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Journal Name

Higher order structures in chemistry: hypergraphs re-
shape the molecule and the reaction†

Guillermo Restrepo∗a

Chemical systems contain higher-order relationships that exceed the binary constraints of tradi-
tional graph-based models. Although graph theory has long supported the digital representation of
molecules and reactions, many fundamental chemical phenomena—such as multi-centre bonding,
aromaticity, cooperative interactions, and the inherently set-theoretical nature of reactions—escape
pairwise encodings. This work introduces hypergraphs and an extended “zoo” of higher-order math-
ematical structures as a unified framework for modelling both molecular structures and reaction
networks. Molecular hypergraphs naturally capture multi-atomic interactions, while directed hy-
pergraphs offer a mathematically faithful representation of reactions as transformations between
arbitrary sets of substances. More sophisticated variants—including ordered, directed, binary, and
directed-ordered hypergraphs—enable the incorporation of additional chemical information, such as
atomic ordering, ligand–pocket affinities, and cavity organisation in porous materials at the sub-
stance level, as well as toxicity and economic constraints at the reaction level. Recent advances in
hypergraph spectral theory, random models, and higher-order network statistics have opened new
chemical, mathematical, and computational avenues. These developments coincide with emerging
machine-learning evidence showing that hypergraph-based representations of molecules can outper-
form graph-based and even 3D-coordinate models. By outlining both the capabilities and current
limitations of hypergraph approaches, this work argues that higher-order mathematical structures
will be central to the next generation of digital discovery, enabling more faithful representations of
chemical complexity and deeper integration across chemistry, mathematics, and computer science.

1 Introduction
Chemistry is characterised by its concern with the organisa-
tion, behaviour, and transformation of matter at multiple scales.
Throughout its history, chemists have relied on high levels of ab-
straction to interpret, organise, and systematise the practice of
their discipline.1 From molecular models, encoding atomic rela-
tionships, to the periodic system, including sets and order rela-
tionships,2 abstract frameworks have long been essential in ad-
vancing chemical knowledge.

Building on this historical interplay between chemistry and
mathematical abstraction, the present Perspective introduces hy-
pergraphs as a mathematical structure of particular relevance for
addressing chemical questions at both the molecular and reac-
tion levels. In doing so, it aims to broaden the ongoing dialogue
between chemistry and mathematics and to point towards new
directions for chemical theory, computation, and practice.

a Max Planck Institute for Mathematics in the Sciences, Inselstraße 22, 04103 Leipzig,
Germany. Fax: +49 (0) 341 9959 658; Tel: +49 (0) 341 9959 601; E-mail: re-
strepo@mis.mpg.de
† To the memory of Rainer Brüggemann, pioneer on the theory and application of
partially ordered sets to chemistry and environmental sciences.

2 Higher order structures

Gerhardt, the visionary 19th-century chemist,3–5 produced sci-
entific results that addressed two foundational pillars of chem-
istry. Through his type representation of substances, he helped
lay the groundwork for what later became molecular structural
theory,4 a conceptual framework that remains central to the lan-
guage of chemistry and to the way we encode chemical knowl-
edge for computational analysis.3 Gerhardt also contributed to
the modern representation of chemical reactions in the now-
standard form A + B → C + D.i Viewed from a contemporary
mathematical perspective, these contributions highlight the fun-
damental role of relationships in chemistry, from the atomic to
the molecular level, that is form substances to reactions.

The second half of the 19th century further strengthened the
connection between chemistry and the mathematics of relations.
Sylvester, a leading 19th-century mathematician, recognised a
connection between the molecular structures of his contemporary

i A notation whose roots, as some historians have argued, can be traced back to
Lavoisier at the end of the 18th century. 6
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chemists and what mathematicians would later call graphs.7,8

In this connection, atoms correspond to vertices and chemical
bonds to edges (pairs of vertices), a correspondence Sylvester
himself termed “chemicographs.”8 This insight established a last-
ing bridge between chemical structural theory and mathemati-
cal graph theory,9,10 which has generated a large amount of re-
search and has led to applications ranging from structural pre-
diction to QSAR (Quantitative Structure-Activity Relationships)
modelling.1,11–13

Similar ideas emerged when chemists began to use graphs
to model the reactivity of substances, ultimately leading in the
20th century to the study of reaction networks, in which sub-
stances are represented as vertices and their reactivity relations
as edges.14–17 This mathematical framework is at the basis of the
multiple studies on metabolic networks and on the gigantic net-
work spanning the chemical space.14,15,18

Despite these successes, graph-based models face intrinsic lim-
itations. As discussed in the next section, not all molecules can be
reduced to binary atomic relations. Aromatic compounds, mul-
ticentre bonds, organometallic species, and numerous other sys-
tems require the interaction of sets of atoms rather than simple
pairs. Whenever two sets of atoms interact—and especially when
at least one of those sets contains multiple atoms—graphs, in the
strict sense, are insufficient.

Chemical reactions exhibit a parallel limitation: they are funda-
mentally set-theoretical entities. A reaction relates a set of educts
to a set of products, and each of these sets frequently contains
more than one substance. Representing such transformations
through binary edges inevitably leads to the loss or distortion of
essential chemical information.

Before turning to the next section, it is therefore important
to emphasise that chemistry is fundamentally shaped by higher-
order relationships. The discipline extends far beyond binary in-
teractions: both molecular structure and chemical reactivity rou-
tinely depend on the collective behaviour of atom sets and sub-
stance sets. Higher-order relations are not rare exceptions but a
natural feature of both molecular structure and chemical reactiv-
ity, and recognising them is essential for developing mathematical
frameworks that truly reflect chemical reality.

2.1 Graphs, hypergraphs and the molecular structure

This section outlines the achievements and constraints of chemi-
cal graph theory before turning to hypergraphs as a natural gen-
eralisation capable of encoding higher-order atomic relations.

2.1.1 Molecular graphs

A molecule is a collection of atoms standing in specific relation-
ships to one another, and graphs offer a straightforward model
for such relational structure. Formally, a graph G = (V,E) con-
sists of a set of vertices V , representing atoms, and a set of edges
E, representing chemical bonds. For methane, for example, V =

{C,H1,H2,H3,H4} and E = {{C,H1},{C,H2},{C,H3},{C,H4}}
(Figure 1a, where, for simplicity, H atoms are not labelled). Be-
cause edges are unordered pairs, the bond {C,H1} is equivalent
to {H1,C}.
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H H
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Fig. 1 Graph and hypergraph molecular models. a) Methane, b) ben-
zene, c) diborane, d) ferrocene, e) non-covalent interactions. In a) and c)
hyperedges correspond to chemical bonds (shown as coloured regions),
with shared electrons (dots). In b) equivalent aromatic carbons are rep-
resented by a grey hyperedge. In d) each cyclopentadienyl ring forms
a hyperedge describing its collective interaction with the Fe centre. In
e) the ligand–protein pocket interaction is represented by hyperedges
gathering the highly interacting protein regions (red) together with the
corresponding ligand fragments (figure reproduced from 19, published un-
der a CC BY 2.0 license. Reproduced with permission under the Creative
Commons Attribution 2.0 International License). Structures in b) (left)
as depicted by Kekulé (reproduced from 20 with permission from John
Wiley and Sons, copyright 2026). Structure in c) (left) as published by
Longuet-Higgins and Bell and reproduced from 21 with permission from
The Royal Society of Chemistry, copyright 2026. Structures in d) (left) as
depicted by Wilkinson, Rosenblum, Whiting, and Woodward (reproduced
from 22 with permission from the American Chemical Society, copyright
2026).

A key strength of molecular graph theory, key for computa-
tional encoding and applications, is that graphs can be alge-
braised. Once encoded as matrices—typically adjacency or in-
cidence matrices—graphs become amenable to linear algebra.ii

ii The adjacency matrix is an m×m array indicating whether atom i of the m atoms in
the molecule is directly bonded to atom j. A value of 1 in the (i, j) entry denotes the
presence of a bond, and 0 its absence. Alternative schemes also exist in which bond
orders, rather than simple presence/absence, are recorded. The incidence matrix, by
contrast, is an m×n array encoding the relationship between atoms and bonds: an
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This enables the derivation of eigenvalues, eigenvectors, spec-
tra, path counts, cycle detection, and many other mathemati-
cally defined quantities with chemical interpretation.23–25 From
these representations emerged the vast field of molecular descrip-
tors, now numbering in the thousands,26 forming the backbone
of QSAR modelling.1,11–13

Despite these successes, a fundamental limitation remains: not
all molecules can be adequately represented using only binary
atomic relations.27,28 The inadequacy was already evident in
the 19th century for benzene and other aromatic systems,20,29

and re-emerged in the mid-20th century for diborane and fer-
rocene.21,22 In modern contexts such as receptor–ligand com-
plexes, binary-only representations are even more restrictive.30

In all these cases—aromaticity, multi-centre bonding,
organometallic bonding, and protein–ligand recognition—the
essential feature is their set-theoretical nature: benzene involves
six atoms interacting collectively; the bridging bonds in diborane
involve three atoms; each cyclopentadienyl ring in ferrocene
interacts as a five-atom unit with Fe; protein pockets interact
with a set of ligand atoms (Figure 1). These interactions cannot
be reduced without loss to pairs of atoms.

The recognition that molecular structure routinely depends on
higher-order atomic relationships lies at the heart of the hyper-
graph approach. Hypergraphs emerged in the chemical litera-
ture in the 1990s,11,28,31–33 and have recently been rediscov-
ered—both as a faithful mathematical model of multi-atom in-
teractions and as a powerful computational framework.11,28 One
goal of this perspective is to encourage chemists, mathematicians,
and computer scientists to revisit hypergraphs as a natural repre-
sentation of molecular structure.

2.1.2 Molecular hypergraphs

Mathematicians have long studied structures capable of encoding
relationships that go beyond pairwise interactions.34,35 One such
structure is the hypergraph,iii which extends a graph by allowing
its edges—now hyperedges—to contain an arbitrary number of
vertices. The number of vertices in a hyperedge—its size—may
range from one to all m vertices of the hypergraph. This flexibility
contrasts with the strict size-2 edges of graphs.

Formally, a hypergraph is defined as H = (V,E), where V
is the set of vertices and E the set of hyperedges. A hyper-
edge may be any subset of V . For instance, a hypergraph
model of diborane B2H6 can be written as V ={{B1, B2, H1,
H2, H3, H4, H5, H6} and E ={{B1,H1}, {B1,H2}, {B1,H3,B2},
{B1,H4,B2}, {B2,H5},{B2,H6}}, where the two three-atom hy-
peredges B1,H3,B2 and B1,H4,B2 encode the two bridging 3-
centre–2-electron bonds (Figure 1c, where atoms are not labelled
for simplicity). Note how these hyperedges cannot be represented
in a graph setting, since they contain more than two vertices.

entry of 1 in row i, column j indicates that atom i is incident to (that is, participates
in) bond j; otherwise the entry is 0. Further details on these matrix representations
of molecular graphs may be found in 23.

iii Other higher-order frameworks include simplicial complexes, which have also found
chemical applications through topological data analysis. 11,36–38. Further structures
include tensors and higher-order Markov chains. 39

Parallel representations for methane, benzene, and ferrocene are
shown in Figure 1.

As with molecular graphs, the usefulness of hypergraphs be-
comes most apparent when they are algebraically encoded so that
computations can be performed. In analogy with graphs, hyper-
graphs can be represented by adjacency matrices, where each en-
try records whether the i-th and j-th atoms participate together
in at least one hyperedge. Here, “participation in a relation” gen-
eralises the notion of a chemical bond: for diborane, for exam-
ple, the adjacency matrix records the three-atom relations of the
bridging {B, H, B} bonds, the cyclic six-atom relation in benzene,
and the five-atom cyclopentadienyl rings of ferrocene. Hyper-
graphs also admit incidence matrices, recording vertex member-
ship in each hyperedge.

Based on these matrix representations, spectral hypergraph
theory has begun to emerge, encompassing Laplacians, eigen-
values, eigenvectors, and associated invariants.40–46 Remarkably,
the connection to chemistry was already recognised in the 1990s,
when the first hypergraph-based molecular descriptors were pro-
posed.31–33 These developments parallel the trajectory of molec-
ular graph theory, where algebraic descriptors became central to
QSAR research.

Recent machine learning work further strengthens the case
for hypergraph formulations. Hypergraph neural networks have
shown clear advantages over graph-based models—and even over
some 3D-coordinate–based representations—in predicting molec-
ular properties and reactivity.28 These methods leverage the abil-
ity of hypergraphs to encode multi-atom interactions natively
rather than inferring them indirectly from pairwise data.

*

The trajectory that once took graph theory from a mathematical
curiosity to a central tool of theoretical and computational chem-
istry now appears to be unfolding for molecular hypergraphs.
Their capacity to encode higher-order atomic interactions makes
them a natural extension of chemical modelling. With the rapid
development of hypergraph mathematics and computation, this
framework offers a fertile arena for future collaboration between
chemists, mathematicians, and computer scientists.

Yet chemistry encompasses both substances and their transfor-
mations. Just as hypergraphs enrich the modelling of molecular
structure, they also provide expressive representations of chemi-
cal reactions and reaction networks. This is the focus of the next
section.

2.2 Graphs, hypergraphs and chemical reactions
The algebraic representation of chemical reactions, developed
since Gerhardt’s times,3 is now commonly interpreted through
graph-theoretical lenses. Graphs have enabled large-scale anal-
yses of reactivity patterns, retrosynthetic pathways, and chemi-
cal networks.14–17 Yet, as with molecular structure, the binary
constraints of graphs impose limitations on the faithful encod-
ing of chemical transformations. This section outlines the pos-
sibilities and shortcomings of graph-based reaction models and
shows how higher-order structures—specifically directed hyper-
graphs—provide the appropriate mathematical generalisation.

Journal Name, [year], [vol.],1–10 | 3
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2.2.1 Reaction graphs

Over the years, several mathematical frameworks have been pro-
posed to model chemical reactions.14–18,27 Some describe the
dynamics of concentration changes during reaction progress,
whereas others focus on the relational structure linking sub-
stances and their roles as educts and products. The latter has
been the natural domain for graph-theoretical modelling, which
constitutes the underlying structure for studying reaction kinetics
in large chemical systems.18

One of the simplest and most widely used approaches is the
educt–product model.27iv In this representation, a transformation
in which substance B is formed from A is encoded as A → B. For-
mally, such a relation is represented as an arc, or directed edge,
(A, B). This construction has been adopted extensively in stud-
ies of metabolic, synthetic, and general chemical reaction net-
works.14–18

However, the model suffers from a fundamental limitation in-
herent to its binary nature.27,47–49 Consider the reaction A +
B → C + D. The educt–product model represents this trans-
formation as the four arcs A → C, A → D, B → C, B → D,
yielding the graph G = (V,E) with V = {A,B,C,D} and E =

{(A,C),(A,D),(B,C),(B,D)} (see reaction r1 in Figure 2).

r1: A + B         C + D
r2: E + F         A
r3: C + H         E + G

r1
r2

A
B

C

H

D

E

G

F

r3

r1r2

r3

A
B

C

H

D

E

G

F
A
B

C

H

D

E

G

F

Fig. 2 Chemical reaction models. Directed graph and directed hyper-
graph representations of the three reactions shown at the top. In the
graph-based model, educts and products are connected by directed edges
(arrows), each encoding a binary relation. In contrast, the hypergraph
model relates sets of educts to sets of products via directed hyperedges,
thereby capturing the set-theoretical structure of reactions. The arrow-
based directed hypergraph notation follows Figure 1 in 50.

As discussed in27, recovering reactions from this graph leads
to multiple spurious interpretations, all of which are consistent
with the graph but inconsistent with chemistry. From G, one may
infer not only the true reaction A + B → C + D, but also uni-
molecular reactions A → C, A → D, B → C, and B → D, as well
as the artificial bimolecular reactions A + B → C and A + B →
D. These arise because the model decomposes each true reaction
into pairwise relations between individual substances, ignoring
the essential fact that educts act jointly.

The consequences become even more problematic in network-
level analyses. In the network shown in Figure 2, the graph model

iv In 47 this model is referred to as the“substrate graph.”

incorrectly predicts that substances D and G remain reachable
even when A is absent, owing to paths such as B → D, B → C
→ G. Yet the underlying chemistry—embodied in the reactions at
the top of the figure—shows clearly that none of these products
can form without A. The root of the problem is conceptual: A
chemical reaction does not relate individual substances but rather
sets of substances.

Formally, a reaction maps a set of educts to a set of products.
The educt–product model only faithfully represents rearrange-
ments, where both sets have cardinality 1. But empirical analysis
of the chemical literature reveals that chemists overwhelmingly
report reactions involving one to three educts and one or two
products.51 This diversity of set sizes cannot be encoded in the
binary framework of graphs.

A mathematically faithful representation of chemical reactions
requires a framework that accommodates relations between sets
of arbitrary size. This is precisely what directed hypergraphs pro-
vide, as discussed in the next subsection.

2.2.2 Reaction hypergraphs

The mathematical framework that naturally captures the set-
theoretical structure of chemical reactions is the directed hyper-
graph model—a generalisation of directed graphs such as those
used in the educt–product representation. Directed hypergraphs
treat reactions as relations between sets of arbitrary size, rather
than between individual substances.

Formally, a directed hypergraph H = (V,E) consists of a set of
vertices V and a set of hyperedges E. Each hyperedge is an or-
dered pair of vertex-sets (ei,e j), where ei is the tail (or source)
and e j the head (or target). In chemical terms, ei represents the
set of educts and e j the set of products. The sets ei and e j are
often called hypervertices or hypernodes to emphasise that they
generalise the notion of a vertex by potentially containing several
vertices.46

For example, the reaction A + B → C + D is represented
by the directed hypergraph H = (V,E) with V = {A,B,C,D} and
E = ({A,B},{C,D}). This contrasts sharply with its graph repre-
sentation (Section 2.2.1), which requires four arcs: A → C, A →
D, B → C, and B → D. Likewise, the three reactions shown in Fig-
ure 2 are captured by only three directed hyperedges rather than
10 arcs—illustrating the parsimony and clarity of the hypergraph
representation.

These examples show that directed hypergraphs encode the set-
theoretical essence of chemical reactions: both the educt set and
the product set may contain any number of substances. Impor-
tantly, the chemical consequences of the absence of a substance
become immediately transparent. As discussed in Section 2.2.1,
removing A from the system makes the reaction r1 impossible,
which in turn prevents the formation of C and thus blocks reac-
tion r3 and the production of G. Such dependencies are obscured
in the educt–product model.

As with molecular and reaction graphs, directed hypergraphs
admit algebraic representations. Adjacency matrices of dimen-
sion m×m (with m the number of hypervertices) encode whether
a hypervertex ei leads to another hypervertex e j. Incidence matri-
ces of dimension m×n (with n the number of reactions) indicate

4 | 1–10Journal Name, [year], [vol.],
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whether a hypervertex acts as educt (entry +1) or product (entry
−1) in a given reaction; a zero indicates non-participation. These
matricial forms enable the study of the structural and dynamical
properties of reaction networks.

Recent developments have extended classical network statistics
to directed hypergraphs, including clustering coefficients, spec-
tral measures, curvature, shortest paths, communicability, and
random models.46,49,52–62 Several have already been applied to
large biochemical networks. For instance, clustering coefficients
reveal that metabolic networks are far less clustered than human-
made systems such as email networks.v Spectral centralities have
likewise been used to study biochemical networks, urban transit
systems, and propositional-logic databases.53

Thermodynamic constraints have recently been incorporated
into directed hypergraph reaction networks to identify pathways
composed exclusively of energetically favourable reactions.63 De-
spite these advances, further work is needed to unify approaches,
identify redundancies, and determine whether chemical networks
possess structural signatures distinguishing them from other di-
rected hypergraphs.

A further active avenue of research concerns random mod-
els for reaction hypergraphs, analogous to random graph mod-
els in classical network theory.64,65 An Erdős–Rényi–type model
has been proposed for chemical hypergraphs,46 enabling com-
parisons between empirical networks and suitable null mod-
els.vi Yet many well-known random-graph models—including
Watts–Strogatz small-world66 and Barabási–Albert preferential-
attachment models67—remain to be generalised to the hyper-
graph setting. A key variable unique to hypergraphs, and absent
from graph-based studies, is hypervertex size. This additional de-
gree of freedom is essential and must be incorporated into any
statistical or generative model of reaction networks.

*

In summary, directed hypergraphs provide a mathematically
expressive and chemically faithful framework for encoding reac-
tions and reaction networks. Their recent mathematical devel-
opment opens many avenues for future research at the interplay
of chemistry, mathematics, and computer sciences, offering fresh
perspectives on the structure and organisation of large chemical
networks—including those spanning the full chemical space. The
following section extends the discussion to further hypergraph
structures of chemical relevance.

2.3 A zoo of hypergraph structures of chemical application
In this section, I introduce a family of mathematical struc-
tures obtained by generalising different aspects of graphs, and
I outline their potential—and in some cases already demon-
strated—applications in chemistry.

v In an email hypergraph, vertices correspond to users and a directed hyperedge links
the sender to the set of recipients; the sending hypervertex has size 1, whereas the
receiving hypervertex may have arbitrary size. 52

vi In this model the distinction between educt and product sets is suppressed, enabling
analysis of the undirected connectivity backbone before reintroducing reaction di-
rectionality.

2.3.1 A zoo of higher-order structures

Graphs encode binary relationships between vertices, that is, re-
lationships between single-vertex sets. In graph theory, edges
correspond to unordered pairs of vertices (Figure 3). Thus, the
membership of a vertex in an edge signifies its relation to exactly
one other vertex. If this notion of membership is relaxed so that
a vertex may be related to an arbitrary number of other vertices,
the resulting structure is a hypergraph: a collection of subsets of
vertices. If, in addition, binary relationships are allowed between
such vertex-sets of arbitrary size, one obtains a binary hypergraph
(Figure 3).vii By restricting each hypervertex in a binary hyper-
graph to contain a single vertex, one recovers an ordinary graph.
All structures in Figure 3 take the abstract form G = (V,E), with
V denoting the underlying vertex set while E varies according to
the specific structure.

Beyond graphs, hypergraphs, and binary hypergraphs, richer
structures emerge once order relations are introduced. A famil-
iar case is the directed graph, obtained by endowing each two-
element edge with a direction, thereby producing arcs (Figure 3).
If sets of arbitrary size are allowed while retaining an internal
order structure, ordered hypergraphs are obtained.viii Ordered
hypergraphs thus constitute collections of partially ordered sets
(posets)71 over V . If, in addition, order relations are permitted
between pairs of these posets, the result is a directed ordered hy-
pergraph (Figure 3). Removing the internal order within hyper-
vertices yields a directed hypergraph,57,72 while removing direc-
tion but retaining internal ordering leads to an ordered binary
hypergraph. Adding direction to the latter reconstructs the di-
rected ordered hypergraph. These interrelations are examples of
morphisms between higher-order structures, some of which are
illustrated in Figure 3.

Although often not explicitly recognised as such, many chemi-
cal systems already exhibit the defining features of these higher-
order structures. In the remainder of this section, I discuss several
examples and highlight how exploring the mathematics of these
structures may deepen our understanding of chemicals and reac-
tivity.

2.3.2 A zoo of higher-order structures in chemical action

Graphs and directed graphs have long been central to chemical
modelling, as discussed in earlier sections. Graphs constitute
the traditional mathematical representation of molecular struc-
ture (Figure 1a), while directed graphs refine this description by
encoding inductive effects, bond polarisation and electron flow
(Figure 4a), as well as non-covalent interactions such as hydro-
gen bonding (Figure 4b).73 Graphs and directed graphs have
also been widely used to represent reaction networks. Directed

vii As shown in Figure 3, binary hypergraphs can be obtained from directed hyper-
graphs by disregarding the order between hypervertices. Binary hypergraphs pre-
serve the binary relations between hypervertices and may also be viewed as hyper-
graphs whose hyperedges are partitioned into two subsets of vertices. In this sense,
they could be treated as bipartite hypergraphs.

viii Ordered hypergraphs are often defined as hypergraphs endowed with a total order
on their vertices. 68,69 Here, following the spirit of 70, I consider hypervertices as
partially ordered sets.
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Fig. 3 Graphs, hypergraphs, and selected morphisms. All structures are defined as G = (V,E), where V is the set of vertices (red dots) and E collects
the specific subsets of vertices associated with each type of structure. In every case, P(V ) denotes the power set of V . Blue lines and arrows represent
(hyper)edges, that is the elements of E. Black arrows indicate partial-order relations within the host sets, which thereby form partially ordered sets
(posets). Morphisms between structures are shown as arrows connecting them, with the main transformation characterising each morphism indicated
alongside.

graphs distinguish educts from products by the orientation of
arcs, whereas undirected graphs remain agnostic to this distinc-
tion—useful when only the connectivity pattern of a reaction net-
work is of interest rather than the roles of substances.

Hypergraphs offer a natural way to reduce and navigate chem-
ical complexity. The chemical space contains millions of known
substances;51 classification is therefore essential.50,79 Classes of
compounds or classes of reactions correspond to hyperedges in a
hypergraph of the chemical space. Alkali metals, halogens, en-
docrine disruptors, and metal–organic frameworks (MOFs) are
examples of hyperedges. Likewise, reaction classes—such as
amide formation, Diels–Alder cycloadditions, Buchwald–Hartwig
couplings—form another family of hyperedges. These sets often
intersect, as molecules or reactions commonly belong to multiple
classes, yielding a hypergraph with non-disjoint hyperedges.

At the molecular scale, hypergraphs arise naturally when
atomic equivalence classes or multi-centre bonding motifs are

used to define hyperedges. Any molecule can thus be modelled
as a hypergraph whose hyperedges encode general m-centre–n-
electron bonding patterns (Figure 1).

Ordered hypergraphs are equally widespread. Ordering chem-
ical elements by atomic radius or electronegativity yields ordered
hypervertices within the hypergraph of the periodic table. In
this setting, hypervertices correspond to families of chemical ele-
ments. When several parameters are used simultaneously to char-
acterise chemical elements, posets arise, reflecting cases where
no total order exists.2ix Toxicity rankings, ligand–pocket affini-
ties, electrochemical series, or spectrochemical series all consti-
tute ordered hypergraphs. At the molecular level, bonds may be

ix In formal terms a poset is defined as a set V endowed with an order relation ⪯. This
later is a binary relation satisfying that for all x,y,z ∈V : 1) x ⇒ x ⪯ x (reflexivity), 2)
x⪯ y and y⪯ x⇒ x= y (antisymmetry), and 3) x⪯ y and y⪯ z⇒ x⪯ z (transitivity). 71

6 | 1–10Journal Name, [year], [vol.],

Page 6 of 11Digital Discovery

D
ig

ita
lD

is
co

ve
ry

A
cc

ep
te

d
M

an
us

cr
ip

t

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

5 
Ja

nu
ar

y 
20

26
. D

ow
nl

oa
de

d 
on

 1
/1

5/
20

26
 1

1:
39

:5
7 

PM
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online

DOI: 10.1039/D5DD00533G

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5dd00533g


CH3
N

N

N

N

Ni

CH3

CH3
CH3

CH3

CH3
N

N

B SiH3SiH3

SiH3

Si
O

O
O

O
H

O
H

H

Si
O

O
O

O
H

O
HH

Se P

H

H

B B

H

H

H

H

O O

O

O
P

Fig. 4 Graphs and hypergraphs as molecular structure models. Directed
graphs representing a) inductive effects as depicted by Ingold (reproduced
from 74 with permission from the American Chemical Society, copyright
2026) and b) hydrogen bonds (adapted from Figure 7 in 73 with permis-
sion from the Royal Society of Chemistry, copyright 2026). c) Ordered
hypergraphs encoding electronegativity differences within bonds (left),
and encoding the poset structure (white arrows) of specific regions (white
dots) inside protein pockets (white curves) (right). d) Directed ordered
hypergraph on a 2D layer of MOF-5 (adapted from Figure 1 in 75 with
permission from the the Royal Society of Chemistry, copyright 2026).
Cavities (hypervertices) are ordered according to host–guest affinity (or-
ange arrows), and internal hypervertex order is shown at top right, which
illustratively indicates the exposition of some atoms to the cavity. e)
Directed hypergraphs encoding σ -donation and π-backdonation between
B(SiH3)3 and N2

76 (left), and the side-on interaction between O2 and Ni
in [NiIII(13-TMC)(O2)]+ (right), with 13-TMC as the N-tetramethylated
cyclam chelate with 13 atoms of ring size. 77 f) Binary hypergraphs de-
picting bond–bond interactions in an ester (left) and Se–P spin–spin
coupling in 1-Ph2P(C10H6)-8-P(:Se)Ph2 (right). 78

ordered by electronegativity difference or by polarisability (Fig-
ure 4c). Protein pockets are also amenable of being modelled
using ordered hypergraphs, where products contain regions or-
dered by their interaction strength with specific ligands (Figure
4c). MOFs accept a similar treatment, where cavities may be or-
dered by their host–guest affinity.80,81

The periodic system, besides being the icon of chemistry, is
a chemical object with a rich mathematical structure.2,82 Here,
the corresponding hypergraph structure is the directed ordered
hypergraph (Figure 3), where hypervertices are element fami-
lies endowed with internal order (for instance, by atomic size
or electronegativity), while hypervertices are themselves ordered,
as clearly recognised in group trends such as alkali metals being
more electropositive than halogens. A further case of a chem-
ical directed ordered hypergraph is the resulting from ordering
chemicals by their degree of substitution.83,84 In this case, hyper-
vertices are chemicals with the same degree of substitution.x

x Interestingly, since the order relation between chemicals is given by the embedding
of subgraphs of one chemical structure within another, vertices in hypervertices are
not comparable, which also equates this chemical system with a directed hyper-

Directed ordered hypergraphs also naturally arise in catalyst
selection. Suppose catalysts are classified into Pd-based and Ni-
based families (hypervertices), with overlapping members. Ad-
ditional parameters—cost, toxicity, availability—induce internal
poset structures. Directed ordered relations between hyperver-
tices enable the selection of the most promising catalyst class,
after which internal ordering identifies the optimal candidate.
Therefore, exploring the mathematical properties of this model
may improve the AI-driven studies on synthesis planning under
realistic chemical and external constraints.

The same framework supports retrosynthetic analysis and
decision-making in self-driving laboratories.85 Substances form
posets based on several criteria (toxicity, solubility, cost), reac-
tions form hypervertices, and directed order between hyperver-
tices identifies preferable synthetic routes.

Directed ordered hypergraphs also model the ordering of cav-
ities within MOFs (Figure 4d). Cavities (hypervertices) are or-
dered by their adsorption capacity or accessibility, while their in-
ternal order reflects steric and electronic factors arising from sec-
ondary building units.

Back to Figure 4, a further hypergraph structure is the di-
rected hypergraph, which, as shown earlier, provides a rigorous
framework for modelling chemical reactions.46,51 They also offer
molecular-level insight, for example by encoding directed interac-
tions between atom sets, as in σ -donation and π-backdonation in
metal complexes or the side-on binding of O2 to transition metals
(Figure 4e).76,77,86

Binary hypergraphs, in turn, capture interactions between sets
of atoms and are particularly relevant for bond–bond couplings.
Therefore, these hypergraph structures constitute suitable molec-
ular models of application in different spectroscopies. For in-
stance, vibrational spectroscopies such as IR and Raman, which
reveal mode couplings—for example, between C=O and C–O
stretches in esters (Figure 4f)—could find a natural framework
for interpretation with binary hypergraphs, where interacting
bonds become the centre of attention. Likewise, the long-range
spin–spin couplings (Figure 4f), detected with NMR spectroscopy
find in binary hypergraphs a suitable model.

Chemical reaction networks can also be modelled as binary hy-
pergraphs when the goal is to study global connectivity rather
than the educt–product distinction. This binary hypergraph
model was used recently for developing a random model for the
chemical space.46

Finally, when atoms or groups of atoms are characterised
by multiple parameters—connectivity, conformational state, vi-
brational signatures, mechanistic role, stereochemistry, elec-
tronic structure—they form posets. Interactions between such
posets are central in diverse chemical phenomena: coupling be-
tween conformational substates during protein folding;87 vibra-
tional poset interactions through anharmonic couplings;88 mech-
anistic posets constraining multistep pathways;89 stereochem-
ical posets governing diastereomer stability;90 and electronic-
structure posets whose interactions give rise to conjugation or

graph. See 83 for further details.

Journal Name, [year], [vol.],1–10 | 7

Page 7 of 11 Digital Discovery

D
ig

ita
lD

is
co

ve
ry

A
cc

ep
te

d
M

an
us

cr
ip

t

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

5 
Ja

nu
ar

y 
20

26
. D

ow
nl

oa
de

d 
on

 1
/1

5/
20

26
 1

1:
39

:5
7 

PM
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online

DOI: 10.1039/D5DD00533G

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5dd00533g


aromaticity.91 In all these cases, chemical behaviour emerges
from the interplay of multiple interacting posets, each encoding a
distinct facet of molecular organisation. These cases are suitably
modelled by ordered binary hypergraphs (Figure 4).

Conclusions
The modelling of chemical systems at the molecular and reac-
tion levels has traditionally relied on graphs. While these struc-
tures have proved extremely fruitful, they also exhibit clear lim-
itations. Graphs are intrinsically binary, and therefore struggle
to capture the multi-centric, higher-order, and context-dependent
interactions characteristic of both molecular structure and chem-
ical reactions. Hypergraphs, by contrast, naturally encode rela-
tions among sets of arbitrary size and therefore provide a far
richer mathematical language for representing chemical complex-
ity.

In addition to presenting the uses of some hypergraph struc-
tures in chemistry, namely molecular hypergraphs and directed
hypergraphs as a model for chemical reactions, a zoo of other
hypergraph structures is presented, from ordered hypergraphs to
directed ordered hypergraphs and ordered binary hypergraphs,
which nuance the description of molecules and chemical reac-
tions.

Despite their advantages, hypergraph-based models must
be used with appropriate caution. Like graphs, these
higher-order structures capture selected aspects of chemical
systems—specifically their relational or topological organisa-
tion—but they do not, by themselves, encode all chemically
relevant information. Hypergraphs significantly enrich the
representation of multi-atomic and multi-molecular relation-
ships, yet whenever three-dimensional geometric details are es-
sential—such as quantifying cavity sizes in MOFs, character-
ising protein pockets, or distinguishing molecular conforma-
tions—additional structural information must be incorporated.
This need mirrors the well-known limitations of graph-based
molecular representations: embedding topological structures into
metric space requires complementing the (hyper)graph with
weighted vertices and edges and, crucially, with explicit coordi-
nate systems. In such settings, hypergraphs serve as a powerful
relational scaffold, but geometry must be supplied through ap-
propriate metric or spatial augmentations.

A further element of caution when using hypergraphs in chem-
istry is related to the relative novelty of the hypergraph litera-
ture. Hypergraph theory is still an emerging and rapidly devel-
oping field, and its nomenclature has not yet reached the level of
standardisation enjoyed by graph theory. As a consequence, the
same mathematical object may carry different names in differ-
ent subfields, while distinct objects may be referred to by similar
terminology. For this reason, reading the hypergraph literature
requires close attention to definitions rather than reliance on ter-
minology alone. This conceptual heterogeneity is a challenge, but
also a reflection of the vibrant and expanding nature of the field.

From a computational perspective, the situation is equally nu-
anced. Several hypergraph statistics can be mapped into statistics
on bipartite graphs, which sometimes permits the transfer of effi-
cient graph-theoretical algorithms. Yet this reduction is not uni-

versally applicable.47 In fact, many core tasks in hypergraph anal-
ysis remain computationally demanding. For example, comput-
ing shortest paths in weighted hypergraphs is NP-hard.47 Further
examples of hypergraph computational complexity are discussed
in92–94. These challenges have direct implications for chemistry,
where algorithmic efficiency is crucial. A case in point is the deter-
mination of whether a molecular fragment occurs within a larger
structure—a task that reduces to subgraph matching in graph the-
ory but becomes considerably more complex in hypergraphs.95,96

Understanding and addressing these complexities is essential for
the practical use of hypergraphs in chemistry.

The mathematical and computational study of hypergraphs is,
as shown throughout this Perspective, an active and rapidly evolv-
ing domain. When combined with the richer and more sophisti-
cated hypergraph structures introduced here—structures that ex-
tend well beyond classical hypergraphs into what is dubbed as a
“zoo” of higher-order relational frameworks—the challenges are
amplified. There remains a substantial amount of theoretical and
algorithmic work to be done. Addressing these issues is not only a
promising direction for mathematics and computer sciences, but
also one from which chemistry stands to benefit enormously.

Another frontier concerns machine learning. Recent studies
have already shown that hypergraph representations of molec-
ular systems outperform both traditional graph-based models
and models incorporating full three-dimensional information.28

These advances derive from the extension of graph neural net-
works into hypergraph neural networks,28 which can exploit
higher-order structural information unavailable to pairwise mod-
els. It is natural to ask what would happen if the novel hyper-
graph structures introduced in this paper—ordered hypergraphs,
directed hypergraphs, and other enriched forms—were incorpo-
rated into new machine learning architectures. Such develop-
ments could radically expand the representational and predictive
power of models for chemical discovery.

In summary, hypergraphs and their mathematical extensions
offer a powerful framework for modelling the richness and com-
plexity of chemical systems. Their integration with modern com-
putational approaches, including algorithmic advances and ma-
chine learning, opens a path toward a new generation of tools
for digital discovery. By embracing these higher-order structures,
chemistry gains access to a deeper and more expressive mathe-
matical language—one capable of capturing complexity that lies
beyond the reach of traditional, pairwise models.
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