
rsc.li/digitaldiscovery

 Digital
  Discovery

rsc.li/digitaldiscovery

ISSN 2635-098X

Volume 1
Number 1
January 2022

 Digital
  Discovery
Accepted Manuscript

This is an Accepted Manuscript, which has been through the  
Royal Society of Chemistry peer review process and has been accepted 
for publication.

Accepted Manuscripts are published online shortly after acceptance, 
before technical editing, formatting and proof reading. Using this free 
service, authors can make their results available to the community, in 
citable form, before we publish the edited article. We will replace this 
Accepted Manuscript with the edited and formatted Advance Article as 
soon as it is available.

You can find more information about Accepted Manuscripts in the 
Information for Authors.

Please note that technical editing may introduce minor changes to the 
text and/or graphics, which may alter content. The journal’s standard 
Terms & Conditions and the Ethical guidelines still apply. In no event 
shall the Royal Society of Chemistry be held responsible for any errors 
or omissions in this Accepted Manuscript or any consequences arising 
from the use of any information it contains. 

View Article Online
View Journal

This article can be cited before page numbers have been issued, to do this please use:  T. Cerimagic, S.

Sosnin and G. F. Ecker, Digital Discovery, 2025, DOI: 10.1039/D5DD00536A.

https://doi.org/10.1039/d5dd00536a
https://pubs.rsc.org/en/journals/journal/DD
http://crossmark.crossref.org/dialog/?doi=10.1039/D5DD00536A&domain=pdf&date_stamp=2026-01-08


1

A Multi-Task Learning Approach for Prediction of Missing 
Bioactivity Values of Compounds for the SLC Transporter 
Superfamily
Tarik Ćerimagić, Sergey Sosnin, and Gerhard F. Ecker*
University of Vienna, Department of Pharmaceutical Sciences
Josef Holaubek Platz 2, 1090 Vienna, Austria
Address correspondence to: gerhard.f.ecker@univie.ac.at

Abstract
Solute carrier (SLC) transporters constitute the largest family of membrane transport proteins in 
humans. They facilitate the movement of ions, neurotransmitters, nutrients, and drugs. Given their 
critical role in regulating cellular physiology, they are important therapeutic targets for neurological 
and psychological disorders, metabolic diseases, and cancer. Inhibition of SLC transporters can 
modulate substrate gradients, restrict the cellular uptake of nutrients and drugs, and thereby 
facilitate specific pharmacological effects. Despite their pharmaceutical relevance, many SLC 
transporters remain understudied. Having a complete bioactivity matrix of associated compounds 
can expand the knowledgebase of SLC ligands, enlarge the information pool to guide downstream 
processes, and promote informed decision-making steps in discovery on new drug candidates for 
SLC transporters. To address data sparsity of available compound-bioactivity values causing 
inhibitory response for SLC transporters, we employed a multi-task learning approach with a data 
imputation objective. By leveraging relationships between related tasks, deep learning has 
previously shown promise in imputing compound bioactivities across multiple assays. We 
developed a multi-task deep neural network (MT-DNN) to predict and impute missing pChEMBL 
(-Log(IC50)) values across the SLC transporter superfamily. With a data matrix density of 2.53% 
and an R2 of 0.74, our model demonstrated robust predictive performance. Specifically, we 
predicted missing values for 9,122 unique compounds across 54 SLC targets spanning various 
folds and subfamilies, generating 480,133 predictions from 12,455 known interactions. The 
advantages of the multi-task learning (MTL) approach were indicated in the ability of certain 
targets to leverage the shared representation of knowledge and acquire increased predictive 
accuracy over single-task learning (STL) counterparts. Despite the limitations set by low data 
density, activity cliffs, and inter-protein heterogeneity, the MT-DNN showed promising potential 
as a tool to address data sparsity within the SLC superfamily.

Introduction
SLC transporters are one of the largest groups of proteins in humans, accounting for 30% of the 
total proteome. The SLC superfamily consists of more than 450 members that are organized into 
65 families defined by sequence homology and physiological functions.1 As membrane-bound 
proteins, SLC members transport different types of molecules across the membranes. These 
include amino acids, lipids, sugars, ions, neurotransmitters, and drugs. They exhibit different 
underlying transport dynamics by utilizing ion concentration gradients as symporters, 
translocating substrates in the opposite direction of ions as antiporters, and channel-like 
properties for single transported molecules as uniporters. SLC transporters are distributed across 
different tissues, including the brain, liver, and kidney. Being involved in the uptake and efflux of 
molecules relevant to phase I and phase II metabolism, they impact the absorption and elimination 
of drugs. Gene mutations in some SLC proteins that lead to altered or impaired ability to transport 
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endogenous compounds contribute to the development of neurological diseases, cholesterol/bile 
transport defects, and cancer.2,3 Inhibition of SLC transporters can facilitate pharmacological 
effects with therapeutic purposes intended for treatment of different diseases.4 Targeting sugar 
transporters of the SLC5 family to modulate substrate translocation has been proposed for 
treatment of diabetes, cancer, and cardiovascular diseases.5 Transport of neurotransmitters by 
SLC6 family members can be disrupted by inhibitors that bind to the transporter and block the 
conformational changes required for substrate uptake. Such inhibition regulates neurological 
responses and forms the basis of several therapeutic strategies, including the treatment of 
depression, attention-deficit hyperactivity disorder (ADHD), and other neuropsychiatric 
conditions.6 Organic anion transporters (OATs) of the SLC22 family mediate the transport of 
negatively charged molecules such as nutrients, metabolites, toxins, and drugs. Inhibitors of 
OATs can modulate substrate uptake and excretion, thereby influencing the absorption and renal 
clearance of co-administered drugs and ultimately prolonging their exposure in patients.7 
Conversely, organic cation transporters (OCTs) of the same family mediate the uptake of cationic 
molecules in different tissues. Inhibition of OCT3 increases extracellular levels of serotonin and 
norepinephrine, thereby providing an alternative therapeutic approach for the treatment of 
depressive disorders. However, the scarcity of specific OCT3 ligands continues to limit 
therapeutic development.8 Concomitant inhibition of OCTs and SLC 47 members, such as 
multidrug and toxin extrusion protein 1 (MATE1), has been recognized as clinically relevant due 
to their involvement in drug–drug interactions. Successful efforts have been made with in silico 
methods to predict inhibitory activity of MATE1 and aid experts in drug discovery process.9

Increased utility of artificial intelligence in drug discovery has followed technological 
advancements over the past years.10 Qualitative and quantitative properties of compiled datasets 
have a major impact on the performance of machine learning and deep learning models. The data 
used for training can contain various proportions of missing information due to technical errors or 
the intrinsic nature of the objective.11 This is evident in healthcare cases where patient information 
is incorrectly documented or entirely missing.12 In the context of pharmaceutical research, 
bioactivity information of compounds can be scarce depending on the target.13 This becomes 
evident when comparing industry data warehouses with public data repositories such as 
ChEMBL.14,15 Alternatively, there is less interest in targets that cause rare diseases, which leads 
to a limited information pool available on their ligands.16 Moreover, investigative study showed 
that bioactivity errors and dataset size directly influence accuracy scores of machine learning 
models.17

Data imputation is a statistical method that is used to replace the missing values. In the context 
of pharmacoinformatics, it utilizes sparsely filled experimental data to impute bioactivities or 
properties of compounds by leveraging the relationships between available datapoints.18 Several 
data imputation methods have been proposed in cases of biological assays with sparse data 
matrices: (i) a single-task DNN model that was trained on a set of compounds to predict pIC50 
values for each assay independently19, (ii) a multi-task deep neural network that was trained to 
predict the bioactivity values across each assay simultaneously20, (iii) feature nets approach with 
two training steps that involve predicting activity values for each task independently in the first 
step and using the predicted values as features together with compound descriptors to retrain the 
model in the second step19, (iv) the Alechmite DNN that uses compound descriptors and activity 
values as inputs; the missing activity values are substituted for the mean values, and the model 
is trained to iteratively update the predictions until no further improvement is observed.18,21 
Additional relevant approaches to consider for data imputation are pQSAR and matrix 
factorization methods like Macau.22,23 The common feature among most imputation approaches 
that outperform single-task QSAR methods is that they establish the relationships between the 
tasks as endpoints to facilitate some form of knowledge sharing or transfer.24 This can lead to 
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increased performance in sparse datasets, extend the domain of applicability for dissimilar 
molecules, and save computation time.25

MTL aims to generate the shared representation of knowledge by simultaneous training on 
multiple data domains from different tasks and, thereby, improve generalization capabilities.26 
This approach can be employed to predict bioactivity values or properties of compounds.27 Rather 
than focusing on activity predictions for a single protein, MTL can facilitate predictions with 
multiple outputs and benefit from establishing relationships between related tasks. Besides 
having advantages of natural regularization, MTL models can transfer information between 
different tasks and increase overall accuracy. This is specifically relevant in cases of individual 
proteins with scarce data, as they can potentially benefit from other similar proteins through 
shared knowledge. To avoid confusing the model, it is important to consider degrees of similarity 
and how correlated the tasks (proteins) are.28

In this study we explore MTL as a prediction tool with a data imputation objective to replace the 
missing pChEMBL values of 9,122 unique compounds across 54 protein members of the SLC 
superfamily as individual tasks. We developed two MT-DNNs that were trained on different types 
of descriptors for comparative purposes. In addition to the overall performance, target-based 
performance was evaluated to inspect the abilities of individual proteins to exploit the advantages 
of an MTL approach. We highlight challenges associated with activity cliffs and employ 
dimensionality reduction methods to analyze discrepancies in the chemical space between high- 
and low-scoring targets. Finally, we explore comparative analysis between prediction and 
imputation abilities of the model. Even though protein targets belong to a single superfamily, 
degrees of heterology between them can vary depending on the organizational hierarchy they 
occupy. They belong to different families, subgroups, folds, and have different transport 
mechanisms, substrates, and tissue localizations.29 Because of this, it is important to consider 
putative inconsistencies in degrees of correlation between the targets as individual tasks that can 
lead to negative transfers.30 

Materials and Methods
Data acquisition and processing
All data operations and experiments were conducted in the Python programming language 
(v3.11.5). The list of SLC transporters was acquired from the Resolute Knowledgebase31 and 
merged with the UniProt human-protein dataset32 to associate UniProt-ID values with the 
corresponding target names. The compiled SLC protein dataset contained 446 unique UniProt-
ID numbers, gene names, and protein names. The list of UniProt-IDs was queried via the 
ChEMBL Database API (ChEMBL web services) to retrieve the corresponding ChEMBL-IDs of 
individual targets.33 

The ChEMBL-IDs of targets were imported into a Jupyter Notebook for compound retrieval from 
ChEMBL33 database and processing with RDKit (v2024.03.05).14 Compounds that contained 
inorganic elements were excluded, stereochemistry information was removed, and standardized 
SMILES strings were calculated. The lowest pChEMBL value in the dataset was 4.0, 
corresponding to an IC50 of 100,000 nM. During an analysis, it could not be confirmed whether 
these entries at the lower end of the inhibitory potency distribution represented actual dose-
response measurements or simply reflected minimum reporting thresholds (100,000 or 10,000 
nM). Therefore, data points with IC50 values of exactly 100,000 and 10,000 nM were excluded. 
To ensure consistency across the 54 modeled targets, entries containing the substrings “muta” 
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or “recombi” in the assay description column were removed. Mutagenized or recombinant variants 
could introduce inconsistencies in target representation and confound the learning process of the 
multi-task model. Excluding these entries helped maintain a uniform definition of targets and 
improved the reliability of cross-target bioactivity estimation. Duplicate measurements of 
pChEMBL values from identical compound-target pairs were replaced by the mean values if the 
SEM (standard error of the mean) was lower than 0.2. Conversely, compound-target pairs with 
an SEM higher than 0.2 were excluded from the dataset. Remaining duplicate entries were 
consequently removed so that only one measurement was kept per compound-target pair in the 
dataset.

After the processing steps, the table was formatted into a data matrix intended for a multi-task 
imputation problem. Each compound was assigned the name of the associated target in the label 
column designated for the stratified split. In cases where multiple targets were measured for a 
single compound, the name of the target with the lowest number of compounds in the dataset 
was assigned. This ensured proportional representation of each target in the training, validation, 
and test sets. A split ratio of 80:10:10 for training, validation, and test sets was maintained across 
all targets to ensure consistency. To establish valid evaluation across all endpoints, targets with 
fewer than ten compounds were excluded so that each modeled target contained at least one 
datapoint in both validation and test sets. Finally, the data matrix contained 9,122 unique 
compounds across 54 targets, 25 families, and had a data density of 2.53% (Table 1). Two sets 
of descriptors were used for comparative purposes. The Continuous Data Driven Descriptors 
(CDDD) are calculated by an autoencoder model that was trained to represent molecular formats 
such as SMILES as vectors of 512 continuous values.34 The repository containing the model and 
instructions to calculate CDDDs is available on GitHub (https://github.com/jrwnter/cddd). A 
second set of descriptors was 1024 extended connectivity fingerprints with a radius of 3 (ECFP6), 
which were calculated with a CDK module.35 The ECFP6 are circular fingerprints that contain 
structural information of a given molecule in the form of the binary values (0/1).36

Table 1 Quantitative properties of the dataset after processing

Families Targets Compounds Data density
25 54 9122 2.528 % 

Two different approaches, shown in Figure 1, were chosen to split the data. Figure 1B) Stratified 
prediction split: Using a target-based stratified split to allocate 80% of the compounds to the 
training set and 10% to the validation and test sets, respectively. Each compound, along with its 
complete bioactivity profile, was treated as a single data point to ensure non-overlapping 
compound distributions across sets. Random imputation split (Figure 1C): In this approach, data 
were split according to bioactivity measurements rather than individual compounds. Compounds 
with two or more available bioactivity values were divided into two data points, each representing 
a different subset of their bioactivity profiles. One data point was assigned to the training set, and 
the other was randomly allocated to either the validation or test set. This procedure artificially 
introduced missing values in the training data which were then used for evaluation. Consequently, 
all compounds from the validation and test sets were also present in the training set but with 
differing bioactivity profiles. This setup was designed for imputation-specific evaluation and 
contrasts with the compound-based prediction split due to intentional data leakage. Although 
identical compounds were used during training, different output values were used to evaluate 
knowledge sharing/transfer across targets.
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Fig. 1 Simplified representation of the two data-splitting approaches. A) Mock bioactivity data matrix showing five 
unique compounds across four different targets. Dark green cells indicate available bioactivity values, whereas light 
green cells represent missing values. B) Stratified prediction split: entire data points (i.e., compounds with their 
complete bioactivity profiles) are allocated to the training, validation, or test sets according to targets as labels. C) 
Random imputation split: compounds with more than two available bioactivity measurements are split into two data 
points with differing bioactivity profiles. One data point is assigned to the training set, and the other is randomly 
allocated to either the validation or test set.

Quantitative outcome after applying two splitting approaches is shown in Table 2. 
Table 2 Data splitting

Dataset Stratified prediction split Random imputation split
Training 7,297 9,122
Validation 913 1,200
Test 912 1,200

Hyperparameter optimization
Hyperparameters were tuned with Optuna library (v3.6.1) by setting the range of values or 
categories for the model type, quantity of hidden layers, hidden-layer sizes, sizes of task-specific 
layers, learning rate, and dropout rate.37 Parameters in Table 3 are shown as ranges of values in 
“()” and categories as “[]”. The Bayesian search determined the optimal parameters by minimizing 
the MSE value of the validation set calculated at the end of each training iteration (trial). A task-
specific domain with two layers was conditioned by the Model type being set to “shared and 
specific”. If the Model type was set to “shared”, the task-specific layer took the role of an output 
layer with the size corresponding to the number of modeled tasks (targets). Analogously, the size 
of the third layer was conditioned by the Hidden depth being set to 3. The batch size was set to 
128. After 300 iterations, the best-scoring set of parameters was selected to determine the 
architecture and hyperparameters of the model.
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Table 3 Hyperparameter ranges and categories set for the Bayesian search of the MT-DNN models

Parameter Suggested value range-[] / category-()
Model type (shared, shared and specific)
Hidden depth (2, 3)
1st hidden layer [100-1200]
2nd hidden layer [50-500] 
3rd hidden layer [20-200]
1st specific layer [3-30]
2nd specific layer [2-50]
Learning rate [0.000040-0.000170] 
Dropout rate [0.07-0.50] 
Patience [7-10]

MT-DNN architecture
The models were built as multiple-input/multiple-output feedforward backpropagation deep 
neural networks with PyTorch (v2.3.0). They consist of an input layer, two or three fully 
connected hidden layers, and one task-specific/output layer. LeakyReLU was set as an 
activation function. The sizes of the input and output layers were determined by the 
number of descriptors and tasks, respectively. The sizes of hidden layers were determined 
through hyperparameter optimization steps. The loss function was calculated as the 
masked mean squared error (MSE) between the predicted and true values in the output 
layer (1). To ensure that the model parameters were exclusively updated with the 
MSE/loss derived from available values during training, predicted and true outputs were 
masked at indices where no bioactivity measurement was originally observed. Adam was 
selected as a method for stochastic optimization of the models. The MT-DNNs were 
trained on the training set with the validation MSE/loss calculated at each epoch to 
evaluate generalization performance and learning dynamics. To limit overfitting, a failsafe 
mechanism, referred to previously as the patience parameter, was set to terminate the 
training loop at the step where no improvement of the mean MSE validation value was 
observed for 7-10 consecutive epochs. 

𝐌𝐒𝐄(𝐦𝐚𝐬𝐤𝐞𝐝) =  ∑𝐧
𝐢=𝟏 𝐦𝐢 𝐲𝐢―𝐲𝐢

𝟐

∑𝐧
𝟏=𝟏 𝐦𝐢

(1)  

Model evaluation
The model was evaluated with descriptor-type performance discrepancies, overall-prediction 
performance, learning dynamics, outlier vs. inlier evaluation, target-based prediction 
performance, visualization of the chemical space, and overall-imputation performance with 
benchmarking. To assess how well the entire dataset was represented by the model, 5-fold CV 
was implemented for the prediction splits. Every equation indicated in Table 4 followed the 
masked indexing principle of the MSE/loss function (1). Modules for data splitting, CV, and 
evaluation were adopted from Scikit-learn. 38 Three categories were chosen for an MTL-STL 
comparative analysis with aggregate task-specific evaluation: 1) Unweighted: calculating mean 
scores and percentages by assuming that all targets are equally relevant. 2) Weighted: mean 
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scores and percentages are adjusted by assigning higher relevance to targets with higher number 
of compounds in the dataset. 3) Inversely weighted: mean scores and percentages are adjusted 
by assigning higher relevance to targets with lower number of compounds in the dataset. In this 
evaluation step, category 3 could be considered most representative form of quality assessment 
for the knowledge sharing capabilities of the multi-task imputation framework, indicating 
advantages/disadvantages the model has for underrepresented targets. Three targets that 
represent distinct performance profiles observed during target-based evaluation were further 
analyzed with 2D chemical space representation. Furthermore, as outlined in the section Data 
acquisition and processing, conceptionally different approaches for data splitting were applied: (i) 
In the case of the stratified prediction split, compounds are split such that entire molecules are 
held out from training and the task corresponds to out-of-sample prediction. In this setting, the 
model is evaluated on unseen compounds, and the objective is to assess generalization 
performance, descriptor suitability, and target-specific predictive accuracy. (ii) Random imputation 
split we evaluates the same MT-DNN architecture retrained under a matrix-completion setting, 
where the compound set is fixed and bioactivity values for certain targets are intentionally 
removed during training. In this case, compounds are present as input entities during training but 
removed target labels do not contribute to the MSE/loss function. Model performance is then 
evaluated on these withheld entries. This setting corresponds to data imputation scenario, i.e., 
estimating missing values within a partially observed compound–target activity matrix.
Table 4 Evaluation metrics for performance assessment of the regression models

Metric Formula

Mean squared error 𝐌𝐒𝐄 =  
𝟏
𝐧

𝐧

𝐢=𝟏
(𝐲𝐢 ― 𝐲𝐢)𝟐(2)

Coefficient of determination 𝐑𝟐 =  
∑𝐧

𝐢=𝟏 (𝐲𝐢 ― 𝐲𝐢 )𝟐

∑𝐧
𝐢=𝟏 (𝐲𝐢 ― 𝐲 )𝟐

(3)

Cross-validated (CV) R2 𝐐𝟐 =  𝐑𝟐(𝐂𝐕)(4)
Model training score 𝐌𝐓𝐒 =  𝐑𝟐(𝐭𝐫𝐚𝐢𝐧𝐢𝐧𝐠)(5)

Mean absolute error 𝐌𝐀𝐄 =  
𝟏
𝐧

𝐧

𝐢=𝟏
|𝐲𝐢 ― 𝐲𝐢|(6)

Root mean squared error 𝐑𝐌𝐒𝐄 =  
𝐧

𝐢=𝟏

(𝐲𝐢 ― 𝐲𝐢 )𝟐

𝐧 (7)

Single-task models
Single-task deep neural networks (ST-DNN) and single-task random forest (ST-RF) models were 
generated with PyTorch and Scikit-learn respectively to conduct a comparative analysis between 
the multi-task and single-task learning approaches. The hyperparameters for each single-task 
model were tuned with a Bayesian search.  The hyperparameter ranges shown in Supplementary 
Table 1 for the ST-DNN, as well as the model architectures, were set to reflect the MT-DNN 
model. The hyperparameter ranges of the ST-RF models are shown in Supplementary Table 2. 
To maintain consistency across all three approaches, the optimum hyperparameters were 
selected based on the minimum MSE value over 300 trials with Optuna. The data was split 
randomly, and 5-fold CV was implemented in the evaluation step to assess the performance 
across the entire dataset. 

Page 7 of 23 Digital Discovery

D
ig

ita
lD

is
co

ve
ry

A
cc

ep
te

d
M

an
us

cr
ip

t

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

8 
Ja

nu
ar

y 
20

26
. D

ow
nl

oa
de

d 
on

 1
/1

1/
20

26
 9

:4
1:

17
 A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.

View Article Online
DOI: 10.1039/D5DD00536A

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5dd00536a


8

Chemical space
The multi-dimensional information of chemical descriptors is reduced to two or three dimensions 
for visual interpretation. This way, relationships between different compounds can be observed 
while taking into consideration the context of the entire chemical dataset. Dimensionality reduction 
algorithms can utilize different types of chemical descriptors to project the chemical space  from 
a set of compounds.39 The principles behind the Uniform Manifold Approximation and Projection 
(UMAP) are series of mathematical operations that reduce the dimensionality of 
features/descriptors while preserving the local structure of data. This method attempts to keep 
neighboring data points in close proximity and thereby preserve their relationship from high 
dimensionality in low-dimensional space. UMAP (v0.5.5) was used for visual representation of 
the chemical space in this study.40 A set of 9,122 unique compounds with 512 CDDD descriptors 
was used for the chemical space analysis. After the dimensionality reduction (Figure 2), 2D 
embeddings were associated with the corresponding SMILES strings. The scatterplot of the 
chemical space was generated with the Matplotlib library. Compounds were color-coded based 
on the associated targets that were selected in the evaluation. The parameters shown in 
Supplementary Table 3 for the UMAP model were tuned to represent the compounds belonging 
to common families as neighbors in 2D and thereby form family-associated clusters.

Fig. 2 Chart shows the dimensionality reduction of 512 CDDD descriptors into 2D embeddings for an exemplary 
set of 2 compounds intended for chemical space visualization.
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9

Data imputation models for benchmarking
To evaluate the imputation performance of the MT-DNN, six additional imputation 
frameworks were adopted in this workflow for comparative analysis. The choice of 
benchmarking models was based on accessibility and technical reasons related to time 
and cost restrains. Three models were selected from Scikit-lean library (SimpleImputer, 
KNNImputer, and IterativeImputer) and three from fancyimpute library (SoftImpute, 
IterativeSVD, and MatrixFactorization).41 Datasets obtained through the imputation split 
(see Fig.1) were used to develop the models. To ensure consistency in the comparative 
analysis, the same data format, comprising CDDD descriptors and a sparsely populated 
bioactivity matrix used for MT-DNN training, was also employed to train the benchmarking 
imputation models. Models followed similar strategy to the MT-DNN development by using 
training data for fitting, validation data to optimize hyperparameters, and test data for 
evaluation. Parameter ranges shown in Supplementary Table 4 were set for a grid search 
of the respective imputation models.

For easier comprehension of the project development pipeline, an overview of the entire 
workflow can be seen in Figure 3.
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10

Fig. 3 Overview of the most relevant steps in the development of the MT-DNN for bioactivity prediction and 
data imputation evaluation. Starting from the top left point, the workflow depicts steps that were necessary 
in retrieving the data, processing data, calculating descriptors, performing data splits, developing, and 
evaluating the model. Blue squares highlight the steps specifically related to the training and 
hyperparameter optimization of the model, with a breakdown of a single epoch in the center. The workflow 
chart was created at (https://app.diagrams.net/).

Results and Discussion
MT-DNN prediction performance
The parameters and architecture of the models shown in Table 5 were selected according 
to a Bayesian search performed with the Optuna library. Both models achieved the lowest 
MSE value of the validation set without the task-specific domain, indicating that the 
standalone shared domain of the hidden layers contributes positively to the overall 
performance of the model. Furthermore, the CDDD model has 2 hidden layers, whereas 
the ECFP6 model has 3 hidden layers in the shared domain. Considering the results from 
the evaluation metrics in Table 6, the CDDD model was able to achieve higher 
performance with less architectural complexity than the ECFP6 model. With Q2 and R2 
values being closer to the MTS in Table 6, the CDDD model indicates a lower tendency 
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to overfit to the training data. Additionally, learning dynamics comparison in Figure 4 
shows that the MSE loss of the validation set from the CDDD model has a closer loss 
curve to the training data when compared to the ECFP6 model. This trend remains 
consistent overall and was a decisive factor for continuing to use CDDD descriptors in 
further development and evaluation of the MTL approach. 

Table 5 Optimized hyperparameters for CDDD and ECFP6 models. Hidden layer (HL).

Models
Hyperparameters CDDD ECFP6
Input size 512 1020
HL1 size 800 1020
HL2 size 250 170
HL3 size - 80
Task-specific 
size

54 54

Learning rate 0.000043 0.000105
Dropout rate 0.1 0.09
Patience 10 10

Descriptor-associated discrepancy in the performance proposes higher ability by CDDD 
representation of compounds to capture the diversity of chemical space that was 
necessary to model the SLC superfamily. As only one additional descriptor type was 
considered, further comparative studies would be required for conclusive statements.

Table 6 Evaluation results for CDDD and ECFP6 models (bold – the best value in a row)

Cross-validation Test-data

Model MTS↑ Q2 ↑ MSE↓ MAE↓ RMSE↓ R2 ↑ MSE↓ MAE↓ RMSE
↓

CDDD 0.915 0.71
6

0.420 0.486 0.650 0.739 0.362 0.451 0.602

ECFP6 0.952 0.66
1

0.501 0.536 0.708 0.689 0.432 0.477 0.657
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Fig. 4 Learning dynamics graph shows mean values of MSE/loss over epochs for the training and validation 
data. The values were derived from the 5-fold CV to represent the learning dynamics across the entire 
dataset. MSE/loss values are shown on the y-axis across epochs represented on the x-axis.

Activity cliffs
Analysis of pChEMBL predictions with the highest error values (HEV) for a given 
compound-target pair was conducted to identify the shortcomings of the MTL approach 
with CDDD descriptors. The SLC6A4 target (serotonin transporter, SERT) had instances 
of both HEV and low error value (LEV) predictions that showcase putative effects of 
activity cliffs on the performance of the model.  Both examples are compared with their 
nearest neighbors identified via the NearestNeighbors module from Scikit-learn and 
corresponding activity profiles. The HEV case in Table 7 shows that the predicted 
pChEMBL of 6.39 falls within the range of values of the nearest neighbors for the same 
target. However, the actual pChEMBL value of the HEV compound is 4.0. Considering 
that the three closest neighbors of the HEV compound in the training set had a mean 
pChEMBL value of 6.8, overprediction by the model could be attributed to the training-set 
bias. Inversely, the LEV case in Table 7 has the actual and predicted values of the test 
set compound falling within the bioactivity ranges of the nearest neighbors in the training 
set. When considering further comparison of the two examples, a higher degree of 
structural similarity between the LEV compound and its nearest neighbors can be 
observed. The challenge associated with activity cliffs could be addressed by 
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implementing proportional distribution of biological activities across similar compounds or 
respective targets.  This approach could ensure sufficient representation of various activity 
ranges between different targets and induce a balanced learning profile by the model.

Table 7 HEV and LEV comparison from SLC6A4 target. ChEMBL-IDs and actual pChEMBL values are 
annotated for each compound. Predicted pChEMBL values are annotated only for the HEV and LEV 
compounds in the first row because they were allocated to the test set. The nearest neighbors (rows 2-4) 
were allocated to the training set and, therefore, no prediction of the pChEMBL value was made during 
evaluation. Left panel: an activity cliff example with HEV compound in the first row and its three nearest 
neighbors below. Right panel: LEV compound in the first row and its three nearest neighbors below.

HEV compound (activity cliff 
example) – left panel

Actual 
pChEMB
L

Predicted 
pChEMB
L

LEV compound – right panel Actual 
pChEMBL

Predicted 
pChEMBL

CHEMBL264262

4.0 6.39

CHEMBL406789

6.82 6.82

Nearest neighbors of the HEV 
compound in the training set

Nearest neighbors the LEV 
compound in the training set

CHEMBL1255834

5.32 -

CHEMBL427904

7.19 -

CHEMBL124700

7.07 -

CHEMBL259694

7.24 -

CHEMBL338982

8.01 -

CHEMBL258180

6.37 -
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Target-based evaluation
Performance scores for individual targets were calculated as Q² values using MT-DNN, 
ST-DNN, and ST-RF models during 5-fold CV and the results are shown in Supplementary 
Table 5. Targets that yielded negative Q² scores across all three models were excluded 
from the comparative analysis. The remaining 31 targets that were considered for the 
aggregate analysis comprised 8,698 unique compounds, representing 95.4% of the 
dataset. When compared to other methods in Table 8, the MT-DNN model outperformed 
the single-task models in all categories, except for the aggregate standard deviation (SD) 
scores of the ST-RF model in the unweighted and weighted categories. The most notable 
improvement was observed in the inversely weighted category, indicating that 
underrepresented targets mostly benefited from the MT-DNN model without 
compromising performance in other categories. Additionally, more than 60% of the targets 
showed improved scores with the multi-task learning (MTL) approach. 

Table 8 Target-based aggregate results for MT-DNN, ST-DNN, and ST-RF models under three weighting 
schemes: unweighted (equal target contribution), weighted (proportional to number of compounds), and 
inversely weighted (emphasizing smaller targets with inversely proportional number of compounds). Every 
category has tree scores across 31 targets: Q2 – mean of cross-validated coefficient of determination, Q2 – 
SD – mean of standard deviations for the Q2 value, and TSH – percentage of targets that improved with the 
corresponding model.

To showcase discrepancies between positive and negative transfers with MTL, three 
specific targets with different performance profiles were analyzed by a 2D representation 
of the chemical space in Figure 5. The entire dataset was included in the chemical space 
analysis to represent relationships between individual clusters. Starting with the highest-
scoring target in Table 9, SLC5A1 (sodium/glucose co-transporter, SGLT1) had a Q2 of 
0.809. The chemical space of compounds associated with SLC5A1 shows a wider degree 
of coverage between multiple domains when compared to the other two targets in Figure 
5. The compounds of the lowest-scoring target, SLC33A1 (acetyl-coenzyme A transporter 
1), with a Q2 of -2.554, contrast with the distribution pattern of the SLC5A1 chemical space 
by having a localized and entirely isolated cluster. Based on this representation, it is 
evident that no other member shares similar chemical space with SLC33A1. It cannot be 
excluded that the cause of the discrepancy in the performance between the two targets 
stems from quantitative imbalance of the dataset. SLC5A1 contributes 975 datapoints to 

Unweighted Weighted Inversely weighted

Model Q2 Q2 - SD TSH 
(%) 

Q2 Q2 - SD TSH 
(%) 

Q2 Q2 - SD TSH 
(%) 

MT-DNN 0.280 0.267 61.290 0.521 0.098 51.556 0.247 0.326 70.770

ST-DNN -0.050 0.590 12.903 0.454 0.169 33.026 -0.475 1.046 5.299

ST-RF 0.232 0.205 25.806 0.496 0.075 15.417 0.069 0.340 23.931
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the overall dataset, whereas SLC33A1 contributes 131 datapoints. Furthermore, SLC5A1 
belongs to the SLC5 family with three additional protein members modeled as separate 
tasks that collectively amount to 2,194 compounds in the dataset. Such instances of 
correlated tasks would, as stated in the introduction, be able to leverage the shared 
representation of knowledge generated with an MTL approach. To further support this 
hypothesis, a Q2 value of 0.758 is observed for the SLC5A4 (sodium/glucose 
cotransporter 3, SGLT3) target with 28 compounds in the dataset. Although it was 
represented by fewer datapoints, SLC5A4 scored higher than SLC33A1 in Table 9. As 
highlighted in Figure 5, compounds of SLC5A4 share the chemical space with other 
targets and do not form isolated clusters. Unlike SLC33A1, which was the single member 
of the SLC33 family in the dataset, SLC5A4 belongs to the SLC5 family that is shared with 
three other members. Furthermore, comparison of the performance scores between the 

MT-DNN and ST-RF models in Table 9 suggests that the SLC5 members benefit from the 
MTL approach, whereas the SLC33A1 target was able to achieve a higher score with the 
ST-RF model.  Understudied targets such as SLC5A4 have little information published on 
their active compounds when compared to some other members of the SLC superfamily. 
To the best of our knowledge, this MTL model presents itself currently as a unique tool for 
compound bioactivity prediction and imputation of the SGLT3 (SLC5A4) transporter.

Table 9 Target-based evaluation with three examples highlighted for each performance case. The table 
shows quantitative properties of selected targets with individual performance scores represented as Q2 and 
standard deviation from the MT-DNN, ST-DNN, and ST-RF models. The table additionally shows the number 

Fig. 5 Chemical space representation with UMAP. Individual compounds are colored according to associated 
targets marked in the legend.
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of compounds for each target and their respective families. (bold – the best value in a row between three 
models)

Data imputation performance
An imputation-dedicated split was chosen to evaluate the ability of an MTL approach to 
predict the pChEMBL values of compounds for targets not used in the output layer during 
training. This means that the model is tested on compounds that are available in the 
training set but show different output profiles. Unlike the conventional approach where the 
model is tested on an entirely new and previously unseen set of compounds, this step 
examines how well the model performs in an imputation-driven setting by estimating  
pChEMBL values of known compounds for a different target. 

Since neither the CDDD nor ECFP6 prediction models achieved a minimum MSE 
validation value with the inclusion of task-specific neural network domains (Table 5), only 
the shared domain was incorporated as a parameter during the optimization of the CDDD 
imputation model. As shown in Table 10, the CDDD imputation model achieved the lowest 
MSE value for the validation set with higher architectural complexity than the prediction 
counterpart. One additional hidden layer was selected along with a higher learning rate 
and identical patience to counter overfitting. 

Table 10 Comparison between optimized parameters of the prediction and imputation split models

Models
Hyperparameters CDDD prediction CDDD 

imputation 
Input size 512 1020
H1 size 800 1020
H2 size 250 170
H3 size - 80
Task-specific size 54 54
Learning rate 0.000043 0.000105
Dropout rate 0.1 0.09
Patience 10 10

Target Compounds Family members Total compounds MT-DNN (Q2)↑ ST-DNN (Q2)↑ ST-RF (Q2)↑

SLC5A1 975 4 2194 0.809 ±0.006 0.795 ± 0.021 0.799 ± 0.025

SLC33A1 131 1 131 -2.554 ±1.548 -2.866 ± 3.151 0.086 ± 0.198

SLC5A4 28 4 2194 0.758 ±0.107 0.428 ± 0.587 0.667 ± 0.201
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The CV step was excluded in this section due to the lack of sufficient number of 
compounds with five or more bioactivity measurements for accurate allocation in 
each fold. Results in Table 11 show that CDDD imputation was able to score 
relatively close to the CDDD prediction model. A slight improvement in the 
prediction performance over the imputation performance could be attributed to the 
skewed data distribution introduced by the imputation split, which may affect 
generalization. The imputation split only considers compounds with two or more 
measurements, potentially biasing target representation, molecule types, and 
activity values.

Table 11 Comparison between the scoring metrics of prediction and imputation assessment (bold – the 
best value in a row)

Models
Metrics CDDD prediction CDDD imputation
MTS↑ 0.942 0.940
R2↑ 0.754 0.705
MSE↓ 0.377 0.429
MAE↓ 0.465 0.503

V
al

id
at

io
n 

se
t

RMSE↓ 0.615 0.655
R2 ↑ 0.739 0.720
MSE↓ 0.362 0.407
MAE↓ 0.451 0.477Te

st
se

t

RMSE↓ 0.602 0.638

Comparative analysis between accuracy scores on the test-set in Table 12 shows that the 
MT-DNN outperforms all six imputation methods chosen for benchmarking. The second-
highest scoring method is k-Nearest Neighbor from sklearn.imputers module. Considering 
both high prediction and imputation performance, MTL presents itself as a suitable and 
versatile tool in bioactivity-value estimation of compounds towards SLC transporters. 

Table 12 Benchmarking MT-DNN performance against six different imputation methods. Scores are 
calculated on the test-set that was derived from the random imputation split. Column 2 – MT-DNN 
imputation. Columns 3 to 5 - sklearn.imputers: S-mean – SimpleImputer with mean method, kNN – k Nearest 
Neighbor, Iterative – IterativeImputer. Columns 6 to 8 -fancyimpute: Soft – SoftImpute, I-SVD – 
IterativeSVD, MF – MatrixFactorization.

sklearn.imputers fancyimpute

MT-DNN S-mean KNN Iterative Soft I-SVD MF

R2 ↑ 0.720 0.098 0.672 0.471 -0.400 0.107 0.489

MSE ↓ 0.407 1.312 0.477 0.667 2.033 1.299 0.744
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Conclusion
With this study, we present an MTL-based prediction to complete a bioactivity matrix of 
compounds for the superfamily of SLC transporters. Besides replacing the missing values, 
the MT-DNN could predict bioactivity profiles for out-of-sample compounds and showcase 
overall satisfactory performance scores. Further results indicate that the selection of 
different types of descriptors can affect the ability of the model to achieve reliable 
predictions. In this case, the causality of descriptor-type discrepancies in the performance 
is not completely understood, and further studies are necessary for conclusive 
statements. Based on individual bioactivity-prediction error analysis and target-based 
evaluation, it cannot be excluded that the shortcomings of our MTL approach are 
associated with the presence of activity cliffs and heterogeneity between the modeled 
targets. The dataset contains compounds with similar structural properties but contrasting 
bioactivity values or sets of associated targets. If imbalanced in quantity and distribution 
between the training, validation, and test sets, such outlier instances designated as activity 
cliffs can impact the performance of the model. A similar observation was noted for a 
target-specific outlier, where the MTL model struggled to accurately predict the bioactivity 
values of compounds that formed an isolated cluster in the chemical space analysis. 
Conversely, the performance of SLC5A4 suggests that a target with a low quantity of 
datapoints could benefit from the MTL approach if it shares certain qualitative and 
quantitative properties with other correlated targets, such as having common families or 
similar chemical space. In conclusion, the comparative analysis demonstrates suitability 
of the multi-task model as a prediction tool intended for a data imputation task. Besides 
scoring highest during benchmarking against six established imputation methods, MT-
DNN outperformed the single-task models by achieving higher accuracy for 
underrepresented targets. Despite this improvement bias, the MT-DNN model achieved 
comparable or slightly higher scores for most other targets with larger numbers of 
compounds, highlighting its strengths in handling missing bioactivity data for an 
imbalanced target-space. 

Data availability
The data used for this study was available on Resolute Knowledgebase at: 
https://doi.org/10.5281/zenodo.4309586
https://re-solute.eu/knowledgebase/gene 

The UniProt dataset was available at: 
https://doi.org/10.1093/nar/gkae1010 
https://www.uniprot.org/uniprotkb?query=*&facets=model_organism%3A9606

The intermediary datasets generated after standardization, processing, and calculating 
descriptors are available on the GitHub repository along with the Jupyter Notebook and 
Python scripts used for the development of this study at: 
https://doi.org/10.5281/zenodo.17991114 
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