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Abstract: Machine learning force fields (MLFF) are rapidly evolving to provide molecular dynamics
simulations of molecules and materials with an accuracy comparable to ab initio methods, while
significantly reducing the need for computational resources. However, conventional MLFFs are
generally system-specific; introducing new chemical components requires assembling a new training
dataset and retraining the entire model from scratch. To address this, we present a density-based
machine learning force field (DBMLFF). The key advantage of DBMLFF lies in its modular
parametrization strategy: by modeling each molecular species independently, the resulting force fields

achieve seamless transferability across diverse chemical environments and retaining high accuracy

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

without the need for retraining. This significantly improves model portability and cross-system

applicability. Unlike most of the statistically based MLFFs, DBMLFF is a physics-based force field
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with machine learning components in it. It computes intermolecular interactions directly from electron
density, enabling accurate descriptions of complex non-bonded behavior. In terms of computational
efficiency, DBMLFF is three orders of magnitude faster than ab initio molecular dynamics and exhibits
linear scaling with system size, allowing efficient simulations of large-scale systems. These features
make DBMLFF a robust tool for multi-component electrolyte MD simulations, ideal for practical
electrochemical systems with variable compositions and large scales.
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1. Introduction

Under the global transition in energy infrastructure, lithium-ion batteries, as core components of
next-generation energy storage systems, have become a critical research focus in computational
materials science.! While commercial lithium-ion batteries demonstrate satisfactory energy density
and cycling stability, their rate capability and safety margins remain inadequate for rapidly evolving
application demands.> The key to overcoming this technical bottleneck lies in a fundamental
understanding of electrolyte micro-mechanisms. As the ion-transport medium in battery systems,
electrolytes not only govern lithium-ion migration kinetics but also critically influence electrode
interfacial stability and thermal behavior through the dynamic evolution of solvation structures.’
Consequently, establishing precise multiscale characterization methods for electrolyte systems has
emerged as a pivotal scientific challenge in developing high-safety, long-lifetime energy storage
devices.*6

Molecular dynamics (MD) simulations provide a unique perspective for elucidating microscopic
interactions in electrolyte systems.”# By constructing atomic-scale interaction models, this technique
enables the resolution of activation energy barriers for lithium-ion transport, dynamic reorganization
of solvent coordination structures, and formation processes of interfacial electric double layers.>!!
However, conventional simulation approaches exhibit notable limitations: classical MD based on
empirical potentials fails to accurately capture complex polarization effects between ions and solvents,
often resulting in systematic deviations from experimental observations. Meanwhile, ab initio MD
(AIMD), while offering higher accuracy, faces computational constraints that preclude simulations at
practical operational timescales.!>!3 This inherent trade-off between precision and efficiency

significantly hinders in-depth investigations of electrolyte systems.
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The emerging machine learning force field (MLFF) technology presents a novel Soltition 10 thig’®"
dilemma.'+!7 By integrating quantum chemical calculations with machine learning algorithms, MLFF
achieves atomic-scale accuracy while dramatically enhancing computational efficiency.!®2* However,
existing MLFF methods still face challenges in engineering applications.?!?> Current MLFFs typically
exhibit a "system-specific nature," wherein any change in system composition (such as the introduction
of new components) necessitates computationally expensive retraining of the entire force field.?3->*
This limited scalability poses a major bottleneck in the development of multi-component electrolyte
systems.?>2¢ On the other hand, while general-purpose MLFFs (e.g., MACE, Materials Adaptive
Convolutional Equivariants)?’ demonstrate potential in terms of broad coverage, their predictive
accuracy in complex molecular systems (such as electrolytes) still requires further improvement. For
example, there are cases where the MD trajectories using such big models diverge, producing
unphysical atomic configurations, and due to the large set of parameters, such models become slow

and incapable of simulating large systems. This leaves the field grappling with the trade-off between

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

generality and accuracy. Moreover, existing MLFFs typically assume energy depends solely on local

Open Access Article. Published on 19 January 2026. Downloaded on 1/20/2026 12:04:18 PM.

atomic environments, limiting their ability to accurately capture long-range electrostatic

(cc)

interactions.?®?° The predominant solution separates long-range electrostatic energy, commonly using
point charge models, from the machine learning-fitted short-range energy. Other strategies such as
environment-dependent charges®® or neural-network-predicted electronegativities®' have also been
proposed. However, these still rely on the point charge approximation, resembling classical force
fields.3? While the point charge model performs well at large intermolecular distances without electron
density overlap, its accuracy degrades significantly at intermediate distances where electron cloud

overlap becomes non-negligible. To address this limitation, our work introduces an explicit
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representation of electron charge density, aiming to overcome the inherent constraitits 0f’tH& point’™"
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charge model in this regime.

To address these challenges, we developed the Density-Based Machine Learning Force Field
(DBMLFF) simulation package for energy and force prediction tasks, as well as MD calculations.??
DBMLFF calculates intermolecular interactions based on fitted electron charge densities, while
intramolecular energies are modeled using traditional atomic structure-based MLFF models. In
addition, a local potential polarization model based on charge density calculations is introduced to
describe polarization interactions between molecules. The methodology advances the field in two key
aspects: First, it enables independent parametrization of individual molecular components in
electrolyte systems. Following this, each molecular model can be seamlessly transferred across
different chemical environments without retraining, significantly improving transferability and
applicability. Second, by incorporating electron density distribution as a fundamental descriptor,
DBMLEFF achieves marked improvements in modeling non-bonded interactions, reaching quantum-
chemical accuracy. Validations on typical electrolyte systems demonstrate that DBMLFF not only
accurately captures atomic-scale solvation structures but also delivers a computational efficiency three
orders of magnitude higher than AIMD simulations. This combination of accuracy, transferability, and
efficiency opens a new technical pathway for investigating mesoscale electrolyte reaction kinetics.

2. Methods
2.1 Computational details

All AIMD, DBMLFF and density functional theory (DFT) calculations were carried out using the

PWmat code’*33, a plane-wave pseudopotential package optimized for GPU acceleration through

algorithmic reconstruction. The norm-conserving SG15 pseudopotential’®37 was employed with the
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local density approximation (LDA )38 for exchange-correlation interactions. Although it Wifl B&straight’®"
forward to change the exchange-correlation functional to other semilocal functionals like the
generalized gradient approximation (GGA)3°, LDA offers the simplest functional to test our charge
density based approach. Kohn-Sham wavefunctions were expanded in plane-wave basis sets, with a
kinetic energy cutoff of 120 Rydberg for charge density grid.

Classical molecular dynamics simulations utilized GROMACS*® with the Optimized Potential for
Liquid Simulations for all atoms (OPLS-AA) force field.*! Force field parameters were generated
using Ligpargen*?, and initial atomic configurations were constructed via PACKMOL.*® Long-range
electrostatic interactions were treated by the particle-particle particle-mesh (PPPM) method*4, while
van der Waals interactions were modeled with Lennard-Jones potentials. Energy minimization using
conjugate gradient algorithm was performed to eliminate unphysical configurations in initial structures.

The self-diffusion coefficients of ions were calculated from the uncorrelated mean square

displacements (MSD) of individual ions by the following equation®.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.
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Ionic conductivity from MD simulations is calculated using the Einstein relation*:
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2

x=limx,, (1) =lim 6tki W;qiq,- ([r =] -r,©]) @)

where e is the electron charge, V is the volume of the simulation box, k; is Boltzmann’s constant, 7'
is the temperature, ¢ is time, ¢;and ¢; are the charges over ions i and j in electrons, 7(¢) is the
displacement of ion i during time ¢, the summation is performed over all ions, () denotes the ensemble
average, and N is the number of cations plus anions in the simulation cell. By combining the Einstein
relation and the degree of uncorrelated motion#4® (¢, ), the apparent ionic conductivity in the long-

term equilibrium state is given by:
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where 1, and 7 are the number of cations and anions, respectively; D, and D_ denote the self-
diffusion coefficients of cations and anions. For «,(¢f) =1, the ion motion is completely uncorrelated,
for a,(f) =0, cations and anions move together as ion pairs, resulting in zero conductivity. Herein,
the a, was calculated using 4% of the total simulation run (Fig. S12).

The enthalpy of vaporization is consisted of gas phase enthalpy value and liquid phase enthalpy

value, we compute by equation*-

AH,, =H, ~H

vap lig

=U,, +PV,, ~U,

gas

PV, )

iq -
where AH,,, isenthalpy of vaporization, H ismolarenthalpy, U ismolarenergy, P ispressure,
¥ is molar volume; the subscripts gas and /ig mean the corresponding phase values of gas or liquid.

Compared with PV, , PV, is usually neglected. Additionally, PV, ~RT, where R is the ideal

gas constant, 7 is the temperature. Moreover, the average kinetic energy of the liquid phase is close
to that of the gas phase at the same temperature. So the equation above is simplified to

AH,  =U U,+RT=E -F

vap gas - lig p—gas p-lig

+RT (6)
where E, is molar potential energy.
2.2 Materials preparation

The ethylene glycol dimethyl ether (EGDME, 98%), lithium bis(fluorosulfonyl)imide (LiFSI, >
98%), and 1,1,2,2-trifluoroethyl-2,2,3,3-tetrafluoropropyl ether (TTE, 98%) were all purchased from

Shanghai Aladdin Biochemical Technology Co., Ltd. Reagents were stored in Ar-filled glove boxes


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5dd00508f

Page 7 of 33 Digital Discovery

View Article Online

(H,0/0, < 0.1 ppm) upon delivery and used without further purification for electrofyte préparation
The electrolyte was prepared by dissolving LiFSI in a TTE/EGDME co-solvent system (molar ratio
5:2). Freshly prepared electrolytes were utilized within two weeks to minimize potential
decomposition.
2.3 Electrochemical characterization

The ionic conductivity was calculated from the electrolyte resistance (R;), the thickness of
electrolyte film (L), and the electrode area (4), according to Eq. (7). The electrolyte resistance was
measured via electrochemical impedance spectroscopy, employing symmetric SS (stainless
steel)/electrolyte/SS cells, over a frequency range of 100 kHz to 0.1 Hz with a 10 mV voltage

amplitude.
c=L/RA (7

2.4 Pulsed-field-gradient-nuclear magnetic resonance (PFG NMR)

The diffusion coefficients were measured using a Bruker Avance III 600 MHz narrow-bore

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

spectrometer equipped with a 5 mm DOTY VT 1H-19F/X PFG probe. The pulsed-gradient stimulated-
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echo (PGSTE) sequence was employed for diffusion measurements, with data analysis performed
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using the Stejskal-Tanner equation to correlate gradient strength (g) with NMR signal attenuation.>!
2 22 5
=1, exp{—y g0 D(A—gﬂ (8)

where I denotes the spectral peak signal intensity, /, represents initial intensity at g = 0, y is the nuclear
gyromagnetic ratio, o the effective gradient pulse duration (2.0 ms), A the diffusion time (100 ms), and
D the diffusion coefficient. Measurements employed 16 gradient steps with 16-32 scans per step,
maintaining 2.0 ms gradient stabilization time. A double stimulated-echo sequence was implemented

to mitigate convection artifacts.>?3
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3. ReSllltS alld Discussion DOI: 10.1039/D5DD00508F

Fig. 1 outlines the DBMLFF simulation workflow. The protocol initiates with AIMD to sample
molecular conformers, followed by machine learning model training on curated DFT datasets to
establish conformation-energy relationships for intramolecular force field development.
Intermolecular interactions are quantified through charge density reconstruction of individual
molecules, complemented by polarization models capturing environmental induction effects. The
complete DBMLFF framework systematically integrates three energy components: position-
dependent intramolecular forces, electron density-derived intermolecular interactions, and polarization
corrections, enabling high-fidelity molecular dynamics simulations.

AIMD Sampling DBMLFF Simulation

Density Fitting

(~1500atoms)

| M |
, ‘ Esi (Pt )s Fro [ Piat)

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.
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—— - D
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‘ kvig
w ‘ Polarization energy

EMI) _z, AFMHJ’ o Fnﬂ (pm.r)

\ v 5, o (Pl )
; Fyp = Z, aFy e T Fim (pm: )
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Fig. 1 Workflow of the DBMLFF training framework.

3.1 Dataset construction
To generate the ab initio data, we perform AIMD simulations at various temperatures. For each

target molecule, we conducted room-temperature and high-temperature (e.g., 1000 K) AIMD
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simulations on both multimolecular systems (15-molecule clusters) and single-molecul&'systems; Each’®
spanning thousands of timesteps. Multimolecular trajectories extract diverse single-molecule
configurations through conformational sampling, with subsequent self-consistent field calculations
yielding system energies and atomic forces. Single-molecule trajectories directly provide
corresponding energetics and atomic forces from AIMD results. Both multimolecular systems and
elevated-temperature simulations cooperatively expand conformational space sampling, substantially
broadening molecular-atomic configuration coverage. This systematic sampling strategy ensures
MLFF-MD simulations remain strictly within well-trained configuration spaces throughout. During
parameter optimization, room-temperature conformations received enhanced weighting in the loss
function to prioritize their prediction accuracy.
3.2 Intramolecular Machine Learning Force Field (MLFF)

For a given molecule, its energy as a function of its configuration will be modeled with an

intramolecular MLFF. To this aim, we have used 2-body and 3-body local atomic structure descriptors

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(features) as our MLFF input’*. These features have been successfully applied to covalent bonding

Open Access Article. Published on 19 January 2026. Downloaded on 1/20/2026 12:04:18 PM.

silicon systems>3, metallic systems>¢, and multi-element systems. More specifically, a 2-body feature
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for an atom at R,- can be specified as:

f(Z)a,a' _ zfa (

J

R,-R|)S, ., ©)

where R j 1s the atomic position for atom j within a cutoff radius to the center atom position Ri ,
and o ; is the element type of the atom j. The feature is specified by two indexes, « indicates the
shape of the /. o (x) function , and o specifies the neighbor atom element type. We have used
truncated sinusoidal peak functions at different locations and widths as a function /. o (x) . Similarly,

for 3-body features, we have:
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Jrido
where f o (X) f ' o (X) and f ”0!3 (X) are jAz'),ll,O,Z,%,(71 o, functions with different parameters. Due
to the different element types and the number of index & used, we typically have one to two hundred
features for a given center atom.

The parameterization of our intramolecular MLFF incorporates a threefold constraint based on
total energy, atomic forces, and atomic energy decomposition. A distinctive aspect of our approach is
the decomposition of the DFT total energy into atomic contributions, which are then used as fitting
targets; this strategy significantly increases the amount of valuable data available during the fitting
process and reduces the need for lengthy ab initio simulations to generate training data. While these
features could serve as inputs for fully connected neural networks, we find that a linear regression
model is sufficient to produce highly accurate intramolecular MLFF. This can be attributed to two
main reasons: first, our focus is solely on molecular configurations near equilibrium, without chemical
reactions or bond breaking/formation, resulting in a relatively low-dimensional configuration space;
and second, the combination of the index o and the extended element type ¢ provides a large number
of features, a scenario in which linear models often perform well. Furthermore, linear regression
models are easy to train and can be learned on-the-fly with minimal computational cost, making them
well-suited as accelerators for MD simulations. The accuracy of this approach is demonstrated by the
fitting results for ethyl acetate (EA) molecules in Fig. 2a-b, where total energy predictions yield the
root-mean-square error (RMSE), mean absolute error (MAE), and coefficient of determination (R?)
values of 0.045 eV, 0.027 eV, and 0.998, respectively, while atomic force predictions demonstrate
RMSE, MAE, and R2 values of 0.142 eV/A, 0.092 eV/A, and 0.999, respectively. It should be noted

that the intrinsic molecular properties presented in Fig. 2a-b, as described by the intramolecular MLFF

10
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trained on isolated molecules in vacuum DFT data, do not include intermolecular’ intétactions 6"

polarization effects, which will be incorporated in subsequent stages.

(a) (b)

210 = 30 —
F s ”~
RMSE = 0.045 eV ’ RMSE = 0.142 eV/A .
208 MAE=0.027eV . 2 2 MAE=0.092¢V/A
R’ =0.998 = R? = 0.999
—_— — 10 L
-
2 206} g
e &
= 2 0
= E
= 204} g
= o -10}
=
—
202} = 20}
7 7"
200 & 1 1 1 1 _30 1 L L 1 1
200 202 204 206 208 210 30 20 -0 0 10 20 30
DFTE,, (eV) DFT atomic force (eV/A)

(c) Isosurface: 0.046 e/bohr® Tsosurface: 0.001 e/bohr® Isosurface: 0.0001 e/bohr?

Electron density-DFT
J%

Electron density-fit
- Q

Fig. 2 (a) Total energy and (b) atomic force comparisons between DFT calculations and MLFF
predictions for EA molecules in various configurations. (c) Electron density isosurfaces of EA
molecule from DFT (upper) and spherical charge center model fittings (lower), with isovalues of
0.046, 0.001, and 0.0001 e/bohr?.

3.3 Fitting the density of single molecules

Following the development of intramolecular MLFF for individual molecules, this work focuses
on modeling intermolecular interactions. The protocol initiates with single-molecule charge density
reconstruction. Computational efficiency is prioritized through atom-centered spherical charge density

models, augmented by bond-centered components to capture non-spherical electron distribution

11
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characteristics. The resultant molecular electron charge density expression is formulatéd fg33*/2>PP00°0%F
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P (r) =L (kAU i (=R an
.
where, j is the index for the centers (either atomic positions or bond centers), & is the index for the
basis function fk(f' ) , and ﬁ( J ) is the type of the center. This type is determined by the element
type of the atom (if the center is an atom) and the bonding situation inside the molecule. We have used
the Gaussian function exp|:—(r -R, )2 / a)kz} as the basis ]2(7’ ) To complete the model, we only
need to get the coefficients C(k, ﬂ) for a given molecule. About 30 Gaussian basis functions are
used per atom and bond center, leading to a total number of coefficients on the order of hundreds.
We randomly selected 50 distinct atomic configurations from AIMD simulations at different
temperatures and fitted their DFT calculated charge density Oper (7” ) with the above model O, (V ) .
These 50 configurations were fitted collectively, with each contributing thousands of volumetric grid
points to the fitting process. A linear fitting to minimize J.[ Porr ()= P (r)]zd *r was used to yield
the coefficient C(k, ,B) We have shown a comparison of the model fitted charge density and DFT
calculated charge density in Fig. 2c for EA molecules. It shows that the charge density is well fitted
not only in the large density areas but also in the small density tail regions. The small tail regions are
important for intermolecular interactions as they modify the electrostatic interaction, as well as induce
exchange coupling between the molecules. Note that the charge density tail extends 2 A from atoms,
a range comparable to molecule-molecule or molecule-ion distances; thus, density overlaps exert a
notable influence, with the induced exchange coupling serving as a major source of intermolecular
attraction. Notably, such overlap-induced interactions cannot be adequately captured by the simple
point charge models used in most classical force fields. Residual errors, particularly in tail regions,

may propagate to affect subsequent predictions. For instance, subtle mismatches in tail density (e.g.,

12
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deviations in density decay 1~2 A from atoms) could distort intermolecular electrostatic ficlds; eaditig”"
to Coulomb energy biases. These, in turn, alter atomic forces and molecular trajectories, distorting
properties like diffusion coefficients and viscosity. Similarly, fitting errors in density overlap regions
(critical for exchange coupling) may modify intermolecular attraction, impacting liquid-phase
cohesive energy and causing deviations in thermodynamic properties such as enthalpy of vaporization.

While Fig. 2¢ only shows one atomic configuration, it is important to note that the same C(k, f)

coefficients can generate electron charge densities for other configurations of the same molecule.
Future work may test configuration-dependent C(k, ) coefficients in Eq. (11) for optimization, but
overall, interaction energies derived from the fitted charge densities are satisfactory.

Having developed a fit for the electron charge density of individual molecules for any given
molecular configuration, the next step is to calculate intermolecular interactions. Our approach
assumes that the total charge density of a system is the sum of the individual molecular charge densities,

even if there are overlaps. This assumption has been confirmed in other theories, such as symmetry-

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

adapted perturbation theory to calculate intermolecular interaction energies,”’ and in the charge
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patching method.’® Given this assumption, to describe the total charge density of an aggregate of
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closed-shell molecules, it only needs to provide the charge densities for each molecule before
polarization effects are considered. Conversely, we define the polarization electron charge as the
difference from the simple summation result after an ab initio self-consistent field (SCF) calculation
of the whole system. To further demonstrate this point, we tested two dimethyl ether (DME) molecules,
by calculating the total charge density when they are close to each other and compared it to the sum of
the individual molecule densities. The results are shown in Fig. 3 a-c when they approach each other.

To estimate the overlap of the two molecule charge densities, we have defined an overlap charge

13
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po(r)=yA(r) P, () (12)
where O (7’ ) and ,02(7” ) are the charge densities of the two individual molecules in isolation. This
overlapping charge density is compared with the charge density summation error:

21 =palr-a()-p (1 0
where O, (7' ) is the DFT calculated charge density of the supermolecule (the whole system). Herein,
,l?e(r ) mostly concentrates in regions where /) (V ) is maximum. However, 0, (7” ) is more complex,
especially with some atomic characteristics, which can be a consequence of atomic-level polarization.
Although the dipole moment of the DME molecule is small, when two of them are only 2-3 A apart,
there could still be local electric fields and polarization effects. Overall, ,08(7’ ) is about an order of
magnitude smaller than that of O (V ) , which is in turn also an order of magnitude smaller than the total
density itself. All these demonstrate the overall correctness of the charge density summation
assumption.

Using the sum of the individual molecule charge density O, (7” ) to yield the total charge density

Pow (i” ) , we can now calculate the intermolecular interaction as follows:
Ent:E(ptOta/)_ZE(pm) (14)

where m index stands for the molecules, and Dot = Z p, - The functional E ( ,0) uses the charge

m

density to calculate the following energies:

)Z%Iptotal(r) pmm[(VZ)d d37"2 +J- ,0 (7")]

|l”—}"

1 | (15)
+— (3*x j p (FMF +af p2 (V22 (Hd'F

I[)tota](r):pe(r) +10nucl (}") (16)
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where 0O, (V ) is the nuclear charge, and €. is the DFT local or semilocal exchange-correia%on

functional. In Eq.(15), the first term is the Coulomb interaction. The last two terms are Thomas-Fermi
von Weizsicker kinetic energy functional®®. We keep a as a general fitting parameter (e.g., when we
have used different o with and without polarization energy).

In summary, we have expressed intermolecular interactions by constructing the system's charge
density via superposition of pre-fitted molecular densities and computing the interaction energy using
an energy density functional. As shown in Fig. 3d-f, the DME-DME molecule interaction energies
calculated from this approach are in close agreement with direct DFT calculations. In the DFT direct

calculation, the binding energy is calculated from:

E

« (DFT)—E, (DFT)—E, (DFT) (17)
where each DFT calculation is a self-consistent calculation. We tested the DME-DME interactions as

the two molecules approached each other in various orientations and alignments. The interaction

energy calculated from the fitted charge density was found to deviate by no more than 20 meV from

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

the original DFT result. Therefore, the interaction energy using the fitted charge density is satisfactory.

Open Access Article. Published on 19 January 2026. Downloaded on 1/20/2026 12:04:18 PM.

So far, we have not included the polarization term and have used o = 0.04 for the van Weizsicker

(cc)

kinetic energy term in Eq. (15).
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Fig. 3 DFT-calculated (a) charge density distribution (b) charge density overlap region, and (c)
superposition approximation error of DME dimer supermolecule at 2.5 A parallel separation. (d)-(f)
DME-DME intermolecular interaction energy comparison for three configurations:

(d) Parallel aligned contact; (e) Perpendicular staggered contact; (f) Tilted slip contact.

Herein, we combine the intramolecular MLFF with an intermolecular density-based interaction
model to construct a complete force field for MD simulations. Notably, polarization potential is not
incorporated in the current model. However, for systems without strong electrostatic interactions (e.g.,
those containing no charged ions), the polarization effect is expected to be relatively weak, rendering
the model reasonable. To validate this, we present the energy profile of two EA molecules during
AIMD simulations, while the DBMLFF was employed to compute the potential energy (excluding
nuclear kinetic energy) along these trajectories. Specifically, independent ab initio molecular dynamics
simulations were performed for five pairs of EA molecules with distinct orientations and positions,
each lasting 100 fs at a time step of 0.5 fs. Subsequently, the DBMLFF was used to infer the energy

of all 1000 snapshots extracted from these AIMD simulations. As illustrated in Fig. 4, the energies
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computed by the DBMLFF exhibit quantitative agreement with the AIMD referencé dafa" {RWISE ="

0.068 eV, MAE = 0.055 eV, R? = 0.950), accurately capturing both global trends and local features.
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Fig. 4 Compares the potential energies along the AIMD simulation trajectory. The reference
potential energy from direct AIMD calculation (green curve) is shown versus the potential energy
predicted by the DBMLFF without the polarization term (purple curve). A representative structural
snapshot of an EA molecular pair from the simulation is shown in the inset.

3.4 Polarization energy

While existing models may suffice for systems with weak electrostatic interactions, accurate
modeling of ionic species like Li* and FSI™ necessitates explicit consideration of polarization effects.
This requirement becomes critical in solvent electrolytes where Li*-O/F atomic distances approach 2
A, generating substantial local electrostatic interactions despite the absence of covalent bonding.5
Classical force field treatments of polarization involve two principal aspects: (1) charge redistribution
under external potentials generating induced dipole moments, and (2) intermolecular polarization
arising from these induced dipoles.®? In disordered systems such as organic solvents, the weak
coherence of induced dipoles permits neglect of higher-order coupling terms. Our approach preserves
physical rigor while circumventing computationally intensive self-consistent field iterations through

explicit modeling of first-order polarization mechanisms.
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spatially resolved local electric field model, superseding conventional uniform field approximations.

The polarization energy for individual molecules is formulated as:

Ep Zzzp(i’h;j>k)Eh (I)Ek(J) (18)

Lho jk

where the numbers 7, j denote the atoms, and /4, k& denote the three spatial components of the electric
field E, (i ) and £ (] ) . The parameter P (i, h;J, k) is the model coefficient to be fitted. To
make the model transferrable, we have used internal coordinate orientation for 4 and £, e.g., directions
along bonds related to atom i and j. The local electric field £, (l) is calculated as:

E,(i)=[Vo (r)exp| = (r=R)" ) & [r,d’r (19)
where V,, (7’ ) is the Coulomb and exchange correlation potential caused by other molecules.
Having established the polarization model of Eqs. (18) and (19), DFT calculations were performed
to fit the coefficients P (i, h; j, k). Specifically, the polarization response of the molecule is
probed by adding an external potential v, (7” ) at different points R p asaperturbation for a given
molecule:

V., (r)=aerf (d)/d+bexp(-d* /o) (20)

where d =‘I’—Rp , the error function eif (X> and the Gaussian width »=1 are used to model the

actual potential near the nucleus. For a given molecule, about a thousand positions of R p areused,

as shown in Fig. 5a, to probe different situations surrounding the molecule. The distance between

R » and the nearest atom in the molecule varies from 2 A to 8 A. In the test set, we have also included

cases where multiple probing charges exist simultaneously. All these are used to represent different
external potential situations in real solvents. The total energy difference Epol before and after wave

function relaxation was recorded by DFT self-consistent calculations, and £, (k) was calculated
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according to Eq.(19). Using the least squares linear fitting, we obtained the coefficients’ P (01'3,%3%%35.0%
The results are shown in Fig. 5b, which shows that the polarization model can accurately predict the
polarization energy calculated by DFT within a few percentage points.

By integrating the polarization model, we coupled the polarization energy from Eq. (18) with
Coulombic, exchange, and kinetic energy terms in Eq. (14) to construct the total interaction energy.
Systematic evaluations were performed for EA dimer systems (Fig. 5¢) and EA-Li* complexes (Fig.
5d), covering 200 distinct configurations for each system with varying displacements and orientations.
Note that we have revised the prefactor a of the van Weizsécker kinetic energy term in Eq. (15) from
0.04 to 0.025. This adjustment is based on our observation that the contribution of this kinetic energy
term is consistently negative and sometimes compensates for the polarization energy to some degree.
Thus, in subsequent work where the polarization energy is included, we will adopt o = 0.025. As shown
in Fig. 5c-d, we calculated the intermolecular and molecule-ion interactions (obtained by subtracting

the energies of isolated components from the total system energy) in two systems using both DBMLFF

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

and DFT methods. The results demonstrate excellent agreement between DBMLFF and DFT in both

Open Access Article. Published on 19 January 2026. Downloaded on 1/20/2026 12:04:18 PM.

systems, with RMSE of 25 meV and 77 meV, respectively. Remarkably, Li*-containing systems

(cc)

exhibit interaction energies reaching -2 eV magnitude. The low RMSE values, particularly in the
strongly interacting Li* system, demonstrate that our polarization model effectively captures ion-
molecule interactions. Any residual error in polarization treatment inherently disrupts the delicate
balance between charge-transfer attraction and short-range repulsion. Such deviations propagate
through atomic forces to molecular dynamics simulations, thereby impairing the predictive accuracy
of dynamic properties like diffusion coefficients and viscosity. Particularly in strongly coupled systems

(e.g., concentrated electrolytes), errors tend to amplify, exerting a more pronounced impact on the
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prediction of key properties such as ion-pair structures, free ion concentration, and ioni¢ ¢oRdUCHRATY "

While the LDA functional was chosen for its computational efficiency and simplicity to test our
charge-density-based approach, we acknowledge its inherent limitations. The use of LDA exchange-
correlation functional and the spherical charge density approximation may limit accuracy for systems
with significant charge transfer or anisotropic interactions. To quantitatively assess these limitations,
we compared the performance of our DBMLFF model against GGA using a model charge-transfer
system (the Li*—EA complex), as shown in Fig. S9. The results indicate that while LDA underestimates
the binding energy by approximately 4.3% compared to PBE-D3, the deviation between the DBMLFF
predicted values and the PBE-D3 benchmarks remains within an acceptable margin. Furthermore, for
anisotropic systems such as DME molecular pairs with varying orientations and positions, the spherical
density approximation introduces minor deviations in intermolecular interaction energies. Therefore,
the relative interaction trends predicted by our model remain consistent with those obtained from

higher-level functionals.
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Fig. 5 (a) Statistical distribution of probe charge position R, for EA molecule at a representative
probe-molecule distance. (b) Correlation between DFT-calculated and fitted polarization energies for
EA molecule across multiple probe configurations. Comparison of intermolecular interaction
energies of (¢) EA-EA and (d) EA-Li" with random displacements and orientations. The DBMLFF
model incorporates Coulombic, exchange-kinetic, and polarization-induced interactions.

3.5 DBMLFF molecular dynamics simulations

By integrating intramolecular MLFF with intermolecular interactions derived from electron
density and polarization models, we have developed the complete DBMLFF methodology for
molecular dynamics simulations. Initial tests demonstrate that each MD step requires approximately
one second per molecule on a single CPU. GPU acceleration substantially enhances computational
efficiency. Fig. 6a compares the system time per MD step for DBMLFF, PWmat and VASP software
under four-GPU acceleration across systems containing varying numbers of EA molecules. The

construction of the electron density is a local operation, resulting in computational costs that scale
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linearly with system size, as illustrated in Fig. 6a. The sole exception is the fast FOUticr HAR oL "

Open Access Article. Published on 19 January 2026. Downloaded on 1/20/2026 12:04:18 PM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

(FFT) required to solve the global Poisson equation, which scales as NV10og(/V) , where N is the system
size. However, this global FFT constitutes only a minor fraction of the total computational cost and is
therefore a secondary contribution. Notably, even classical force fields that employ methods like the
fast multipole® or particle-particle particle-mesh** for long-range electrostatics exhibit the same
Nlog(N) scaling for Coulomb interactions. For typical electrolyte systems comprising over 200
molecules, DBMLFF achieves three orders of magnitude acceleration compared to AIMD methods, as
quantitatively demonstrated in Fig. 6b.

To confirm the performance of DBMLFF for actual liquid aggregated states, we therefore
conducted comparative simulations on an electrolyte system containing 10 EA, 15 TTE, and 5 LiFS],
with a total atomic number of 460 for the whole system. This system, characterized by strong
electrostatic/dipole interactions and polarization effects, serves as an exemplary platform for
methodological validation. In modeling Li*, we only performed charge density fitting (Fig. S1) without
including a polarization energy term. This is because Li*, as a closed-shell ion, has highly localized
electron density and negligible polarizability, and is thus treated as a source of the polarizing field
rather than a polarizable species. TTE (Fig. S2) and FSI™ (Fig. S3) were processed using the same
fitting protocol as EA. All simulations were performed at 500 K for 5 ps under identical initial
conditions to ensure sufficient mixing and mobility, with representative configurations shown in Fig.
S10a. Radial distribution function analyses (Fig. 6¢c-d) demonstrate excellent agreement between
DBMLFF and AIMD results, whereas GROMACS simulations show shortened Li-O bond lengths
with intensified first peaks. To quantitatively assess the accuracy and temperature transferability of the

DBMLEFF methodology, we performed DFT single-point energy calculations on 150 configuration
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snapshots systematically sampled from three independent DBMLFF-generated moléCUulr ‘dsmamics’®
trajectories at 300 K, 400 K, and 500 K (50 snapshots from each 5-ps trajectory). A comprehensive
comparison was conducted on potential energy surface distributions (including the polarization term)
and atomic force characteristics across this thermally diverse dataset. As shown in Fig. 6e-f, the
DBMLEFF calculations maintain excellent agreement with DFT benchmark data across all temperature
regimes: the consolidated analysis yields an RMSE of 0.003 eV/atom (MAE = 0.002 eV/atom, R? =
0.973) for total energy, while atomic forces exhibit an RMSE of 0.207 eV/A (MAE = 0.136 eV/A, R?
=0.949). The consistent performance across this 200 K temperature range demonstrates the robustness
of the DBMLFF approach for molecular simulations under varying thermodynamic conditions. In
comparison, the MACE shows improved force prediction accuracy (RMSE = 0.354 eV/A, Fig. S11b)
over conventional GROMACS simulations (RMSE = 1.412 eV/A, Fig. S11a), yet still falls short of
the DBMLFF performance, further underscoring the marked superiority of the DBMLFF approach in

modeling atomic-scale interactions.
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Fig. 6 (a) Running time performance and (b) running time ratio for systems by varying the number of
EA molecules using AIMD and DBMLFF. Simulation results for LiFSI/EA/TTE system with 460
atoms: (c) Li-O and (d) O-F pair distribution functions after 5 ps MD simulations at 500 K.
Comparison between DFT calculated and DBMLFF predicted (e) total energy per atom and (f)
atomic force.

To assess reliability and transferability in extended electrolyte simulations, we selected the well-
studied LiFSVEGDME/TTE system. Since DBMLFF models for LiFSI and TTE were already
established in our previous work, only the newly introduced EGDME molecule required
parametrization (fitting procedure shown in Fig. S4). We constructed an initial configuration by

randomly packing 24 EGDME, 60 TTE, and 20 LiFSI molecules (totaling 1664 atoms) at the
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experimental density of 1.49 g/ml, with a representative snapshot provided in Fig. S106°Stib$équéntiy,
we performed 700 ps MD simulations at 300 K using both DBMLFF and the classical OPLS-AA force
field in GROMACS. lon diffusion coefficients were calculated from MSD analysis during the final
550 ps following adequate equilibration (Fig. 7a-b). The MSD curves exhibit clear linear regimes
throughout this period, confirming well-converged diffusive behavior. It should be noted that all
reported diffusion coefficients, for both DBMLFF and GROMACS, are presented without finite-size
corrections, as our primary objective was to conduct a direct comparison under identical simulation
conditions. To validate the simulations against experiment, we conducted pulsed field gradient nuclear
magnetic resonance (PFG-NMR) measurements on the same electrolyte. The self-diffusion
coefficients derived from Stejskal-Tanner equation analysis were 1.377x107'° m*s for Li* and
1.180x107° m?/s for FSI™ (see NMR spectra in Fig. 7c-d). The experimental ionic conductivity was

obtained from Nyquist plots (Fig. S13). As quantified in Table S1, DBMLFF demonstrates

significantly better agreement with the experimental diffusion coefficients and ionic conductivity than

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

the classical force field, confirming its superior predictive accuracy.
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We further extended our assessment to ionic mobility in a Lithium Hexafluorophosphate
(LiPF¢)/ethylene carbonate (EC)/dimethyl carbonate (DMC) system (80 EC, 60 DMC, 10 LiPF) via
2.5 ns MD simulations at 300 K (representative configuration in Fig. S10c). The fitting procedures for
EC, DMC, and PFg4™ are detailed in Figs. S5-S7. The diffusion coefficients from MSD analysis (Fig.
S14) again show that DBMLFF quantitatively aligns the established experimental trends®* and offer a
marked improvement over classical force field prediction (Table S2). The observed systematic
deviations may originate from the simulation errors due to limited simulation times and system sizes,

the intrinsic error of the DBMLFF model, as well as the possible experimental uncertainties. Future
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more systematic studies might be necessary to analyze the source of remaining errors. " '10%%/PPPO0508F

To evaluate force prediction stability in extended systems, we randomly selected 20 snapshots
from the DBMLFF molecular dynamics trajectories of the LIFS/EGDME/TTE and LiPF¢/EC/DMC
electrolyte systems and performed a comparative analysis of atomic forces using DFT calculations and
MACE predictions. The results (Fig. S15) demonstrate that in both electrolyte systems, DBMLFF
achieves significantly better agreement with DFT reference forces than MACE, along with markedly
lower prediction errors. More critically, the same LiFSI and TTE models were employed in both the
LiFSI/EA/TTE system (Fig. 6d) and the LiIFS/EGDME/TTE system (Fig. S15a). Despite the change
in solvent from EA to EGDME, which alters the chemical environment, the forces predicted by the
DBMLEFF models remain in excellent agreement with DFT. This robust performance, maintained
without the need for retraining, strongly demonstrates the outstanding transferability of the DBMLFF
framework.

Beyond electrolyte applications, we envision that this machine learning potential based on

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

electron density descriptors will pioneer new directions in force field development for molecular
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simulations, particularly for systems where intermolecular interactions govern macroscopic properties.

(cc)

To validate the accuracy and general applicability of DBMLFF in describing intermolecular
interactions, we computed evaporation enthalpies for five representative molecules. Specifically, for
each molecule, we constructed a liquid system containing 100 molecules at experimental density and
performed 2 ns molecular dynamics simulations at 298 K using DBMLFF and GROMACS,
respectively. Each system was independently simulated three times to obtain statistical averages. The
potential energy of gaseous molecules was derived from 20 ps molecular dynamics simulations at 298

K in large-sized simulation boxes (ensuring no intermolecular interactions). The fitting process of
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DME is shown in Fig. S8. As shown in Table S3, the evaporation enthalpies calculated By DBVLEFE
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and the traditional force field were compared with experimental values. The results demonstrate that
DBMLEFF significantly outperforms the traditional force field (although traditional force fields often
use such experimental vaporization energies as fitting targets), indicating its superior ability to
accurately describe intermolecular interactions.
4. Conclusion

Although we have demonstrated the feasibility of the transferable DBMLFF, with predicted
dynamic diffusion and enthalpy of evaporation in good agreement with experimental values, several
key issues remain to be explored. First, our current approach only handles intermolecular interactions
via charge density, which is effective for small molecules but notably insufficient for large systems
such as polymers and proteins. Incorporating density-based intramolecular interactions is
straightforward, simply by reusing the formal framework of intermolecular interaction energy. This
modification can also simplify the computational workflow of MD simulations: obtain the charge
density, calculate the charge-density-based interaction energy and polarization energy, subtract these
energies/forces from DFT results, and then fit the residual energies/forces with a MLFF. Second,
dispersion interactions are not included in this study and can be supplemented by empirical methods
(e.g., DFT-D2%, DFT-D3) or non-local integrals dependent on charge density (e.g., r'VV10¢7), both
of which are straightforward and direct. Finally, the assumption that the total system charge density
equals the sum of molecular densities essentially ignores many-body interactions beyond first order
polarization effect treatment. For systems with strong and coherent polarization effects, e.g. under a
strong external electric field, the charge density change (polarization charge density) might need to be

described, and a self-consistent calculation might be needed to calculate the screened electric field.
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