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Abstract

Solute carrier (SLC) transporters constitute the largest family of membrane transport proteins in
humans. They facilitate the movement of ions, neurotransmitters, nutrients, and drugs. Given their
critical role in regulating cellular physiology, they are important therapeutic targets for neurological
and psychological disorders, metabolic diseases, and cancer. Inhibition of SLC transporters can
modulate substrate gradients, restrict the cellular uptake of nutrients and drugs, and thereby
facilitate specific pharmacological effects. Despite their pharmaceutical relevance, many SLC
transporters remain understudied. Having a complete bioactivity matrix of associated compounds
can expand the knowledgebase of SLC ligands, enlarge the information pool to guide downstream
processes, and promote informed decision-making steps in discovery on new drug candidates for
SLC transporters. To address data sparsity of available compound-bioactivity values causing
inhibitory response for SLC transporters, we employed a multi-task learning approach with a data
imputation objective. By leveraging relationships between related tasks, deep learning has
previously shown promise in imputing compound bioactivities across multiple assays. We
developed a multi-task deep neural network (MT-DNN) to predict and impute missing pChEMBL
(-Log(IC50)) values across the SLC transporter superfamily. With a data matrix density of 2.53%
and an R? of 0.74, our model demonstrated robust predictive performance. Specifically, we
predicted missing values for 9,122 unique compounds across 54 SLC targets spanning various
folds and subfamilies, generating 480,133 predictions from 12,455 known interactions. The
advantages of the multi-task learning (MTL) approach were indicated in the ability of certain
targets to leverage the shared representation of knowledge and acquire increased predictive
accuracy over single-task learning (STL) counterparts. Despite the limitations set by low data
density, activity cliffs, and inter-protein heterogeneity, the MT-DNN showed promising potential
as a tool to address data sparsity within the SLC superfamily.

Introduction

SLC transporters are one of the largest groups of proteins in humans, accounting for 30% of the
total proteome. The SLC superfamily consists of more than 450 members that are organized into
65 families defined by sequence homology and physiological functions.” As membrane-bound
proteins, SLC members transport different types of molecules across the membranes. These
include amino acids, lipids, sugars, ions, neurotransmitters, and drugs. They exhibit different
underlying transport dynamics by utilizing ion concentration gradients as symporters,
translocating substrates in the opposite direction of ions as antiporters, and channel-like
properties for single transported molecules as uniporters. SLC transporters are distributed across
different tissues, including the brain, liver, and kidney. Being involved in the uptake and efflux of
molecules relevant to phase | and phase || metabolism, they impact the absorption and elimination
of drugs. Gene mutations in some SLC proteins that lead to altered or impaired ability to transport
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endogenous compounds contribute to the development of neurological diseases, cholesterol/bile
transport defects, and cancer.22 Inhibition of SLC transporters can facilitate pharmacological
effects with therapeutic purposes intended for treatment of different diseases.*Targetifngsugar
transporters of the SLC5 family to modulate substrate translocation has been proposed for
treatment of diabetes, cancer, and cardiovascular diseases.® Transport of neurotransmitters by
SLC6 family members can be disrupted by inhibitors that bind to the transporter and block the
conformational changes required for substrate uptake. Such inhibition regulates neurological
responses and forms the basis of several therapeutic strategies, including the treatment of
depression, attention-deficit hyperactivity disorder (ADHD), and other neuropsychiatric
conditions.® Organic anion transporters (OATs) of the SLC22 family mediate the transport of
negatively charged molecules such as nutrients, metabolites, toxins, and drugs. Inhibitors of
OATs can modulate substrate uptake and excretion, thereby influencing the absorption and renal
clearance of co-administered drugs and ultimately prolonging their exposure in patients.”
Conversely, organic cation transporters (OCTs) of the same family mediate the uptake of cationic
molecules in different tissues. Inhibition of OCT3 increases extracellular levels of serotonin and
norepinephrine, thereby providing an alternative therapeutic approach for the treatment of
depressive disorders. However, the scarcity of specific OCT3 ligands continues to limit
therapeutic development.8 Concomitant inhibition of OCTs and SLC 47 members, such as
multidrug and toxin extrusion protein 1 (MATE1), has been recognized as clinically relevant due
to their involvement in drug—drug interactions. Successful efforts have been made with in silico
methods to predict inhibitory activity of MATE1 and aid experts in drug discovery process.?

Increased utility of artificial intelligence in drug discovery has followed technological
advancements over the past years.'® Qualitative and quantitative properties of compiled datasets
have a major impact on the performance of machine learning and deep learning models. The data
used for training can contain various proportions of missing information due to technical errors or
the intrinsic nature of the objective.! This is evident in healthcare cases where patient information
is incorrectly documented or entirely missing.’? In the context of pharmaceutical research,
bioactivity information of compounds can be scarce depending on the target.'® This becomes
evident when comparing industry data warehouses with public data repositories such as
ChEMBL.415 Alternatively, there is less interest in targets that cause rare diseases, which leads
to a limited information pool available on their ligands.'® Moreover, investigative study showed
that bioactivity errors and dataset size directly influence accuracy scores of machine learning
models."”

Data imputation is a statistical method that is used to replace the missing values. In the context
of pharmacoinformatics, it utilizes sparsely filled experimental data to impute bioactivities or
properties of compounds by leveraging the relationships between available datapoints.'® Several
data imputation methods have been proposed in cases of biological assays with sparse data
matrices: (i) a single-task DNN model that was trained on a set of compounds to predict pIC50
values for each assay independently'®, (ii) a multi-task deep neural network that was trained to
predict the bioactivity values across each assay simultaneously??, (iii) feature nets approach with
two training steps that involve predicting activity values for each task independently in the first
step and using the predicted values as features together with compound descriptors to retrain the
model in the second step'?, (iv) the Alechmite DNN that uses compound descriptors and activity
values as inputs; the missing activity values are substituted for the mean values, and the model
is trained to iteratively update the predictions until no further improvement is observed.!821
Additional relevant approaches to consider for data imputation are pQSAR and matrix
factorization methods like Macau.?223 The common feature among most imputation approaches
that outperform single-task QSAR methods is that they establish the relationships between the
tasks as endpoints to facilitate some form of knowledge sharing or transfer.2* This can lead to
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increased performance in sparse datasets, extend the domain of applicability for dissimilar
molecules, and save computation time.25
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MTL aims to generate the shared representation of knowledge by simultaneous training on
multiple data domains from different tasks and, thereby, improve generalization capabilities.?®
This approach can be employed to predict bioactivity values or properties of compounds.2” Rather
than focusing on activity predictions for a single protein, MTL can facilitate predictions with
multiple outputs and benefit from establishing relationships between related tasks. Besides
having advantages of natural regularization, MTL models can transfer information between
different tasks and increase overall accuracy. This is specifically relevant in cases of individual
proteins with scarce data, as they can potentially benefit from other similar proteins through
shared knowledge. To avoid confusing the model, it is important to consider degrees of similarity
and how correlated the tasks (proteins) are.?®

In this study we explore MTL as a prediction tool with a data imputation objective to replace the
missing pChEMBL values of 9,122 unique compounds across 54 protein members of the SLC
superfamily as individual tasks. We developed two MT-DNNSs that were trained on different types
of descriptors for comparative purposes. In addition to the overall performance, target-based
performance was evaluated to inspect the abilities of individual proteins to exploit the advantages
of an MTL approach. We highlight challenges associated with activity cliffs and employ
dimensionality reduction methods to analyze discrepancies in the chemical space between high-
and low-scoring targets. Finally, we explore comparative analysis between prediction and
imputation abilities of the model. Even though protein targets belong to a single superfamily,
degrees of heterology between them can vary depending on the organizational hierarchy they
occupy. They belong to different families, subgroups, folds, and have different transport
mechanisms, substrates, and tissue localizations.?® Because of this, it is important to consider
putative inconsistencies in degrees of correlation between the targets as individual tasks that can
lead to negative transfers.30

Materials and Methods

Data acquisition and processing

All data operations and experiments were conducted in the Python programming language
(v3.11.5). The list of SLC transporters was acquired from the Resolute Knowledgebase3! and
merged with the UniProt human-protein dataset3? to associate UniProt-ID values with the
corresponding target names. The compiled SLC protein dataset contained 446 unique UniProt-
ID numbers, gene names, and protein names. The list of UniProt-IDs was queried via the
ChEMBL Database API (ChEMBL web services) to retrieve the corresponding ChEMBL-IDs of
individual targets.33

The ChEMBL-IDs of targets were imported into a Jupyter Notebook for compound retrieval from
ChEMBL33 database and processing with RDKit (v2024.03.05)."* Compounds that contained
inorganic elements were excluded, stereochemistry information was removed, and standardized
SMILES strings were calculated. The lowest pChEMBL value in the dataset was 4.0,
corresponding to an IC50 of 100,000 nM. During an analysis, it could not be confirmed whether
these entries at the lower end of the inhibitory potency distribution represented actual dose-
response measurements or simply reflected minimum reporting thresholds (100,000 or 10,000
nM). Therefore, data points with IC50 values of exactly 100,000 and 10,000 nM were excluded.
To ensure consistency across the 54 modeled targets, entries containing the substrings “muta”
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or “recombi”in the assay description column were removed. Mutagenized or recombinant variants
could introduce inconsistencies in target representation and confound the learning process.of the
multi-task model. Excluding these entries helped maintain a uniform definitiorr'of targetsearfd
improved the reliability of cross-target bioactivity estimation. Duplicate measurements of
pChEMBL values from identical compound-target pairs were replaced by the mean values if the
SEM (standard error of the mean) was lower than 0.2. Conversely, compound-target pairs with
an SEM higher than 0.2 were excluded from the dataset. Remaining duplicate entries were
consequently removed so that only one measurement was kept per compound-target pair in the
dataset.

After the processing steps, the table was formatted into a data matrix intended for a multi-task
imputation problem. Each compound was assigned the name of the associated target in the label
column designated for the stratified split. In cases where multiple targets were measured for a
single compound, the name of the target with the lowest number of compounds in the dataset
was assigned. This ensured proportional representation of each target in the training, validation,
and test sets. A split ratio of 80:10:10 for training, validation, and test sets was maintained across
all targets to ensure consistency. To establish valid evaluation across all endpoints, targets with
fewer than ten compounds were excluded so that each modeled target contained at least one
datapoint in both validation and test sets. Finally, the data matrix contained 9,122 unique
compounds across 54 targets, 25 families, and had a data density of 2.53% (Table 1). Two sets
of descriptors were used for comparative purposes. The Continuous Data Driven Descriptors
(CDDD) are calculated by an autoencoder model that was trained to represent molecular formats
such as SMILES as vectors of 512 continuous values.3* The repository containing the model and
instructions to calculate CDDDs is available on GitHub (htips://github.com/jrwnter/cddd). A
second set of descriptors was 1024 extended connectivity fingerprints with a radius of 3 (ECFP6),
which were calculated with a CDK module.3® The ECFP6 are circular fingerprints that contain
structural information of a given molecule in the form of the binary values (0/1).36

Table 1 Quantitative properties of the dataset after processing

Families Targets Compounds Data density
25 54 9122 2.528 %

Two different approaches, shown in Figure 1, were chosen to split the data. Figure 1B) Stratified
prediction split: Using a target-based stratified split to allocate 80% of the compounds to the
training set and 10% to the validation and test sets, respectively. Each compound, along with its
complete bioactivity profile, was treated as a single data point to ensure non-overlapping
compound distributions across sets. Random imputation split (Figure 1C): In this approach, data
were split according to bioactivity measurements rather than individual compounds. Compounds
with two or more available bioactivity values were divided into two data points, each representing
a different subset of their bioactivity profiles. One data point was assigned to the training set, and
the other was randomly allocated to either the validation or test set. This procedure artificially
introduced missing values in the training data which were then used for evaluation. Consequently,
all compounds from the validation and test sets were also present in the training set but with
differing bioactivity profiles. This setup was designed for imputation-specific evaluation and
contrasts with the compound-based prediction split due to intentional data leakage. Although
identical compounds were used during training, different output values were used to evaluate
knowledge sharing/transfer across targets.
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A) Starting data matrix

Compound TargetA | TargetB | Target C | Targetn
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Splitting the Splitting the
compounds outputs

B) Stratified prediction split C) Random imputation split

Compound Target A | TargetB | Target C | Targetn Compound Target A | TargetB | Target C | Targetn

C1 c1

Training Cc2

Training | C3

Val. ca4

Test C5

c1

Val.
- - Available pChEMBL value C4

- Missing pChEMBL value c2
Test

C5

Fig. 1 Simplified representation of the two data-splitting approaches. A) Mock bioactivity data matrix showing five
unique compounds across four different targets. Dark green cells indicate available bioactivity values, whereas light
green cells represent missing values. B) Stratified prediction split. entire data points (i.e., compounds with their
complete bioactivity profiles) are allocated to the training, validation, or test sets according to targets as labels. C)
Random imputation split. compounds with more than two available bioactivity measurements are split into two data
points with differing bioactivity profiles. One data point is assigned to the training set, and the other is randomly
allocated to either the validation or test set.

Quantitative outcome after applying two splitting approaches is shown in Table 2.
Table 2 Data splitting

Dataset Stratified prediction split Random imputation split
Training 7,297 9,122
Validation 913 1,200
Test 912 1,200

Hyperparameter optimization

Hyperparameters were tuned with Optuna library (v3.6.1) by setting the range of values or
categories for the model type, quantity of hidden layers, hidden-layer sizes, sizes of task-specific
layers, learning rate, and dropout rate.3” Parameters in Table 3 are shown as ranges of values in
“()” and categories as “[]”. The Bayesian search determined the optimal parameters by minimizing
the MSE value of the validation set calculated at the end of each training iteration (trial). A task-
specific domain with two layers was conditioned by the Model type being set to “shared and
specific”. If the Model type was set to “shared”, the task-specific layer took the role of an output
layer with the size corresponding to the number of modeled tasks (targets). Analogously, the size
of the third layer was conditioned by the Hidden depth being set to 3. The batch size was set to
128. After 300 iterations, the best-scoring set of parameters was selected to determine the
architecture and hyperparameters of the model.
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Table 3 Hyperparameter ranges and categories set for the Bayesian search of the MT-DNN models =~
DOI: 10.1039/D5DD00536A

Parameter Suggested value range-[] / category-()
Model type (shared, shared and specific)

Hidden depth (2, 3)

1st hidden layer [100-1200]

2"d hidden layer [50-500]
3" hidden layer [20-200]
1st specific layer [3-30]
27 specific layer [2-50]

Learning rate [0.000040-0.000170]
Dropout rate [0.07-0.50]
Patience [7-10]

MT-DNN architecture

The models were built as multiple-input/multiple-output feedforward backpropagation deep
neural networks with PyTorch (v2.3.0). They consist of an input layer, two or three fully
connected hidden layers, and one task-specific/output layer. LeakyRelLU was set as an
activation function. The sizes of the input and output layers were determined by the
number of descriptors and tasks, respectively. The sizes of hidden layers were determined
through hyperparameter optimization steps. The loss function was calculated as the
masked mean squared error (MSE) between the predicted and true values in the output
layer (1). To ensure that the model parameters were exclusively updated with the
MSE/loss derived from available values during training, predicted and true outputs were
masked at indices where no bioactivity measurement was originally observed. Adam was
selected as a method for stochastic optimization of the models. The MT-DNNs were
trained on the training set with the validation MSE/loss calculated at each epoch to
evaluate generalization performance and learning dynamics. To limit overfitting, a failsafe
mechanism, referred to previously as the patience parameter, was set to terminate the
training loop at the step where no improvement of the mean MSE validation value was
observed for 7-10 consecutive epochs.

MSE(masked) — it mi(yi=91) (1)

2111=1 m;

Model evaluation

The model was evaluated with descriptor-type performance discrepancies, overall-prediction
performance, learning dynamics, outlier vs. inlier evaluation, target-based prediction
performance, visualization of the chemical space, and overall-imputation performance with
benchmarking. To assess how well the entire dataset was represented by the model, 5-fold CV
was implemented for the prediction splits. Every equation indicated in Table 4 followed the
masked indexing principle of the MSE/loss function (1). Modules for data splitting, CV, and
evaluation were adopted from Scikit-learn. 38 Three categories were chosen for an MTL-STL
comparative analysis with aggregate task-specific evaluation: 1) Unweighted: calculating mean
scores and percentages by assuming that all targets are equally relevant. 2) Weighted: mean
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scores and percentages are adjusted by assigning higher relevance to targets with higher number
of compounds in the dataset. 3) Inversely weighted: mean scores and percentages are adjusted
by assigning higher relevance to targets with lower number of compounds in thecdataset:thdhivs
evaluation step, category 3 could be considered most representative form of quality assessment
for the knowledge sharing capabilities of the multi-task imputation framework, indicating
advantages/disadvantages the model has for underrepresented targets. Three targets that
represent distinct performance profiles observed during target-based evaluation were further
analyzed with 2D chemical space representation. Furthermore, as outlined in the section Data
acquisition and processing, conceptionally different approaches for data splitting were applied: (i)
In the case of the stratified prediction split, compounds are split such that entire molecules are
held out from training and the task corresponds to out-of-sample prediction. In this setting, the
model is evaluated on unseen compounds, and the objective is to assess generalization
performance, descriptor suitability, and target-specific predictive accuracy. (ii)) Random imputation
split we evaluates the same MT-DNN architecture retrained under a matrix-completion setting,
where the compound set is fixed and bioactivity values for certain targets are intentionally
removed during training. In this case, compounds are present as input entities during training but
removed target labels do not contribute to the MSE/loss function. Model performance is then
evaluated on these withheld entries. This setting corresponds to data imputation scenario, i.e.,
estimating missing values within a partially observed compound—target activity matrix.

Table 4 Evaluation metrics for performance assessment of the regression models

Metric Formula
1 n
Mean squared error MSE = HZ (vi —¥2%(2)
i=1
Yo, (vi—§i)?
Coefficient of determination RZ = l,}11—_12(3
Zi:l (YI -y )
Cross-validated (CV) R2 Q2% = R%(CV)(4)
Model training score MTS = R?(training)(5)
n
1
Mean absolute error MAE = HZ lyi — ¥il(6)
i=1

Root mean squared error

Single-task models

Single-task deep neural networks (ST-DNN) and single-task random forest (ST-RF) models were
generated with PyTorch and Scikit-learn respectively to conduct a comparative analysis between
the multi-task and single-task learning approaches. The hyperparameters for each single-task
model were tuned with a Bayesian search. The hyperparameter ranges shown in Supplementary
Table 1 for the ST-DNN, as well as the model architectures, were set to reflect the MT-DNN
model. The hyperparameter ranges of the ST-RF models are shown in Supplementary Table 2.
To maintain consistency across all three approaches, the optimum hyperparameters were
selected based on the minimum MSE value over 300 trials with Optuna. The data was split
randomly, and 5-fold CV was implemented in the evaluation step to assess the performance
across the entire dataset.
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Chemical space View Article Online
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The multi-dimensional information of chemical descriptors is reduced to two or three dimensions
for visual interpretation. This way, relationships between different compounds can be observed
while taking into consideration the context of the entire chemical dataset. Dimensionality reduction
algorithms can utilize different types of chemical descriptors to project the chemical space from
a set of compounds.3® The principles behind the Uniform Manifold Approximation and Projection
(UMAP) are series of mathematical operations that reduce the dimensionality of
features/descriptors while preserving the local structure of data. This method attempts to keep
neighboring data points in close proximity and thereby preserve their relationship from high
dimensionality in low-dimensional space. UMAP (v0.5.5) was used for visual representation of
the chemical space in this study.*° A set of 9,122 unique compounds with 512 CDDD descriptors
was used for the chemical space analysis. After the dimensionality reduction (Figure 2), 2D
embeddings were associated with the corresponding SMILES strings. The scatterplot of the
chemical space was generated with the Matplotlib library. Compounds were color-coded based
on the associated targets that were selected in the evaluation. The parameters shown in
Supplementary Table 3 for the UMAP model were tuned to represent the compounds belonging
to common families as neighbors in 2D and thereby form family-associated clusters.

SMILES strings CDDD Target
Compound 1 1 2 3 w. | 512 | Targeta
Compound 2 512 | Targetb

1 2 3
N UMAP model /
Compound 1 1 2 Targeta

Compound 2 1 2 Targetb
2D embeddings

gt

Chemical space

Fig. 2 Chart shows the dimensionality reduction of 512 CDDD descriptors into 2D embeddings for an exemplary
set of 2 compounds intended for chemical space visualization.
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Data imputation models for benchmarking

To evaluate the imputation performance of the MT-DNN, six additional imputation
frameworks were adopted in this workflow for comparative analysis. The choice of
benchmarking models was based on accessibility and technical reasons related to time
and cost restrains. Three models were selected from Scikit-lean library (Simplelmputer,
KNNImputer, and Iterativelmputer) and three from fancyimpute library (Softimpute,
IterativeSVD, and MatrixFactorization).*! Datasets obtained through the imputation split
(see Fig.1) were used to develop the models. To ensure consistency in the comparative
analysis, the same data format, comprising CDDD descriptors and a sparsely populated
bioactivity matrix used for MT-DNN training, was also employed to train the benchmarking
imputation models. Models followed similar strategy to the MT-DNN development by using
training data for fitting, validation data to optimize hyperparameters, and test data for
evaluation. Parameter ranges shown in Supplementary Table 4 were set for a grid search
of the respective imputation models.

For easier comprehension of the project development pipeline, an overview of the entire
workflow can be seen in Figure 3.
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! ; Chemical space analysis prediction comparison
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Fig. 3 Overview of the most relevant steps in the development of the MT-DNN for bioactivity prediction and
data imputation evaluation. Starting from the top left point, the workflow depicts steps that were necessary
in retrieving the data, processing data, calculating descriptors, performing data splits, developing, and
evaluating the model. Blue squares highlight the steps specifically related to the training and
hyperparameter optimization of the model, with a breakdown of a single epoch in the center. The workflow
chart was created at (https://app.diagrams.net/).

Results and Discussion

MT-DNN prediction performance

The parameters and architecture of the models shown in Table 5 were selected according
to a Bayesian search performed with the Optuna library. Both models achieved the lowest
MSE value of the validation set without the task-specific domain, indicating that the
standalone shared domain of the hidden layers contributes positively to the overall
performance of the model. Furthermore, the CDDD model has 2 hidden layers, whereas
the ECFP6 model has 3 hidden layers in the shared domain. Considering the results from
the evaluation metrics in Table 6, the CDDD model was able to achieve higher
performance with less architectural complexity than the ECFP6 model. With Q% and R?
values being closer to the MTS in Table 6, the CDDD model indicates a lower tendency

10
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to overfit to the training data. Additionally, learning dynamics comparison in Figure 4
shows that the MSE loss of the validation set from the CDDD model has a closer loss
curve to the training data when compared to the ECFP6 model. This trend remains
consistent overall and was a decisive factor for continuing to use CDDD descriptors in
further development and evaluation of the MTL approach.

g Table 5 Optimized hyperparameters for CDDD and ECFP6 models. Hidden layer (HL).

é Models

E Hyperparameters CDDD ECFP6

5 Input size 512 1020

2 HL1 size 800 1020

';E HL2 size 250 170

5 HLS3 size - 80

§ Task-specific 54 54

2 size

g Learning rate 0.000043 0.000105

g Dropout rate 0.1 0.09

é Patience 10 10

};j Descriptor-associated discrepancy in the performance proposes higher ability by CDDD
g representation of compounds to capture the diversity of chemical space that was
F necessary to model the SLC superfamily. As only one additional descriptor type was

considered, further comparative studies would be required for conclusive statements.

Open Access Article. Published on 08 January 2026. Downloaded on 1/11/2026 9:41:17 AM.

o Table 6 Evaluation results for CDDD and ECFP6 models (bold — the best value in a row)
Cross-validation Test-data
Model MTSt Q21 MSE| MAE| RMSE| R2 1 MSE| MAE]| lRMSE
CDDD 0.915 8.71 0.420 0.486 0.650 0.739 0.362 0.451 0.602
ECFP6 0.952 ?.66 0.501 0.536 0.708 0.689 0432 0477 0.657
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L CDDD: MSE(training) = 0.126
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Fig. 4 Learning dynamics graph shows mean values of MSE/loss over epochs for the training and validation
data. The values were derived from the 5-fold CV to represent the learning dynamics across the entire
dataset. MSE/loss values are shown on the y-axis across epochs represented on the x-axis.

Activity cliffs

Analysis of pChEMBL predictions with the highest error values (HEV) for a given
compound-target pair was conducted to identify the shortcomings of the MTL approach
with CDDD descriptors. The SLC6A4 target (serotonin transporter, SERT) had instances
of both HEV and low error value (LEV) predictions that showcase putative effects of
activity cliffs on the performance of the model. Both examples are compared with their
nearest neighbors identified via the NearestNeighbors module from Scikit-learn and
corresponding activity profiles. The HEV case in Table 7 shows that the predicted
pChEMBL of 6.39 falls within the range of values of the nearest neighbors for the same
target. However, the actual pChEMBL value of the HEV compound is 4.0. Considering
that the three closest neighbors of the HEV compound in the training set had a mean
pChEMBL value of 6.8, overprediction by the model could be attributed to the training-set
bias. Inversely, the LEV case in Table 7 has the actual and predicted values of the test
set compound falling within the bioactivity ranges of the nearest neighbors in the training
set. When considering further comparison of the two examples, a higher degree of
structural similarity between the LEV compound and its nearest neighbors can be
observed. The challenge associated with activity cliffs could be addressed by

12
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implementing proportional distribution of biological activities across similar compounds or
respective targets. This approach could ensure sufficient representation of various activity

ranges between different targets and induce a balanced learning profile by the model.

Table 7 HEV and LEV comparison from SLC6A4 target. ChEMBL-IDs and actual pChEMBL values are
annotated for each compound. Predicted pChEMBL values are annotated only for the HEV and LEV
compounds in the first row because they were allocated to the test set. The nearest neighbors (rows 2-4)
were allocated to the training set and, therefore, no prediction of the pChEMBL value was made during
evaluation. Left panel: an activity cliff example with HEV compound in the first row and its three nearest
neighbors below. Right panel: LEV compound in the first row and its three nearest neighbors below.

o . Actual Predicted .
HEV compound (activity cliff . Actual Predicted
example) — left panel EChEMB EChEMB LEV compound - right panel pChEMBL | pChEMBL
CHEMBL264262 CHEMBL406789
HN
S P I \f 4.0 6.39 . 7\ 6.82 6.82
@{ N [\
//N N, \O_/_J
Nearest neighbors of the HEV Nearest neighbors the LEV
compound in the training set compound in the training set
CHEMBL1255834 CHEMBL427904
HN
a ANHz 5.32 - 7.19 -
)\/'D“\/\r N <\ )
Ly M ind,
L N /// ] W
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Target-based evaluation

Performance scores for individual targets were calculated as Q? values using MT-DNN,
ST-DNN, and ST-RF models during 5-fold CV and the results are shown in Supplementary
Table 5. Targets that yielded negative Q? scores across all three models were excluded
from the comparative analysis. The remaining 31 targets that were considered for the
aggregate analysis comprised 8,698 unique compounds, representing 95.4% of the
dataset. When compared to other methods in Table 8, the MT-DNN model outperformed
the single-task models in all categories, except for the aggregate standard deviation (SD)
scores of the ST-RF model in the unweighted and weighted categories. The most notable
improvement was observed in the inversely weighted category, indicating that
underrepresented targets mostly benefited from the MT-DNN model without
compromising performance in other categories. Additionally, more than 60% of the targets
showed improved scores with the multi-task learning (MTL) approach.

Table 8 Target-based aggregate results for MT-DNN, ST-DNN, and ST-RF models under three weighting
schemes: unweighted (equal target contribution), weighted (proportional to number of compounds), and
inversely weighted (emphasizing smaller targets with inversely proportional number of compounds). Every
category has tree scores across 31 targets: Q?— mean of cross-validated coefficient of determination, Q2 —
SD — mean of standard deviations for the Q? value, and TSH — percentage of targets that improved with the
corresponding model.

Unweighted Weighted Inversely weighted

Model Q? Q?-SD TSH Q? Q?-SD TSH Q? Q?-SD TSH
(%) (%) (%)

MT-DNN  0.280 0.267  61.290 0.521 0.098  51.556 0.247 0.326 70.770
ST-DNN  -0.050 0.590 12.903 0.454 0.169  33.026 -0.475 1.046  5.299
ST-RF 0.232 0.205  25.806 0.496  0.075 15.417 0.069 0.340 23.931

To showcase discrepancies between positive and negative transfers with MTL, three
specific targets with different performance profiles were analyzed by a 2D representation
of the chemical space in Figure 5. The entire dataset was included in the chemical space
analysis to represent relationships between individual clusters. Starting with the highest-
scoring target in Table 9, SLC5A1 (sodium/glucose co-transporter, SGLT1) had a Q? of
0.809. The chemical space of compounds associated with SLC5A1 shows a wider degree
of coverage between multiple domains when compared to the other two targets in Figure
5. The compounds of the lowest-scoring target, SLC33A1 (acetyl-coenzyme A transporter
1), with a Q? of -2.554, contrast with the distribution pattern of the SLC5A1 chemical space
by having a localized and entirely isolated cluster. Based on this representation, it is
evident that no other member shares similar chemical space with SLC33A1. It cannot be
excluded that the cause of the discrepancy in the performance between the two targets
stems from quantitative imbalance of the dataset. SLC5A1 contributes 975 datapoints to
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the overall dataset, whereas SLC33A1 contributes 131 datapoints. Furthermore, SLC5A1
belongs to the SLC5 family with three additional protein members modeled as separate
tasks that collectively amount to 2,194 compounds in the dataset. Such instances of
correlated tasks would, as stated in the introduction, be able to leverage the shared
representation of knowledge generated with an MTL approach. To further support this
hypothesis, a Q2 value of 0.758 is observed for the SLC5A4 (sodium/glucose
cotransporter 3, SGLT3) target with 28 compounds in the dataset. Although it was

Open Access Article. Published on 08 January 2026. Downloaded on 1/11/2026 9:41:17 AM.

_§ represented by fewer datapoints, SLC5A4 scored higher than SLC33A1 in Table 9. As
= highlighted in Figure 5, compounds of SLC5A4 share the chemical space with other
g targets and do not form isolated clusters. Unlike SLC33A1, which was the single member
§ of the SLC33 family in the dataset, SLC5A4 belongs to the SLC5 family that is shared with
o three other members. Furthermore, comparison of the performance scores between the
E 20
§ 151
5 i
S o
5 £ 104
% E
8 9]
: £
5 5|
k) >
5
F ol ° other
o SLC5AL
o SLC33Al
o SLC5A4
B 10-8 6 -4-20 3 4 6 & 10

x embeddings

Fig. 5 Chemical space representation with UMAP. Individual compounds are colored according to associated
targets marked in the legend.

MT-DNN and ST-RF models in Table 9 suggests that the SLC5 members benefit from the
MTL approach, whereas the SLC33A1 target was able to achieve a higher score with the
ST-RF model. Understudied targets such as SLC5A4 have little information published on
their active compounds when compared to some other members of the SLC superfamily.
To the best of our knowledge, this MTL model presents itself currently as a unique tool for
compound bioactivity prediction and imputation of the SGLT3 (SLC5A4) transporter.

Table 9 Target-based evaluation with three examples highlighted for each performance case. The table
shows quantitative properties of selected targets with individual performance scores represented as Q2 and
standard deviation from the MT-DNN, ST-DNN, and ST-RF models. The table additionally shows the number
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of compounds for each target and their respective families. (bold — the best value in a row between three
models)

Target Compounds Family members Total compounds  MT-DNN (Q2)t ST-DNN (Q2)t ST-RF (Q?)1

SLC5A1 975 4 2194 0.809 +0.006 0.795+0.021 0.799 + 0.025
SLC33A1 131 1 131 -2.554 +1.548 -2.866 + 3.151 0.086 +0.198
SLC5A4 28 4 2194 0.758 £0.107 0.428 + 0.587 0.667 +0.201

Data imputation performance

An imputation-dedicated split was chosen to evaluate the ability of an MTL approach to
predict the pChEMBL values of compounds for targets not used in the output layer during
training. This means that the model is tested on compounds that are available in the
training set but show different output profiles. Unlike the conventional approach where the
model is tested on an entirely new and previously unseen set of compounds, this step
examines how well the model performs in an imputation-driven setting by estimating
pChEMBL values of known compounds for a different target.

Since neither the CDDD nor ECFP6 prediction models achieved a minimum MSE
validation value with the inclusion of task-specific neural network domains (Table 5), only
the shared domain was incorporated as a parameter during the optimization of the CDDD
imputation model. As shown in Table 10, the CDDD imputation model achieved the lowest
MSE value for the validation set with higher architectural complexity than the prediction
counterpart. One additional hidden layer was selected along with a higher learning rate
and identical patience to counter overfitting.

Table 10 Comparison between optimized parameters of the prediction and imputation split models

Models

Hyperparameters  CDDD prediction CDDD
imputation

Input size 512 1020
H1 size 800 1020
H2 size 250 170
H3 size - 80
Task-specific size 54 54
Learning rate 0.000043 0.000105
Dropout rate 0.1 0.09
Patience 10 10
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The CV step was excluded in this section due to the lack of sufficient number of
compounds with five or more bioactivity measurements for accurate allocation in
each fold. Results in Table 11 show that CDDD imputation was able to score
relatively close to the CDDD prediction model. A slight improvement in the
prediction performance over the imputation performance could be attributed to the
skewed data distribution introduced by the imputation split, which may affect
generalization. The imputation split only considers compounds with two or more

_% measurements, potentially biasing target representation, molecule types, and
f@l activity values.
% Table 11 Comparison between the scoring metrics of prediction and imputation assessment (bold — the
§ best value in a row)
g Models
é Metrics CDDD prediction  CDDD imputation
5 MTS? 0.942 0.940
.g c Ry 0.754 0.705
E g § MSE| 0.377 0.429
E T MAE| 0.465 0.503
3 = RMSE|  0.615 0.655
= R21 0.739 0.720
: B w5 MSE| 0.362 0.407
£ = ® MAE| 0.451 0.477
RMSE| 0.602 0.638

Open Access Article. Published on 08 January 2026. Downloaded on 1/11/2026 9:41:17 AM.

Comparative analysis between accuracy scores on the test-set in Table 12 shows that the
MT-DNN outperforms all six imputation methods chosen for benchmarking. The second-
highest scoring method is k-Nearest Neighbor from sklearn.imputers module. Considering
both high prediction and imputation performance, MTL presents itself as a suitable and
versatile tool in bioactivity-value estimation of compounds towards SLC transporters.

(cc)

Table 12 Benchmarking MT-DNN performance against six different imputation methods. Scores are
calculated on the test-set that was derived from the random imputation split. Column 2 — MT-DNN
imputation. Columns 3 to 5 - sklearn.imputers: S-mean — Simplelmputer with mean method, kNN — k Nearest
Neighbor, Iterative — lIterativelmputer. Columns 6 to 8 -fancyimpute: Soft — Softimpute, I-SVD —
lterativeSVD, MF — MatrixFactorization.

sklearn.imputers fancyimpute
MT-DNN  S-mean KNN lterative Soft I-SVD MF
R? 1 0.720 0.098 0.672 0.471 -0.400 0.107 0.489
MSE | 0.407 1.312 0.477 0.667 2.033 1.299 0.744
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Conclusion

With this study, we present an MTL-based prediction to complete a bioactivity matrix of
compounds for the superfamily of SLC transporters. Besides replacing the missing values,
the MT-DNN could predict bioactivity profiles for out-of-sample compounds and showcase
overall satisfactory performance scores. Further results indicate that the selection of
different types of descriptors can affect the ability of the model to achieve reliable
predictions. In this case, the causality of descriptor-type discrepancies in the performance
is not completely understood, and further studies are necessary for conclusive
statements. Based on individual bioactivity-prediction error analysis and target-based
evaluation, it cannot be excluded that the shortcomings of our MTL approach are
associated with the presence of activity cliffs and heterogeneity between the modeled
targets. The dataset contains compounds with similar structural properties but contrasting
bioactivity values or sets of associated targets. If imbalanced in quantity and distribution
between the training, validation, and test sets, such outlier instances designated as activity
cliffs can impact the performance of the model. A similar observation was noted for a
target-specific outlier, where the MTL model struggled to accurately predict the bioactivity
values of compounds that formed an isolated cluster in the chemical space analysis.
Conversely, the performance of SLC5A4 suggests that a target with a low quantity of
datapoints could benefit from the MTL approach if it shares certain qualitative and
quantitative properties with other correlated targets, such as having common families or
similar chemical space. In conclusion, the comparative analysis demonstrates suitability
of the multi-task model as a prediction tool intended for a data imputation task. Besides
scoring highest during benchmarking against six established imputation methods, MT-
DNN outperformed the single-task models by achieving higher accuracy for
underrepresented targets. Despite this improvement bias, the MT-DNN model achieved
comparable or slightly higher scores for most other targets with larger numbers of
compounds, highlighting its strengths in handling missing bioactivity data for an
imbalanced target-space.

Data availability

The data used for this study was available on Resolute Knowledgebase at:
https://doi.org/10.5281/zenodo0.4309586
https://re-solute.eu/knowledgebase/gene

The UniProt dataset was available at:
https://doi.org/10.1093/nar/gkae1010
https://www.uniprot.org/uniprotkb?query=*&facets=model organism%3A9606

The intermediary datasets generated after standardization, processing, and calculating
descriptors are available on the GitHub repository along with the Jupyter Notebook and
Python scripts used for the development of this study at:
https://doi.org/10.5281/zen0do.17991114
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Data availability

The data used for this study was available on Resolute Knowledgebase at:
https://doi.org/10.5281/zenod0.4309586
https://re-solute.eu/knowledgebase/gene

The UniProt dataset was available at:
https://doi.org/10.1093/nar/gkae1010
https://www.uniprot.org/uniprotkb?query=*&facets=model_organism%3A9606

The intermediary datasets generated after standardization, processing, and calculating
descriptors are available on the GitHub repository along with the Jupyter Notebook and
Python scripts used for the development of this study at:
https://doi.org/10.5281/zenodo.17991114
https://github.com/PharminfoVienna/SLC-data-imputation
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