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Abstract: Machine learning force fields (MLFF) are rapidly evolving to provide molecular dynamics 

simulations of molecules and materials with an accuracy comparable to ab initio methods, while 

significantly reducing the need for computational resources. However, conventional MLFFs are 

generally system-specific; introducing new chemical components requires assembling a new training 

dataset and retraining the entire model from scratch. To address this, we present a density-based 

machine learning force field (DBMLFF). The key advantage of DBMLFF lies in its modular 

parametrization strategy: by modeling each molecular species independently, the resulting force fields 

achieve seamless transferability across diverse chemical environments and retaining high accuracy 

without the need for retraining. This significantly improves model portability and cross-system 

applicability. Unlike most of the statistically based MLFFs, DBMLFF is a physics-based force field 

with machine learning components in it. It computes intermolecular interactions directly from electron 

density, enabling accurate descriptions of complex non-bonded behavior. In terms of computational 

efficiency, DBMLFF is three orders of magnitude faster than ab initio molecular dynamics and exhibits 

linear scaling with system size, allowing efficient simulations of large-scale systems. These features 

make DBMLFF a robust tool for multi-component electrolyte MD simulations, ideal for practical 

electrochemical systems with variable compositions and large scales.
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1. Introduction

Under the global transition in energy infrastructure, lithium-ion batteries, as core components of 

next-generation energy storage systems, have become a critical research focus in computational 

materials science.1 While commercial lithium-ion batteries demonstrate satisfactory energy density 

and cycling stability, their rate capability and safety margins remain inadequate for rapidly evolving 

application demands.2 The key to overcoming this technical bottleneck lies in a fundamental 

understanding of electrolyte micro-mechanisms. As the ion-transport medium in battery systems, 

electrolytes not only govern lithium-ion migration kinetics but also critically influence electrode 

interfacial stability and thermal behavior through the dynamic evolution of solvation structures.3 

Consequently, establishing precise multiscale characterization methods for electrolyte systems has 

emerged as a pivotal scientific challenge in developing high-safety, long-lifetime energy storage 

devices.4–6

Molecular dynamics (MD) simulations provide a unique perspective for elucidating microscopic 

interactions in electrolyte systems.7,8 By constructing atomic-scale interaction models, this technique 

enables the resolution of activation energy barriers for lithium-ion transport, dynamic reorganization 

of solvent coordination structures, and formation processes of interfacial electric double layers.9–11 

However, conventional simulation approaches exhibit notable limitations: classical MD based on 

empirical potentials fails to accurately capture complex polarization effects between ions and solvents, 

often resulting in systematic deviations from experimental observations. Meanwhile, ab initio MD 

(AIMD), while offering higher accuracy, faces computational constraints that preclude simulations at 

practical operational timescales.12,13 This inherent trade-off between precision and efficiency 

significantly hinders in-depth investigations of electrolyte systems.
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The emerging machine learning force field (MLFF) technology presents a novel solution to this 

dilemma.14–17 By integrating quantum chemical calculations with machine learning algorithms, MLFF 

achieves atomic-scale accuracy while dramatically enhancing computational efficiency.18–20 However, 

existing MLFF methods still face challenges in engineering applications.21,22 Current MLFFs typically 

exhibit a "system-specific nature," wherein any change in system composition (such as the introduction 

of new components) necessitates computationally expensive retraining of the entire force field.23,24 

This limited scalability poses a major bottleneck in the development of multi-component electrolyte 

systems.25,26 On the other hand, while general-purpose MLFFs (e.g., MACE, Materials Adaptive 

Convolutional Equivariants)27 demonstrate potential in terms of broad coverage, their predictive 

accuracy in complex molecular systems (such as electrolytes) still requires further improvement. For 

example, there are cases where the MD trajectories using such big models diverge, producing 

unphysical atomic configurations, and due to the large set of parameters, such models become slow 

and incapable of simulating large systems. This leaves the field grappling with the trade-off between 

generality and accuracy. Moreover, existing MLFFs typically assume energy depends solely on local 

atomic environments, limiting their ability to accurately capture long-range electrostatic 

interactions.28,29 The predominant solution separates long-range electrostatic energy, commonly using 

point charge models, from the machine learning-fitted short-range energy. Other strategies such as 

environment-dependent charges30 or neural-network-predicted electronegativities31 have also been 

proposed. However, these still rely on the point charge approximation, resembling classical force 

fields.32 While the point charge model performs well at large intermolecular distances without electron 

density overlap, its accuracy degrades significantly at intermediate distances where electron cloud 

overlap becomes non-negligible. To address this limitation, our work introduces an explicit 
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representation of electron charge density, aiming to overcome the inherent constraints of the point 

charge model in this regime.

To address these challenges, we developed the Density-Based Machine Learning Force Field 

(DBMLFF) simulation package for energy and force prediction tasks, as well as MD calculations.33 

DBMLFF calculates intermolecular interactions based on fitted electron charge densities, while 

intramolecular energies are modeled using traditional atomic structure-based MLFF models. In 

addition, a local potential polarization model based on charge density calculations is introduced to 

describe polarization interactions between molecules. The methodology advances the field in two key 

aspects: First, it enables independent parametrization of individual molecular components in 

electrolyte systems. Following this, each molecular model can be seamlessly transferred across 

different chemical environments without retraining, significantly improving transferability and 

applicability. Second, by incorporating electron density distribution as a fundamental descriptor, 

DBMLFF achieves marked improvements in modeling non-bonded interactions, reaching quantum-

chemical accuracy. Validations on typical electrolyte systems demonstrate that DBMLFF not only 

accurately captures atomic-scale solvation structures but also delivers a computational efficiency three 

orders of magnitude higher than AIMD simulations. This combination of accuracy, transferability, and 

efficiency opens a new technical pathway for investigating mesoscale electrolyte reaction kinetics.

2. Methods

2.1 Computational details

All AIMD, DBMLFF and density functional theory (DFT) calculations were carried out using the 

PWmat code34,35, a plane-wave pseudopotential package optimized for GPU acceleration through 

algorithmic reconstruction. The norm-conserving SG15 pseudopotential36,37 was employed with the 
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local density approximation (LDA)38 for exchange-correlation interactions. Although it will be straight 

forward to change the exchange-correlation functional to other semilocal functionals like the 

generalized gradient approximation (GGA)39, LDA offers the simplest functional to test our charge 

density based approach. Kohn-Sham wavefunctions were expanded in plane-wave basis sets, with a 

kinetic energy cutoff of 120 Rydberg for charge density grid.

Classical molecular dynamics simulations utilized GROMACS40 with the Optimized Potential for 

Liquid Simulations for all atoms (OPLS-AA) force field.41 Force field parameters were generated 

using Ligpargen42, and initial atomic configurations were constructed via PACKMOL.43 Long-range 

electrostatic interactions were treated by the particle-particle particle-mesh (PPPM) method44, while 

van der Waals interactions were modeled with Lennard-Jones potentials. Energy minimization using 

conjugate gradient algorithm was performed to eliminate unphysical configurations in initial structures. 

The self-diffusion coefficients of ions were calculated from the uncorrelated mean square 

displacements (MSD) of individual ions by the following equation45.

21 lim ( ) (0)
6i i it

dD r t r
dt®¥

= - (1)

Ionic conductivity from MD simulations is calculated using the Einstein relation46: 

 
2

,
lim ( ) lim ( ) (0) ( ) (0)

6

N

app i j i i j jt t i jB

et q q r t r r t r
tk TV

k k
®¥ ®¥

é ù= = - -ë ûå (2)

where e is the electron charge, V is the volume of the simulation box, Bk  is Boltzmann’s constant, T 

is the temperature, t is time, iq and jq  are the charges over ions i and j in electrons, ( )ir t  is the 

displacement of ion i during time t, the summation is performed over all ions, ⟨⟩ denotes the ensemble 

average, and N is the number of cations plus anions in the simulation cell. By combining the Einstein 

relation and the degree of uncorrelated motion46–48 ( da ), the apparent ionic conductivity in the long-

term equilibrium state is given by:
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 
2

lim limapp dt t
B

e n D n D
Vk T

k a+ + - -®¥ ®¥
= + (3)

 

 
,

22

( ) (0) ( ) (0)
( )

( ) (0)

N

i j i i j j
i j

d N

i i i
i

q q r t r r t r
t

q r t r
a

é ù- -ë û
=

-

å

å
(4)

where n+  and n-  are the number of cations and anions, respectively; D+  and D-  denote the self-

diffusion coefficients of cations and anions. For ( )d ta  = 1, the ion motion is completely uncorrelated, 

for ( )d ta  = 0, cations and anions move together as ion pairs, resulting in zero conductivity. Herein, 

the da  was calculated using 4% of the total simulation run (Fig. S12). 

The enthalpy of vaporization is consisted of gas phase enthalpy value and liquid phase enthalpy 

value, we compute by equation49,50

vap gas liq gas gas liq liqH H H U PV U PVD = - = + - - (5)

where vapHD  is enthalpy of vaporization, H  is molar enthalpy, U  is molar energy, P  is pressure, 

V  is molar volume; the subscripts gas and liq mean the corresponding phase values of gas or liquid. 

Compared with gasPV , liqPV  is usually neglected. Additionally, gasPV RT» , where R  is the ideal 

gas constant, T  is the temperature. Moreover, the average kinetic energy of the liquid phase is close 

to that of the gas phase at the same temperature. So the equation above is simplified to

vap gas liq p gas p liqH U U RT E E RT- -D » - + = - + (6)

where pE  is molar potential energy. 

2.2 Materials preparation

The ethylene glycol dimethyl ether (EGDME, 98%), lithium bis(fluorosulfonyl)imide (LiFSI, > 

98%), and 1,1,2,2-trifluoroethyl-2,2,3,3-tetrafluoropropyl ether (TTE, 98%) were all purchased from 

Shanghai Aladdin Biochemical Technology Co., Ltd. Reagents were stored in Ar-filled glove boxes 
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(H2O/O2 < 0.1 ppm) upon delivery and used without further purification for electrolyte preparation. 

The electrolyte was prepared by dissolving LiFSI in a TTE/EGDME co-solvent system (molar ratio 

5:2). Freshly prepared electrolytes were utilized within two weeks to minimize potential 

decomposition.

2.3 Electrochemical characterization

The ionic conductivity was calculated from the electrolyte resistance (Rb), the thickness of 

electrolyte film (L), and the electrode area (A), according to Eq. (7). The electrolyte resistance was 

measured via electrochemical impedance spectroscopy, employing symmetric SS (stainless 

steel)/electrolyte/SS cells, over a frequency range of 100 kHz to 0.1 Hz with a 10 mV voltage 

amplitude.

/ bL R As = (7)

2.4 Pulsed-field-gradient-nuclear magnetic resonance (PFG NMR)

The diffusion coefficients were measured using a Bruker Avance III 600 MHz narrow-bore 

spectrometer equipped with a 5 mm DOTY VT 1H-19F/X PFG probe. The pulsed-gradient stimulated-

echo (PGSTE) sequence was employed for diffusion measurements, with data analysis performed 

using the Stejskal-Tanner equation to correlate gradient strength (g) with NMR signal attenuation.51

2 2 2
0 exp

3
I I g D dg dé ùæ ö= - D -ç ÷ê úè øë û

(8)

where I denotes the spectral peak signal intensity, I₀ represents initial intensity at g = 0, γ is the nuclear 

gyromagnetic ratio, δ the effective gradient pulse duration (2.0 ms), Δ the diffusion time (100 ms), and 

D the diffusion coefficient. Measurements employed 16 gradient steps with 16-32 scans per step, 

maintaining 2.0 ms gradient stabilization time. A double stimulated-echo sequence was implemented 

to mitigate convection artifacts.52,53
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3. Results and Discussion

Fig. 1 outlines the DBMLFF simulation workflow. The protocol initiates with AIMD to sample 

molecular conformers, followed by machine learning model training on curated DFT datasets to 

establish conformation-energy relationships for intramolecular force field development. 

Intermolecular interactions are quantified through charge density reconstruction of individual 

molecules, complemented by polarization models capturing environmental induction effects. The 

complete DBMLFF framework systematically integrates three energy components: position-

dependent intramolecular forces, electron density-derived intermolecular interactions, and polarization 

corrections, enabling high-fidelity molecular dynamics simulations.

Fig. 1 Workflow of the DBMLFF training framework.

3.1 Dataset construction

To generate the ab initio data, we perform AIMD simulations at various temperatures. For each 

target molecule, we conducted room-temperature and high-temperature (e.g., 1000 K) AIMD 
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simulations on both multimolecular systems (15-molecule clusters) and single-molecule systems, each 

spanning thousands of timesteps. Multimolecular trajectories extract diverse single-molecule 

configurations through conformational sampling, with subsequent self-consistent field calculations 

yielding system energies and atomic forces. Single-molecule trajectories directly provide 

corresponding energetics and atomic forces from AIMD results. Both multimolecular systems and 

elevated-temperature simulations cooperatively expand conformational space sampling, substantially 

broadening molecular-atomic configuration coverage. This systematic sampling strategy ensures 

MLFF-MD simulations remain strictly within well-trained configuration spaces throughout. During 

parameter optimization, room-temperature conformations received enhanced weighting in the loss 

function to prioritize their prediction accuracy.

3.2 Intramolecular Machine Learning Force Field (MLFF)

For a given molecule, its energy as a function of its configuration will be modeled with an 

intramolecular MLFF. To this aim, we have used 2-body and 3-body local atomic structure descriptors 

(features) as our MLFF input54. These features have been successfully applied to covalent bonding 

silicon systems55, metallic systems56, and multi-element systems. More specifically, a 2-body feature 

for an atom at iR  can be specified as:

   2
, ,jj i

j
f f R Ra s a s sd= -å (9)

where jR  is the atomic position for atom j within a cutoff radius to the center atom position iR , 

and js  is the element type of the atom j. The feature is specified by two indexes, a  indicates the 

shape of the  f xa  function , and s  specifies the neighbor atom element type. We have used 

truncated sinusoidal peak functions at different locations and widths as a function  f xa . Similarly, 

for 3-body features, we have:
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       1 2 3 1 2 1 1 2 2 3 1 2 1 21 2
1 2

3 ' ' "
, , , , , ,

,
j jj i j i j j

j j
f f R R f R R f R Ra a a s s a a a s s s sd d= - - -å (10)

where  
1

'f xa ,  
2

'f xa  and  
3

"f xa  are  
1 2 3 1 2

3
, , , ,f a a a s s  functions with different parameters. Due 

to the different element types and the number of index a  used, we typically have one to two hundred 

features for a given center atom.

The parameterization of our intramolecular MLFF incorporates a threefold constraint based on 

total energy, atomic forces, and atomic energy decomposition. A distinctive aspect of our approach is 

the decomposition of the DFT total energy into atomic contributions, which are then used as fitting 

targets; this strategy significantly increases the amount of valuable data available during the fitting 

process and reduces the need for lengthy ab initio simulations to generate training data. While these 

features could serve as inputs for fully connected neural networks, we find that a linear regression 

model is sufficient to produce highly accurate intramolecular MLFF. This can be attributed to two 

main reasons: first, our focus is solely on molecular configurations near equilibrium, without chemical 

reactions or bond breaking/formation, resulting in a relatively low-dimensional configuration space; 

and second, the combination of the index α and the extended element type σ provides a large number 

of features, a scenario in which linear models often perform well. Furthermore, linear regression 

models are easy to train and can be learned on-the-fly with minimal computational cost, making them 

well-suited as accelerators for MD simulations. The accuracy of this approach is demonstrated by the 

fitting results for ethyl acetate (EA) molecules in Fig. 2a-b, where total energy predictions yield the 

root-mean-square error (RMSE), mean absolute error (MAE), and coefficient of determination (R²) 

values of 0.045 eV, 0.027 eV, and 0.998, respectively, while atomic force predictions demonstrate 

RMSE, MAE, and R² values of 0.142 eV/Å, 0.092 eV/Å, and 0.999, respectively. It should be noted 

that the intrinsic molecular properties presented in Fig. 2a-b, as described by the intramolecular MLFF 
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trained on isolated molecules in vacuum DFT data, do not include intermolecular interactions or 

polarization effects, which will be incorporated in subsequent stages.

Fig. 2 (a) Total energy and (b) atomic force comparisons between DFT calculations and MLFF 
predictions for EA molecules in various configurations. (c) Electron density isosurfaces of EA 

molecule from DFT (upper) and spherical charge center model fittings (lower), with isovalues of 
0.046, 0.001, and 0.0001 e/bohr³.

3.3 Fitting the density of single molecules

Following the development of intramolecular MLFF for individual molecules, this work focuses 

on modeling intermolecular interactions. The protocol initiates with single-molecule charge density 

reconstruction. Computational efficiency is prioritized through atom-centered spherical charge density 

models, augmented by bond-centered components to capture non-spherical electron distribution 
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characteristics. The resultant molecular electron charge density expression is formulated as33:

      
,

,m k j
k j

r C k j f r Rr b= -å (11)

where, j is the index for the centers (either atomic positions or bond centers), k  is the index for the 

basis function  kf r , and  jb  is the type of the center. This type is determined by the element 

type of the atom (if the center is an atom) and the bonding situation inside the molecule. We have used 

the Gaussian function  2 2exp /k kr R wé ù- -ë û  as the basis  kf r . To complete the model, we only 

need to get the coefficients  ,C k b  for a given molecule. About 30 Gaussian basis functions are 

used per atom and bond center, leading to a total number of coefficients on the order of hundreds. 

We randomly selected 50 distinct atomic configurations from AIMD simulations at different 

temperatures and fitted their DFT calculated charge density  DFT rr  with the above model  m rr . 

These 50 configurations were fitted collectively, with each contributing thousands of volumetric grid 

points to the fitting process. A linear fitting to minimize    
2 3

DFT mr r d rr r-é ùë ûò  was used to yield 

the coefficient  ,C k b . We have shown a comparison of the model fitted charge density and DFT 

calculated charge density in Fig. 2c for EA molecules. It shows that the charge density is well fitted 

not only in the large density areas but also in the small density tail regions. The small tail regions are 

important for intermolecular interactions as they modify the electrostatic interaction, as well as induce 

exchange coupling between the molecules. Note that the charge density tail extends 2 Å from atoms, 

a range comparable to molecule-molecule or molecule-ion distances; thus, density overlaps exert a 

notable influence, with the induced exchange coupling serving as a major source of intermolecular 

attraction. Notably, such overlap-induced interactions cannot be adequately captured by the simple 

point charge models used in most classical force fields. Residual errors, particularly in tail regions, 

may propagate to affect subsequent predictions. For instance, subtle mismatches in tail density (e.g., 
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deviations in density decay 1~2 Å from atoms) could distort intermolecular electrostatic fields, leading 

to Coulomb energy biases. These, in turn, alter atomic forces and molecular trajectories, distorting 

properties like diffusion coefficients and viscosity. Similarly, fitting errors in density overlap regions 

(critical for exchange coupling) may modify intermolecular attraction, impacting liquid-phase 

cohesive energy and causing deviations in thermodynamic properties such as enthalpy of vaporization. 

While Fig. 2c only shows one atomic configuration, it is important to note that the same  ,C k b  

coefficients can generate electron charge densities for other configurations of the same molecule. 

Future work may test configuration-dependent  ,C k b  coefficients in Eq. (11) for optimization, but 

overall, interaction energies derived from the fitted charge densities are satisfactory.

Having developed a fit for the electron charge density of individual molecules for any given 

molecular configuration, the next step is to calculate intermolecular interactions. Our approach 

assumes that the total charge density of a system is the sum of the individual molecular charge densities, 

even if there are overlaps. This assumption has been confirmed in other theories, such as symmetry-

adapted perturbation theory to calculate intermolecular interaction energies,57 and in the charge 

patching method.58 Given this assumption, to describe the total charge density of an aggregate of 

closed-shell molecules, it only needs to provide the charge densities for each molecule before 

polarization effects are considered. Conversely, we define the polarization electron charge as the 

difference from the simple summation result after an ab initio self-consistent field (SCF) calculation 

of the whole system. To further demonstrate this point, we tested two dimethyl ether (DME) molecules, 

by calculating the total charge density when they are close to each other and compared it to the sum of 

the individual molecule densities. The results are shown in Fig. 3 a-c when they approach each other. 

To estimate the overlap of the two molecule charge densities, we have defined an overlap charge 
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density as:

     0 1 2r r rr r r= (12)

where  1 rr  and  2 rr  are the charge densities of the two individual molecules in isolation. This 

overlapping charge density is compared with the charge density summation error: 

       12 1 2e r r r rr r r r= - - (13)

where  12 rr  is the DFT calculated charge density of the supermolecule (the whole system). Herein, 

 e rr  mostly concentrates in regions where  0 rr  is maximum. However,  e rr  is more complex, 

especially with some atomic characteristics, which can be a consequence of atomic-level polarization. 

Although the dipole moment of the DME molecule is small, when two of them are only 2-3 Å apart, 

there could still be local electric fields and polarization effects. Overall,  e rr  is about an order of 

magnitude smaller than that of  0 rr , which is in turn also an order of magnitude smaller than the total 

density itself. All these demonstrate the overall correctness of the charge density summation 

assumption. 

Using the sum of the individual molecule charge density  m rr  to yield the total charge density 

 total rr , we can now calculate the intermolecular interaction as follows:

   int total m
m

E E Er r= - å (14)

where m index stands for the molecules, and 
total m

m
r r= å . The functional  E r  uses the charge 

density to calculate the following energies: 

   

    2

3 3 31 2
1 2

1 2

5 1 12
2 3 33 2 23

( ) ( )1 ( )
2

3 3* ( ) ( )
10

total total
xc e

e e e

r rE d r d r r d r
r r

r d r r r d r

r rr e r

p r a r r

-
= +

-

+ + Ñ

ò ò

ò ò

r r
r r r r

r r

r r r r r
(15)

     total e nuclr r rr r r= + (16)
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where  nucl rr  is the nuclear charge, and xce  is the DFT local or semilocal exchange-correlation 

functional. In Eq.(15), the first term is the Coulomb interaction. The last two terms are Thomas-Fermi 

von Weizsäcker kinetic energy functional59. We keep α as a general fitting parameter (e.g., when we 

have used different α with and without polarization energy).

In summary, we have expressed intermolecular interactions by constructing the system's charge 

density via superposition of pre-fitted molecular densities and computing the interaction energy using 

an energy density functional. As shown in Fig. 3d-f, the DME-DME molecule interaction energies 

calculated from this approach are in close agreement with direct DFT calculations. In the DFT direct 

calculation, the binding energy is calculated from:

     
1 2tot DFT DFT DFTm mE E E- - (17)

where each DFT calculation is a self-consistent calculation. We tested the DME-DME interactions as 

the two molecules approached each other in various orientations and alignments. The interaction 

energy calculated from the fitted charge density was found to deviate by no more than 20 meV from 

the original DFT result. Therefore, the interaction energy using the fitted charge density is satisfactory. 

So far, we have not included the polarization term and have used α = 0.04 for the van Weizsäcker 

kinetic energy term in Eq. (15).
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Fig. 3 DFT-calculated (a) charge density distribution (b) charge density overlap region, and (c) 
superposition approximation error of DME dimer supermolecule at 2.5 Å parallel separation. (d)-(f) 

DME-DME intermolecular interaction energy comparison for three configurations:
 (d) Parallel aligned contact; (e) Perpendicular staggered contact; (f) Tilted slip contact.

Herein, we combine the intramolecular MLFF with an intermolecular density-based interaction 

model to construct a complete force field for MD simulations. Notably, polarization potential is not 

incorporated in the current model. However, for systems without strong electrostatic interactions (e.g., 

those containing no charged ions), the polarization effect is expected to be relatively weak, rendering 

the model reasonable. To validate this, we present the energy profile of two EA molecules during 

AIMD simulations, while the DBMLFF was employed to compute the potential energy (excluding 

nuclear kinetic energy) along these trajectories. Specifically, independent ab initio molecular dynamics 

simulations were performed for five pairs of EA molecules with distinct orientations and positions, 

each lasting 100 fs at a time step of 0.5 fs. Subsequently, the DBMLFF was used to infer the energy 

of all 1000 snapshots extracted from these AIMD simulations. As illustrated in Fig. 4, the energies 
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computed by the DBMLFF exhibit quantitative agreement with the AIMD reference data (RMSE = 

0.068 eV, MAE = 0.055 eV, R² = 0.950), accurately capturing both global trends and local features.

Fig. 4 Compares the potential energies along the AIMD simulation trajectory. The reference 
potential energy from direct AIMD calculation (green curve) is shown versus the potential energy 

predicted by the DBMLFF without the polarization term (purple curve). A representative structural 
snapshot of an EA molecular pair from the simulation is shown in the inset.

3.4 Polarization energy

While existing models may suffice for systems with weak electrostatic interactions, accurate 

modeling of ionic species like Li⁺ and FSI⁻ necessitates explicit consideration of polarization effects. 

This requirement becomes critical in solvent electrolytes where Li⁺-O/F atomic distances approach 2 

Å, generating substantial local electrostatic interactions despite the absence of covalent bonding.60 

Classical force field treatments of polarization involve two principal aspects: (1) charge redistribution 

under external potentials generating induced dipole moments, and (2) intermolecular polarization 

arising from these induced dipoles.61,62 In disordered systems such as organic solvents, the weak 

coherence of induced dipoles permits neglect of higher-order coupling terms. Our approach preserves 

physical rigor while circumventing computationally intensive self-consistent field iterations through 

explicit modeling of first-order polarization mechanisms.
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To accurately capture electronic relaxation under local external potentials, we implement a 

spatially resolved local electric field model, superseding conventional uniform field approximations. 

The polarization energy for individual molecules is formulated as:

     
, ,

, ; ,pol h k
i h j k

E P i h j k E i E j= åå (18)

where the numbers i, j denote the atoms, and h, k denote the three spatial components of the electric 

field  hE i  and  kE j . The parameter  , ; ,P i h j k  is the model coefficient to be fitted. To 

make the model transferrable, we have used internal coordinate orientation for h and k, e.g., directions 

along bonds related to atom i and j. The local electric field  hE i  is calculated as:

     2 2 3exp /h ext i hE i V r r R r d rwé ù= - -ë ûò (19)

where  extV r  is the Coulomb and exchange correlation potential caused by other molecules. 

Having established the polarization model of Eqs. (18) and (19), DFT calculations were performed 

to fit the coefficients  , ; ,P i h j k . Specifically, the polarization response of the molecule is 

probed by adding an external potential  extV r  at different points pR  as a perturbation for a given 

molecule: 

     2 2/ exp /extV r aerf d d b d w= + - (20)

where pd r R= - , the error function  erf x and the Gaussian width =1w  are used to model the 

actual potential near the nucleus. For a given molecule, about a thousand positions of pR  are used, 

as shown in Fig. 5a, to probe different situations surrounding the molecule. The distance between 

pR  and the nearest atom in the molecule varies from 2 Å to 8 Å. In the test set, we have also included 

cases where multiple probing charges exist simultaneously. All these are used to represent different 

external potential situations in real solvents. The total energy difference polE before and after wave 

function relaxation was recorded by DFT self-consistent calculations, and  hE k was calculated 
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according to Eq.(19). Using the least squares linear fitting, we obtained the coefficients  , ; ,P i h j k . 

The results are shown in Fig. 5b, which shows that the polarization model can accurately predict the 

polarization energy calculated by DFT within a few percentage points.

By integrating the polarization model, we coupled the polarization energy from Eq. (18) with 

Coulombic, exchange, and kinetic energy terms in Eq. (14) to construct the total interaction energy. 

Systematic evaluations were performed for EA dimer systems (Fig. 5c) and EA-Li⁺ complexes (Fig. 

5d), covering 200 distinct configurations for each system with varying displacements and orientations. 

Note that we have revised the prefactor α of the van Weizsäcker kinetic energy term in Eq. (15) from 

0.04 to 0.025. This adjustment is based on our observation that the contribution of this kinetic energy 

term is consistently negative and sometimes compensates for the polarization energy to some degree. 

Thus, in subsequent work where the polarization energy is included, we will adopt α = 0.025. As shown 

in Fig. 5c-d, we calculated the intermolecular and molecule-ion interactions (obtained by subtracting 

the energies of isolated components from the total system energy) in two systems using both DBMLFF 

and DFT methods. The results demonstrate excellent agreement between DBMLFF and DFT in both 

systems, with RMSE of 25 meV and 77 meV, respectively. Remarkably, Li⁺-containing systems 

exhibit interaction energies reaching -2 eV magnitude. The low RMSE values, particularly in the 

strongly interacting Li⁺ system, demonstrate that our polarization model effectively captures ion-

molecule interactions. Any residual error in polarization treatment inherently disrupts the delicate 

balance between charge-transfer attraction and short-range repulsion. Such deviations propagate 

through atomic forces to molecular dynamics simulations, thereby impairing the predictive accuracy 

of dynamic properties like diffusion coefficients and viscosity. Particularly in strongly coupled systems 

(e.g., concentrated electrolytes), errors tend to amplify, exerting a more pronounced impact on the 
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prediction of key properties such as ion-pair structures, free ion concentration, and ionic conductivity.

While the LDA functional was chosen for its computational efficiency and simplicity to test our 

charge-density-based approach, we acknowledge its inherent limitations. The use of LDA exchange-

correlation functional and the spherical charge density approximation may limit accuracy for systems 

with significant charge transfer or anisotropic interactions. To quantitatively assess these limitations, 

we compared the performance of our DBMLFF model against GGA using a model charge-transfer 

system (the Li⁺–EA complex), as shown in Fig. S9. The results indicate that while LDA underestimates 

the binding energy by approximately 4.3% compared to PBE-D3, the deviation between the DBMLFF 

predicted values and the PBE-D3 benchmarks remains within an acceptable margin. Furthermore, for 

anisotropic systems such as DME molecular pairs with varying orientations and positions, the spherical 

density approximation introduces minor deviations in intermolecular interaction energies. Therefore, 

the relative interaction trends predicted by our model remain consistent with those obtained from 

higher-level functionals.
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Fig. 5 (a) Statistical distribution of probe charge position Rp for EA molecule at a representative 
probe-molecule distance. (b) Correlation between DFT-calculated and fitted polarization energies for 

EA molecule across multiple probe configurations. Comparison of intermolecular interaction 
energies of (c) EA-EA and (d) EA-Li+ with random displacements and orientations. The DBMLFF 

model incorporates Coulombic, exchange-kinetic, and polarization-induced interactions.

3.5 DBMLFF molecular dynamics simulations

By integrating intramolecular MLFF with intermolecular interactions derived from electron 

density and polarization models, we have developed the complete DBMLFF methodology for 

molecular dynamics simulations. Initial tests demonstrate that each MD step requires approximately 

one second per molecule on a single CPU. GPU acceleration substantially enhances computational 

efficiency. Fig. 6a compares the system time per MD step for DBMLFF, PWmat and VASP software 

under four-GPU acceleration across systems containing varying numbers of EA molecules. The 

construction of the electron density is a local operation, resulting in computational costs that scale 
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linearly with system size, as illustrated in Fig. 6a. The sole exception is the fast Fourier transform 

(FFT) required to solve the global Poisson equation, which scales as log( )N N , where N is the system 

size. However, this global FFT constitutes only a minor fraction of the total computational cost and is 

therefore a secondary contribution. Notably, even classical force fields that employ methods like the 

fast multipole63 or particle-particle particle-mesh44 for long-range electrostatics exhibit the same 

log( )N N  scaling for Coulomb interactions. For typical electrolyte systems comprising over 200 

molecules, DBMLFF achieves three orders of magnitude acceleration compared to AIMD methods, as 

quantitatively demonstrated in Fig. 6b.

To confirm the performance of DBMLFF for actual liquid aggregated states, we therefore 

conducted comparative simulations on an electrolyte system containing 10 EA, 15 TTE, and 5 LiFSI, 

with a total atomic number of 460 for the whole system. This system, characterized by strong 

electrostatic/dipole interactions and polarization effects, serves as an exemplary platform for 

methodological validation. In modeling Li⁺, we only performed charge density fitting (Fig. S1) without 

including a polarization energy term. This is because Li⁺, as a closed-shell ion, has highly localized 

electron density and negligible polarizability, and is thus treated as a source of the polarizing field 

rather than a polarizable species. TTE (Fig. S2) and FSI⁻ (Fig. S3) were processed using the same 

fitting protocol as EA. All simulations were performed at 500 K for 5 ps under identical initial 

conditions to ensure sufficient mixing and mobility, with representative configurations shown in Fig. 

S10a. Radial distribution function analyses (Fig. 6c-d) demonstrate excellent agreement between 

DBMLFF and AIMD results, whereas GROMACS simulations show shortened Li-O bond lengths 

with intensified first peaks. To quantitatively assess the accuracy and temperature transferability of the 

DBMLFF methodology, we performed DFT single-point energy calculations on 150 configuration 
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snapshots systematically sampled from three independent DBMLFF-generated molecular dynamics 

trajectories at 300 K, 400 K, and 500 K (50 snapshots from each 5-ps trajectory). A comprehensive 

comparison was conducted on potential energy surface distributions (including the polarization term) 

and atomic force characteristics across this thermally diverse dataset. As shown in Fig. 6e-f, the 

DBMLFF calculations maintain excellent agreement with DFT benchmark data across all temperature 

regimes: the consolidated analysis yields an RMSE of 0.003 eV/atom (MAE = 0.002 eV/atom, R² = 

0.973) for total energy, while atomic forces exhibit an RMSE of 0.207 eV/Å (MAE = 0.136 eV/Å, R² 

= 0.949). The consistent performance across this 200 K temperature range demonstrates the robustness 

of the DBMLFF approach for molecular simulations under varying thermodynamic conditions. In 

comparison, the MACE shows improved force prediction accuracy (RMSE = 0.354 eV/Å, Fig. S11b) 

over conventional GROMACS simulations (RMSE = 1.412 eV/Å, Fig. S11a), yet still falls short of 

the DBMLFF performance, further underscoring the marked superiority of the DBMLFF approach in 

modeling atomic-scale interactions.
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Fig. 6 (a) Running time performance and (b) running time ratio for systems by varying the number of 
EA molecules using AIMD and DBMLFF. Simulation results for LiFSI/EA/TTE system with 460 

atoms: (c) Li-O and (d) O-F pair distribution functions after 5 ps MD simulations at 500 K. 
Comparison between DFT calculated and DBMLFF predicted (e) total energy per atom and (f) 

atomic force.

To assess reliability and transferability in extended electrolyte simulations, we selected the well-

studied LiFSI/EGDME/TTE system. Since DBMLFF models for LiFSI and TTE were already 

established in our previous work, only the newly introduced EGDME molecule required 

parametrization (fitting procedure shown in Fig. S4). We constructed an initial configuration by 

randomly packing 24 EGDME, 60 TTE, and 20 LiFSI molecules (totaling 1664 atoms) at the 
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experimental density of 1.49 g/ml, with a representative snapshot provided in Fig. S10b. Subsequently, 

we performed 700 ps MD simulations at 300 K using both DBMLFF and the classical OPLS-AA force 

field in GROMACS. Ion diffusion coefficients were calculated from MSD analysis during the final 

550 ps following adequate equilibration (Fig. 7a-b). The MSD curves exhibit clear linear regimes 

throughout this period, confirming well-converged diffusive behavior. It should be noted that all 

reported diffusion coefficients, for both DBMLFF and GROMACS, are presented without finite-size 

corrections, as our primary objective was to conduct a direct comparison under identical simulation 

conditions. To validate the simulations against experiment, we conducted pulsed field gradient nuclear 

magnetic resonance (PFG-NMR) measurements on the same electrolyte. The self-diffusion 

coefficients derived from Stejskal-Tanner equation analysis were 1.377×10⁻¹⁰ m²/s for Li⁺ and 

1.180×10⁻¹⁰ m²/s for FSI⁻ (see NMR spectra in Fig. 7c-d). The experimental ionic conductivity was 

obtained from Nyquist plots (Fig. S13). As quantified in Table S1, DBMLFF demonstrates 

significantly better agreement with the experimental diffusion coefficients and ionic conductivity than 

the classical force field, confirming its superior predictive accuracy. 
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Fig. 7 Mean square displacement (MSD) of Li⁺ and FSI⁻ in the LiFSI/EGDME/TTE system from (a) 
DBMLFF and (b) GROMACS simulations. Experimental PFG-NMR spectra of Li⁺ (c) and FSI⁻ (d) 
diffusion in the LiFSI/EGDME/TTE system. Color corresponds to peak intensity; increasing number 

indicates increasing gradient strength.

We further extended our assessment to ionic mobility in a Lithium Hexafluorophosphate 

(LiPF6)/ethylene carbonate (EC)/dimethyl carbonate (DMC) system (80 EC, 60 DMC, 10 LiPF6) via 

2.5 ns MD simulations at 300 K (representative configuration in Fig. S10c). The fitting procedures for 

EC, DMC, and PF₆⁻ are detailed in Figs. S5-S7. The diffusion coefficients from MSD analysis (Fig. 

S14) again show that DBMLFF quantitatively aligns the established experimental trends64 and offer a 

marked improvement over classical force field prediction (Table S2). The observed systematic 

deviations may originate from the simulation errors due to limited simulation times and system sizes, 

the intrinsic error of the DBMLFF model, as well as the possible experimental uncertainties. Future 
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more systematic studies might be necessary to analyze the source of remaining errors.

To evaluate force prediction stability in extended systems, we randomly selected 20 snapshots 

from the DBMLFF molecular dynamics trajectories of the LiFSI/EGDME/TTE and LiPF6/EC/DMC 

electrolyte systems and performed a comparative analysis of atomic forces using DFT calculations and 

MACE predictions. The results (Fig. S15) demonstrate that in both electrolyte systems, DBMLFF 

achieves significantly better agreement with DFT reference forces than MACE, along with markedly 

lower prediction errors. More critically, the same LiFSI and TTE models were employed in both the 

LiFSI/EA/TTE system (Fig. 6d) and the LiFSI/EGDME/TTE system (Fig. S15a). Despite the change 

in solvent from EA to EGDME, which alters the chemical environment, the forces predicted by the 

DBMLFF models remain in excellent agreement with DFT. This robust performance, maintained 

without the need for retraining, strongly demonstrates the outstanding transferability of the DBMLFF 

framework.

Beyond electrolyte applications, we envision that this machine learning potential based on 

electron density descriptors will pioneer new directions in force field development for molecular 

simulations, particularly for systems where intermolecular interactions govern macroscopic properties. 

To validate the accuracy and general applicability of DBMLFF in describing intermolecular 

interactions, we computed evaporation enthalpies for five representative molecules. Specifically, for 

each molecule, we constructed a liquid system containing 100 molecules at experimental density and 

performed 2 ns molecular dynamics simulations at 298 K using DBMLFF and GROMACS, 

respectively. Each system was independently simulated three times to obtain statistical averages. The 

potential energy of gaseous molecules was derived from 20 ps molecular dynamics simulations at 298 

K in large-sized simulation boxes (ensuring no intermolecular interactions). The fitting process of 
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DME is shown in Fig. S8. As shown in Table S3, the evaporation enthalpies calculated by DBMLFF 

and the traditional force field were compared with experimental values. The results demonstrate that 

DBMLFF significantly outperforms the traditional force field (although traditional force fields often 

use such experimental vaporization energies as fitting targets), indicating its superior ability to 

accurately describe intermolecular interactions.

4. Conclusion

Although we have demonstrated the feasibility of the transferable DBMLFF, with predicted 

dynamic diffusion and enthalpy of evaporation in good agreement with experimental values, several 

key issues remain to be explored. First, our current approach only handles intermolecular interactions 

via charge density, which is effective for small molecules but notably insufficient for large systems 

such as polymers and proteins. Incorporating density-based intramolecular interactions is 

straightforward, simply by reusing the formal framework of intermolecular interaction energy. This 

modification can also simplify the computational workflow of MD simulations: obtain the charge 

density, calculate the charge-density-based interaction energy and polarization energy, subtract these 

energies/forces from DFT results, and then fit the residual energies/forces with a MLFF. Second, 

dispersion interactions are not included in this study and can be supplemented by empirical methods 

(e.g., DFT-D265, DFT-D366) or non-local integrals dependent on charge density (e.g., rVV1067), both 

of which are straightforward and direct. Finally, the assumption that the total system charge density 

equals the sum of molecular densities essentially ignores many-body interactions beyond first order 

polarization effect treatment. For systems with strong and coherent polarization effects, e.g. under a 

strong external electric field, the charge density change (polarization charge density) might need to be 

described, and a self-consistent calculation might be needed to calculate the screened electric field.
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