticles of Mg-doped t-ZrO2 to remove methylene
orange using visible irradiation, reporting 83.7% removal.28

Another alternative to improve the photocatalytic properties of
ZrO2 is the use of heterostructures. In this sense, due to their
redox properties polyoxometalates (POM) are an interesting
option to modify the ZrO2 surface. POMs have empty d-orbi-
tals, which become an electron acceptor region. This character-
istic does not change upon doping, thus the presence of POMs
might reduce the photocatalyst recombination process.
Furthermore, the POM can increase the electronic transfer
rates.29,30 Sampurnam et al. reported the photocatalytic activity
of hybrid ZrO2 polyaniline–polyoxometalate ternary nano-
composites in the MB photodegradation under visible radi-
ation.31 Most of the reported studies have been carried out in a
homogeneous phase. The main drawback of this application is
the requirement of additional steps to recover the catalyst after

the photocatalytic process. Different studies have demon-
strated that immobilization (e.g. coatings, layers, and thin
films) of POMs on adequate substances (e.g., ZnO, TiO2, and
ZrO2) is an appropriate method to obtain catalysts in a solid
phase with a high surface area, porosity and, adequate optical
properties to develop photocatalytic applications.32,33 Diaz
et al. reported a theoretical and experimental study of a TiO2

photocatalysis modified with Anderson POMs (containing
different central metals). The TiO2/POM was more efficient in
MB removal from water than bare TiO2.

34,35 Most studies on
photocatalytic POM applications include classical POMs (e.g.,
Keggin, Dawson, and Lindquist). Furthermore, there are few
reports about Anderson-type POM deposited on ZrO2. The
reported information indicates that a synergistic effect
between the different POMs and ZrO2 is present for this
nanocomposite.36–38 In this work, ZrO2 thin films doped with
Anderson-type MnPOM (ZrO2/MnPOM) were synthesized and
fully characterized and also the effect of the modifications on
the photo-catalytic properties was studied. Finally, to support
all the observed experimental results, DFT calculations were
performed over a model system, to explain the observed cata-
lytic activity.

2. Experimental
2.1 Materials

The following reagents were used without further purification:
Zr(NO3)4·5H2O (Sigma-Aldrich, 99%), urea (Sigma-Aldrich
99.5%), glucose (Sigma-Aldrich >99.5%), citric acid (Sigma-
Aldrich >99.5%), (NH4)6Mo7O24·4H2O (Merck, 99%), Mn
(NO3)2·4H2O (Sigma-Aldrich, 98%) and peroxymonosulfuric
acid (Sigma-Aldrich 98%).

2.2. Synthesis of used compounds

ZrO2 powder was synthesized by a sol–gel method.39 First, 5 g
(12.5 mmol) of Zr(NO3)4·5H2O and 0.15 mg (2.5 mmol) of urea
were mixed in water at 50 °C and pH = 5. Then, 2.1 g
(11.7 mmol) of glucose (Sigma-Aldrich >99.5%) and 0.25 g
(1.2 mmol) of citric acid (Sigma-Aldrich >99.5%) were added.
This mixture was stirred for 4 days at 300 rpm until a homo-
geneous suspension was obtained. After that, the suspension
was dried at 423 K for 12 hours in an oven. Finally, the sinter-
ing process was carried out at 873 K for 6 hours in a muffle.
The mass ratio of the used reagents was Zr
(NO3)4·5H2O : urea : glucose : citric acid (1 : 0.03 : 0.42 : 0.05).
The yield of the process was 85%. The MnPOM was syn-
thesized using 2.5 g (2.0 mmol) of (NH4)6Mo7O24·4H2O
(Merck, 99%) and 0.9 g (4.0 mmol) of Mn(NO3)2·4H2O (Sigma-
Aldrich, 98%), which were dissolved in 100 mL of distilled
water by a co-precipitation method. The pH of this solution
was adjusted to 4.0–5.0 using peroxomonosulfuric acid
(H2SO5). The mixture was stirred at room temperature for
24 hours to allow for complete oxidation, followed by filtration
and drying at 333.15 K for 24 hours. The yield of the process
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was 90%. The synthesized MnPOM has the chemical formula
[MnMo6O24H6]

3−.40

2.3. Thin film deposition and characterization

We deposited ZrO2 thin films using the Doctor Blade tech-
nique according to the procedure reported earlier.41 The
addition of the MnPOM over the ZrO2 surface was carried out
by a chemisorption process. Therefore, the thin films were
immersed in a MnPOM suspension of 0.5 g (0.042 mmol)
MnPOM in 100 mL of distilled water for 24 hours at 25 °C and
stirring at 100 rpm. Then, the modified thin films were
cleaned with distilled water and dried at 333.15 K. To ensure
proper adherence of the nanoparticles to the thin films, a
thermal treatment was performed in an oven at 523 K for
30 minutes. The obtained samples were characterized by UV-
vis reflectance diffuse (ERS), FT-IR, SEM and EDX assay.

2.4. Adsorption and photocatalytic reactions

In the kinetic adsorption study, the thin films were immersed
in a batch reactor (100 mL) with a solution of MB (10 mg L−1).
The system was stirred in darkness and the adsorption process
was monitored by UV-vis spectrophotometry (at λ = 665 nm)
until the adsorption/desorption equilibrium was reached. The
process was carried out at different MB concentrations (20, 30,
40, 50 and 60 mg L−1). In the photocatalytic test, after the
adsorption/desorption equilibrium was reached, the system
was irradiated with a UV tubular lamp manufactured by
PHILIPS® (arc length 161 mm, tube diameter 16 mm, 7 W,
15 μW cm−2 at 1 m, emission maximum of 260 nm). The
photocatalytic process was monitored by UV-vis spectropho-
tometry (at λ = 665 nm) every 20 minutes. Finally, the
Langmuir–Hinshelwood (L–H) kinetic model was used to
describe the photocatalytic process.

2.5. Computational details

Density functional (DFT) and time-dependent DFT (TDDFT)
calculations were performed using the Amsterdam density
functional package (ADF 2019.01) using the zeroth order
regular approximation (ZORA) Hamiltonian with scalar
corrections.42,43 Slater type orbitals (STO) basis set using
triple-ζ accuracy44 with a single polarization function was
employed (TZP). All optimizations were performed using
analytical energy gradient techniques and the generalized gra-
dient approximation (GGA) method with nonlocal exchange
and correlation corrections within the BP86 functional.45,46

The conductor-like screening model (COSMO) was used to
model water as a solvent. Furthermore, to study the stability of
ZrO2/MnPOM, the Morokuma–Ziegler bonding energy
decomposition analysis43,47,48 was carried out. In this scheme,
the interaction energy, ΔΕInt, is divided into the ΔΕelec +
ΔΕPauli + ΔΕorb + ΔΕdisp components. (i) ΔEelec can be related
to the classical electrostatic interaction, calculated by superpo-
sition of the unperturbed fragment densities of the molecular
geometry; (ii) ΔEPauli, represents the repulsive interactions
between the fragments, as two electrons with the same
quantum numbers cannot occupy the same region in the

space and (iii) ΔEorb is the stabilizing orbital interaction
term.49

3. Results and discussion
3.1. FTIR characterization of thin films

Fig. 1 shows the FTIR spectra of the bare ZrO2 and ZrO2/
MnPOM thin films. The band located at 3000–4000 cm−1

corresponds to –OH bond stretching of the film surface
adsorbed water molecules. Also, the signal located at
1630 cm−1 corresponds to the bending of water –OH.50–52 The
signal located at 2380 cm−1 can be assigned to the Zr–OH
bond stretching as previously reported.53,54 The bare ZrO2

spectrum shows a broad band at 660 cm−1. This peak can be
assigned to the stretching of the Zr–O bond.54,55 The peak
located at 1414 cm−1 is assigned to the nitrates from the pre-
cursor used during the POM’s synthesis.56–59 The peaks
located between 1000 cm−1–500 cm−1 are associated with the
vibration of the MnPOM bonds. The characteristic signals
located at 980 cm−1; 660 cm−1 and 560 cm−1 are assigned to
both symmetric and anti-asymmetric stretching bands of Mo–
O–Mo bonds, which correspond to MnPOM. The signal
located at 815 cm−1 is assigned to the stretching of the Mn–O
bond, while the band located at 949 cm−1 is attributed to the
bending of the Mn–OH bond. Finally, the peak located at
848 cm−1 is assigned to the bending of the Mn–O bond.60,61

3.2. Morphological characterization of thin films

The catalytic activity of any material is highly dependent on
the shape, size, and size distribution of the particles. The mor-
phological characteristics of ZrO2 thin films are an important
result before the development of catalytic applications.
Fig. 2(a) shows SEM images of the thin films synthesized in
this work. The bare ZrO2 thin films consist of non-uniform
microcrystals. In some regions, agglomerates can be observed;
additionally, the SEM image shows holes in the ZrO2 film.

Fig. 1 FT-IR spectra of the bare ZrO2 and ZrO2/MnPOM thin films.
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This result is consistent with other reports on the use of the
sol–gel synthesis method for ZrO2 films.49 After surface modi-
fication, the agglomeration increased and, the surface showed
laminated agglomerates. These results could be beneficial for
photocatalytic application, as photogenerated charge pairs can
be separated between particles within agglomerates, reducing
the recombination rates.50 Fig. 2(b) shows the EDX assay for
ZrO2 and ZrO2/MnPOM thin films, and Table 1 lists the
elemental composition of the analyzed thin films. The shown
result is in agreement with a 12% MnPOM chemisorption, as
previously reported for similar modified materials.50

3.3. Optical thin film characterization

Fig. 3(a) shows UV-vis DRS of bare ZrO2 and ZrO2/MnPOM thin
films. The bare ZrO2 did not show any signal in the visible
electromagnetic spectrum, this is in concordance with its
higher energy band gap value. The signal in the spectrum
(333 nm) corresponds to an electronic excitation from the
valence band to the conduction band of the semiconductor
due to the charge transfer transition O2− (2P → Zr (A1g)).

42 The
ZrO2/MnPOM thin film shows a red-shift in the optical activity
with signals between (450 nm–590 nm) and (600–800 nm).
This result suggests that ZrO2/MnPOM can absorb visible radi-
ation, improving the optical properties compared with the

bare semiconductor. Fig. 1(b) shows the Kubelka–Munk func-
tion for the data shown in Fig. 1(a). The band gap (Eg) of cata-
lysts can be calculated from this figure.44,50 Thus, the bare
ZrO2 has an Eg value of 4.02 eV. This transition can be attribu-
ted to the structural extrinsic states due to particle size,
surface defects, or traps of the material.42,43 The Eg value
reported for ZrO2 is in the range of 3.5–5.1 eV, depending on
the synthesis technique, thus our data are in agreement with
those reported previously.45,46 The ZrO2/MnPOM shows an Eg
value of 3.70 eV, this reduction in the energy transition can be
associated with ligand-to-metal charge transfer (LMCT) that
involves the Anderson-type POM structure.48 This observed
change in the UV-vis spectrum might affect the photocatalytic
properties of the material.

3.4. Isothermal adsorption study

An important step before the photodegradation process of the
pollutant is to reach the adsorption–desorption equilibrium
state. This process is not commonly studied during photo-
catalytic activity studies. However, Zr-based sorbents have been
known for their removal capacity of different pollutants.62 In
this work, we studied the removal of MB on bare ZrO2 and
ZrO2/MnPOM thin films. We applied the isothermal models of
Langmuir (1), Freundlich (2), Temkin (3) and Dubinin–
Radushkevich (4) according to:59,60

qe ¼ qmKLCe

1þ KLCe
ð1Þ

qe ¼ KFCe
1=n ð2Þ

qe ¼ BT lnðATCeÞ ð3Þ

Fig. 2 SEM images of (a) ZrO2, (b) ZrO2/MnPOM thin films, and (c) EDX images of ZrO2/MnPOM thin films.

Table 1 EDX results of the synthesized thin films

Thin film % Zr % O % Mo % Mn

ZrO2 69.90 25.62 — —
ZrO2/MnPOM 55.19 24.84 10.62 7.65

Paper Dalton Transactions

2474 | Dalton Trans., 2025, 54, 2471–2482 This journal is © The Royal Society of Chemistry 2025

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

9 
D

ec
em

be
r 

20
24

. D
ow

nl
oa

de
d 

on
 2

/1
0/

20
26

 1
2:

26
:0

2 
A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d 

L
ic

en
ce

.
View Article Online

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d4dt02782e


qe ¼ qme�βε2 ; ε ¼ RT ln 1þ 1
Ce

� �
ð4Þ

where Ce is the MB concentration (mg L−1), qe is the MB
adsorbed on the catalyst (mg g−1) in the adsorption/desorption
equilibrium state, qe is the maximum adsorption capacity, KL

is the Langmuir constant, KF and n represent the intensity and
the maximum adsorption capacity of Freundlich isotherm,
respectively. B and KT are the constants of the Temkin iso-
therm model and quantify the heat and the binding
energy of the adsorption, respectively. Finally, the parameter β
(mol2 kJ−2) is the Dubinin–Radushkevich constant, ε relates

the Polanyi potential with the Ce and the saturation capacity of
the catalyst (qm).

61 Furthermore, we used the correlation coeffi-
cient (R2) and the average relative error (ARE) to determine a
suitable fitting:

ARE ¼ 100
n

Xn
i¼1

qe � qfj j
qe

ð5Þ

where qe is the experimental value, qf is the fitting value and n
is the total of data.62 Fig. 4 shows the isothermal fitting results
and Table 2 lists the physical–chemical parameters of the
fitting.

Fig. 3 (a) Diffuse reflectance spectra of thin films (b) Kubelka–Munk function and Eg value estimation.

Fig. 4 Isothermal fitting results for the thin films of (a) ZrO2 and (b) ZrO2/MnPOM.
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The experimental data show an L-shaped isotherm indicat-
ing that the MB adsorption process has a strong competition
between the water molecules and/or other molecules contain-
ing metal–oxygen (M–O) bonds for the active sites on the ZrO2

surface.60 This behavior has been previously reported for other
semiconductors (e.g., TiO2, ZnO).

32,63 According to the results
listed in Table 2, the Langmuir model adequately describes
the ZrO2 thin-film adsorption data (higher R2 and smaller
ARE), indicating a monolayer adsorption. This may indicate
that the adsorption takes place at specific sites and that all the
adsorption sites have equal affinity for the adsorbate. It might
be further assumed that the adsorption on one site does not
influence the adsorption on an adjacent site.64 However, after
the modification of the semiconductor by chemisorption of

MnPOM, it is observed that the monolayer behavior adsorption
of the MB changes to a multilayer adsorption (on the surface
of ZrO2/MnPOM).65 Therefore, Langmuir’s kinetic coefficients
were higher for ZrO2/MnPOM than for bare ZrO2, suggesting a
higher affinity for MB ions in the solution on ZrO2/MnPOM
than for bare ZrO2 thin films. This behavior could be due to
the interaction between POM metal–oxygen anion nano-
clusters and the MB molecules.66

3.5. Kinetic adsorption study

To model the kinetic data, two models were applied: pseudo-
first-order (6) and, pseudo-second-order (7), according to these
equations:

ln ðqt � qeÞ ¼ lnðqeÞ � k1t ð6Þ
t
qt

¼ 1
k2qe2

þ t
qe

ð7Þ

where qt is the MB adsorbed on the catalyst’s surface (mg g−1).
qe is the maximum adsorption capacity (mg g−1), and k1
(min−1) and, k2 (g mg−1 min−1) are the rate constants to the
pseudo-first and pseudo-second order, respectively. Fig. 5
shows the kinetic fitting of MB adsorption on the catalyst’s
thin films and Table 3 lists the physical chemical parameters
of the fitting.

Recently, adsorption kinetics has been a relevant part of
understanding the sorption processes, particularly in water
treatment processes. However, it is notable that these pro-
cesses have been less frequent and less explored in photo-
catalytic applications. The kinetic mechanism of MB adsorp-
tion in the catalysts can be studied indirectly using the kinetic
models mentioned above. Results show that thin films reach
the adsorption/desorption equilibrium after (25 min to

Table 2 Physical–chemical fitting results of the isothermal models

Isothermal model Parameter ZrO2

ZrO2/
MnPOM

Freundlich KF (mg g−1)/
(mg L−1)n

7.37 1.90

n 3.46 1.90
R2 0.865 0.925
ARE (%) 8.5 8.6

Langmuir qm (mg g−1) 20.57 62.89
KL (L mg−1) 0.285 0.118
R2 0.995 0.977
ARE (%) 3.4 4.9

Temkin BT 4.02 15.4
AT 3.84 1.09
R2 0.892 0.963
ARE (%) 5.3 9.5

Dubinin–Radushkevich β (mol2 kJ−2) × 10−6 2.1 2.8
qm (mg g−1) 18.17 44.35
R2 0.984 0.970
ARE (%) 4.3 9.2

Fig. 5 Kinetic fitting results of MB adsorption on both thin films: (a) ZrO2 and (b) ZrO2/MnPOM.
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30 min).67 The bare ZrO2 thin film showed a lower removal
capacity (∼8%) than ZrO2/MnPOM thin films (∼29%), indicat-
ing a greater affinity of MB for ZrO2/MnPOM than for bare
ZrO2. This might be due to the anionic properties of the POMs
assisting the sorption of the cationic dyes (e.g., MB).29,65 The
pseudo-second-order model was appropriate to describe the
experimental data for the adsorption process (higher R2 and
smaller ARE, see Table 3). During MB adsorption on the thin
film surface, chemisorption is considered as the main chemi-
cal interaction. The adsorption rate is proportional to the MB
concentration and behaves similarly to the first-order kinetics
in terms of its adsorption rate. In this context, effective electro-
static interactions play a significant role in the adsorption
phenomenon. The k2 values of the pseudo-second-order model
show a larger value for ZrO2/MnPOM compared to bare ZrO2,
indicating that both the adsorption capacity and the adsorp-
tion rate increased after the modification of the ZrO2 thin
films.

3.6. Photocatalytic study

In the kinetic degradation study, the Langmuir–Hinshelwood
model was applied68 as shown below.

ln ½MB�t ¼ ln ½MB�0 � kapðtÞ ð8Þ
where [MB]t is the MB concentration as a function of time
irradiation; (t ) is the time irradiation and the kap is the rate
constant of the process (min−1). Fig. 6 shows the MB concen-
tration decay under UV irradiation onto bare ZrO2 and ZrO2/
MnPOM thin films. Bare ZrO2 thin films reached 18% of MB
photodegradation, whereas ZrO2/MnPOM thin films reached
43% of MB photodegradation. The Langmuir–Hinshelwood
model fitting shows that bare ZrO2 thin films have a kap value
(2 × 10−3 min−1) smaller than ZrO2/MnPOM (5.4 × 10−3 min−1).
Therefore, the adsorbed POM could act as an electron scaven-
ger both on the surface and in the bulk of the material, redu-
cing the recombination rate, and thus, increasing the photo-
catalytic properties.32,69 The previously shown band gap
reduction observed for ZrO2/MnPOM could be responsible for
the increased photocatalytic activity. Similar results have been
reported before for ZrO2 modified with POMs, as shown in
Table 4.32,50,70

The recyclability of the catalysts is an important parameter
for developing photocatalytic applications. Fig. 7a shows the

results of the stability tests for bare ZrO2 and ZrO2/MnPOM
thin films. The ZrO2 films did not change significantly their
MB adsorption capacity even after the third cycle, suggesting
that the thin film deposition method was suitable. Fig. 7
shows that the MB adsorbed amount onto recycled ZrO2/
MnPOM thin films reduced gradually after each photocatalytic
cycle from 28% to 15%. Furthermore, the same trend was
observed in the photocatalytic test. Fig. 7b shows a slight
decrease in photocatalytic degradation after three cycles from
43% to 31%. The loss in photocatalytic activity might be
associated with the amount of the catalyst diminution through
the cycles. This result is similar to the one reported by Tang
et al., where they reported the obstruction of the adsorption by
surface residuals and the mass loss during catalyst recovery in
the bisphenol A photodegradation using POMs/TiO2 photoca-
talysts after 4 photocatalytic cycles.75

Fig. 6 MB concentration decay under UV irradiation for free MB and
onto bare ZrO2 and ZrO2/MnPOM thin films.

Table 4 Photocatalytic efficiency of different systems under UV
irradiation

Semiconductor
Pollutant/
irradiation time

Degradation
efficiency (%) Ref.

ZnO-Ag MB/180 min 35 71
BCTib/powder MB/180 min 90 72
CoPOM/TiO2 MB/300 min 50 73
SnO2/Fe RBa/180 min 55 74
ZrO2/MnPOM MB/100 min 43 This work

a Thin films. bGraphene oxide.

Table 3 Kinetic adsorption model fitting results for MB adsorption
onto thin films

Model Parameters ZrO2 ZrO2/MnPOM

1st order qe (mg g−1) 28.3 34.8
k1 (min−1) 0.109 0.151
R2 0.978 0.991
ARE (%) 5.8 3.3

2nd order qe (mg g−1) 28.5 33.5
k2 (g mg−1 min−1) × 10−3 0.150 0.209
R2 0.983 0.996
ARE (%) 6.5 2.5
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3.7. Computational modeling

It has been previously shown that ZrO2/CrPOM has a 43%
degradation under UV irradiation.50 In this report, a slightly
smaller degradation capability was obtained for ZrO2/MnPOM.
These slight observed differences can be supported with the
FMO localization, the global reactivity indexes and the EDA
analysis. Therefore, a reduced model considering a ZrO2 nano-
particle representation and one MnPOM was considered. The
EDA analysis shows similar results to those previously
reported. Furthermore, it is observed that the most active com-
pounds and Mn, have the largest stabilization energy on the
ZrO2 surface. This corroborates that the most stable molecule
has the best catalytic conversion over MB. The observed stabi-
lization is mostly due to the electrostatic contribution, which
correlates with the large charge of the studied POM. As shown
in Fig. 8, the HOMO and the LUMO show large contributions
to the dz

2 orbital. The reactivity indexes show the MnPOM has
similar reactivity in terms of chemical potential and chemical
hardness than the CrPOM (which shows the best photo-
catalytic activity), see Table 5. Also, MnPOM shows a large
value of electrophilicity compared to the CoPOM and
CuPOM.50

Finally, to provide a better rationalization of the photo-
catalytic activity for the MnPOM, TD-DFT calculations were
performed. As described before, due to the addition of the
MnPOM to the, there is observed an LMCT between the nano-
particle and POM, see Table 6. This transition involves orbitals
that are located over the ZrO2 nanoparticle towards the
MnPOM nanoparticle. Furthermore, larger energy transitions
have the opposite direction (from the MnPOM towards the
ZrO2 nanoparticle), data not shown. This charge separation
induced by the presence of the MnPOM in the structure would
explain the enhanced photocatalytic activity.Fig. 8 Frontier molecular orbitals for the ZrO2/MnPOM.

Fig. 7 Recyclability tests for photocatalytic degradation of MB onto ZrO2 and ZrO2/MnPOM thin films. (a) Adsorption (b) photocatalytic
degradation.
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4. Conclusions

A novel photocatalytic system based on ZrO2/POMs was syn-
thesized and characterized, exploring the incorporation of
manganese (Mn3+) as a transition metal within the molecular
structure of POMs. Optical results show a red shift in the
optical activity of the MnPOM-modified material, the band gap
value was lower for ZrO2 (3.70 eV) than the band gap value of
ZrO2/MnPOM (3.70 eV). Modeling of MB adsorption on thin
films revealed that the Langmuir model was suitable to
describe the adsorption process on both materials. Modified
ZrO2 thin films were more efficient in the photocatalytic degra-
dation of MB. Specifically bare ZrO2 thin films show a kap
value (2 × 10−3 min−1) smaller than that of ZrO2/MnPOM (5.4 ×
10−3 min−1). Results showed a significant improvement in the
adsorption capacity after modification of ZrO2 with MnPOM,
providing a positive effect on photochemical, photophysical
and photocatalytic properties. This increase in efficiency can
be attributed to improvement in the adsorption capacity and
optical properties of the material after modification with
MnPOM. Furthermore, DFT calculations suggested that charge
separation induced due to the presence of MnPOM in the
structure would explain the enhanced photocatalytic activity.
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