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The PPP model - a minimum viable parametrisation of
conjugated chemistry for modern computing applications

Marcel D. Fabian,*? Nina Glaser,%? and Gemma C. Solomon®?

The semi-empirical Pariser-Parr-Pople (PPP) Hamiltonian is reviewed for its ability to provide a
minimal model of the chemistry of conjugated 7-electron systems, and its current applications and
limitations are discussed. From its inception, the PPP Hamiltonian has helped in the development
of new computational approaches in instances where compute is constrained due to its inherent
approximations that allow for an efficient representation and calculation of many systems of chemical
and technological interest. The crucial influence of electron correlation on the validity of these
approximations is discussed, and we review how PPP full configuration interaction-type calculations
have enabled a deeper understanding of conjugated polymer systems. More recent usage of the PPP
Hamiltonian includes its application in high-throughput screening activities to the inverse design
problem, which we illustrate here for two specific fields of technological interest: singlet fission and
singlet-triplet inverted energy gap molecules. Finally, we conjecture how utilizing the PPP model in
quantum computing applications could be mutually beneficial.

1 Introduction

“The underlying physical laws necessary for the mathe-
matical theory of a large part of physics and the whole of
chemistry are thus completely known, and the difficulty
is only that the exact application of these laws leads to
equations much too complicated to be soluble. It there-
fore becomes desirable that approximate practical meth-
ods of applying quantum mechanics should be developed,
which can lead to an explanation of the main features of
complex atomic systems without too much computation.”
P. A. M. Dirac, 1929

The famous lines by Dirac from the introductory paragraph of
his publication on quantum mechanics of many-electron systems'
offer a fascinating glimpse into the early formative years of quan-
tum mechanics. Optimism regarding the veracity of the formalism
was met by the realisation of the daunting nature of solving any
chemically relevant multi-electron system. Before the invention
of the digital computer, computation was a manual human en-
deavour and quantum mechanical description of many electron
systems was beyond the scope of what was achievable. In the
years that followed, theoretical chemistry has benefited tremen-
dously from the introduction of computers and the steadily in-
creasing hardware resources, following Moore’s law, which even-
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tually allowed the description of molecules and other systems
of ever-increasing complexity. Nonetheless, the nature of these
“complex atomic systems” means that an exact description is still
outside the realms of computational feasibility.

The Pariser-Parr-Pople (PPP) Hamiltonian was devised as such
an “approximate practical method” for the electronic structure
problem, and in this perspective we follow its historic develop-
ment and explore the future prospects in modern computing. We
describe the approximations that have made the PPP Hamiltonian
practical for chemistry, and why it remains relevant even as in-
creasing computational capabilities removed earlier constraints.
Finally, we give an outlook on how the PPP Hamiltonian might be
impactful for quantum computing, which currently faces similar
resource constraints to those seen in classical computing 70 years
ago.

2 The origins of the PPP model

2.1 The Hiickel model

The origin of the PPP methodology traces back to the begin-
nings of quantum mechanics itself. In 1931 Hiickel formulated
the molecular orbital (MO) theory for conjugated molecules2+,
now known as the Hiickel MO (HMO) model. It was later ex-
tended by Lennard-Jones, Coulson®, and Longuet-HigginsZ*13 to
the general theory of m-electrons for unsaturated and aromatic
molecules!#®, With very limited computational effort, the HMO
theory provided a qualitative understanding of z-electron conju-
gated systems and thus the ability for organic chemists to predict
and plan experiments1®, At that time, this essentially meant cal-
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culations were done with pen and paper. While its use in state-
of-the-art computation today has greatly diminished, HMO the-
ory remains very valuable in teaching chemical concepts such as
the chemical bond or the MO-LCAO approach (molecular orbitals
from linear combinations of atomic orbitals) and is included in
most chemistry textbooks™2.,

Fig. 1 Schematic illustration of orbitals that can form o-bonds (blue)
and 7-bonds (purple) in benzene

The HMO model relies on several assumptions'> that are also
relevant for our introduction to the PPP model, and we will sum-
marize them here. The most consequential assumption is the
distinction between two different types of one-electron functions
that are called o- and n-MOs, respectively. In the case of planar
molecules, the 0-MOs are symmetric with respect to the molec-
ular plane and are linear combinations of atomic orbitals (AOs)
centred on the various atoms of the molecule. The 6-MOs define
the structural backbone of the conjugated molecule, are assumed
to be localized and transferable between the same atom types.
Importantly, the 6-MOs and are not treated explicitly in HMO
theory.

The n-MOs are conceptually linear combinations of 2p,-orbitals
that are antisymmetric with respect to the molecular plane (see
Fig.[I). There are up to 2 electrons in each delocalized 7-MO, that
can move through the bonds between neighbouring atoms, de-
fined by the resonance integral. The overlap between 2p,-orbitals
is assumed to be orthonormal in the zero differential overlap
(ZDO) approximation®. This requires replacement of the orig-
inal resonance integral, with a reduced resonance integral1>'7,
which is treated in HMO theory as a semi-empirical parameter.
Finally, the HMO model is a one-electron theory, which means
that the electrons do not explicitly interact through the Hamilto-
nian.

The omission of electron-electron interactions leads to one of
the fundamental shortcomings of HMO theory 812, The electron-
electron interaction terms were (and still can be) challenging to
calculate: first, they are generally non-analytic, unless the AO ba-
sis is chosen to be represented by Gaussians, as suggested later
by Boys2®. Furthermore, when treated naively, the number of
terms grows as O(N*), with N being the number of orbitals. Due
to these challenges, electron-electron interactions were typically
not treated explicitly in quantum chemical calculations up to the
early 1960s2!' for anything but the smallest systems. As anec-
dotal evidence of the constrained computational power, we high-
light that up to 1960 a grand total of 80 full ab initio calculations
had been performed on molecules with 3 or more electrons<122,
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The first capable workstations and mainframes started to emerge
at that time23' and quickly grew in capabilities. It was, however,
clear that experimental chemists were interested in much larger
molecules and their spectroscopic properties, which were inacces-
sible even with these growing computational resources. Hence,
there was a large need for an approximate treatment of electron-
electron interaction before an explicit inclusion of these terms
was computationally feasible. This novel model would have to
retain the simplicity and computability of the HMO theory, but
through the inclusion of some form of electron-electron interac-
tion, it would hopefully enable a more quantitative agreement
with experimental results.

2.2 The PPP model

Such an extension to the HMO theory was indeed proposed in
1953 by Pariser and Parr2425 and separately also by Pople2®.
Due to the similarity of the underlying assumptions, these meth-
ods are unified as the Pariser-Parr-Pople (PPP) model. The key in-
sight for both proposals was that the ZDO approximation (see sec-
tion [3.2.2)), already invoked in the HMO for the overlap matrix,
would also simplify and reduce the number of electron-electron
interaction integrals from O(N*) to a more manageable number
of O(N?)18. These integrals were parametrised based on exper-
imentally available data, which is why both the Hiickel and PPP
model belong to the class of semi-empirical approaches (see sec-
tion [2.3).

Pariser and Parr started from the Hiickel MOs and performed
a configuration interaction (CI) calculation?#2>, This calculation
could run on desk calculation machines available at the time'%3
by virtue of the reduction of integral terms that had to be eval-
uated. Pople also started from an initial Hiickel guess and then
self-consistently solved the Roothaan-Hall equation while invok-
ing the ZDO approximation2¢27, The original suggestion of Pople
was therefore tailored towards the ground state, whereas Pariser
and Parr targeted the first few excited states?3. In later years,
the combination of an initial self-consistent treatment with a sub-
sequent limited CI calculation (such as e.g. CIS)27Z became very
popular by virtue of its success in describing both ground states
and electronic excitation spectra of organic molecules.

2.3 Beyond PPP: general semi-empirical and ab initio meth-
ods

While the ZDO approximation greatly reduces the number of non-
zero electron-electron interaction terms, the remaining integrals
still have to be determined somehow. Instead of calculating these
integrals explicitly as in ab initio methods, Pariser and Parr sug-
gested a semi-empirical approach, where the integrals are treated
as parameters and fitted to certain experimental values2422 This
calibration also helps compensate for neglected terms<8,

The initial limitation of the ZDO approximation to planar 7-
electron systems was lifted when Pople introduced the so-called
complete neglect of differential overlap (CNDO) and neglect of
diatomic differential overlap (NDDO) approximations that could
treat general three-dimensional systems with o-electrons explic-
itly2?. Based on these initial schemes, many semi-empirical meth-
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ods have been proposed with increasing sophistication and gener-
ally also a larger number of parameters162830533 The parametri-
sation for these methods followed different philosophies, with ei-
ther fitting to experimental data or to ab initio Hartree-Fock (HF)
results and targeting either ground state or excited state prop-
erties2834133  More recently there have been efforts to improve
parametrisations through machine learning approaches, for ex-
ample for the application of the PPP Hamiltonian to organic rad-
icals®. This approach is potentially useful for additional het-
eroatom parametrisation as well, where there is less consensus on
a standard compared to the carbon atom parametrisation=24Y,

We want to mention the great contention over the correct
parametrisation in specific semi-empirical methods#174> here be-
cause it highlights the strengths and weaknesses of semi-empirical
approaches in general and specifically in relation to ab initio
approaches. Most semi-empirical models are built on the MO
abinitio framework, but through the neglect or parametrisation
of certain integrals can treat much larger systems2®. This is re-
liable within the limitations of the parametrisation, but can fail
drastically outside. It is not necessarily clear a priori how well
the parameters transfer between different systems when no ref-
erence data are available. Here, we mention an early version
of the MINDO semi-empirical method as an example where the
parametrisation failed, resulting in large errors in the heats of
atomization/formation for highly strained molecules23,

Broadly, semi-empirical treatments lack the generality of a fully
abinitio approach, where the path to improve results is known,
namely through a higher level of theory or a larger basis sets. At
the same time, however, semi-empirical treatments might result
in better agreement with experiments than ab initio calculations,
while also being much faster and applicable to larger systems
when limited computational resources are available. In terms of
speed and generality, semi-empirical methods can be placed in-
between a full ab initio treatment and molecular mechanics (MM)
models.

3 PPP as the MVP of chemistry

The PPP Hamiltonian has been remarkably successful in compu-
tational chemistry applications, especially in the description and
determination of excited-state properties of conjugated r-electron
systems. In the following section, we will highlight why the PPP
model is the minimal viable parametrisation (MVP) to describe
many chemically relevant systems through comparison with other
model Hamiltonians. We will then describe how many of the em-
pirical approximations of the PPP Hamiltonian have been theoret-
ically explained and validated once accurate ab initio calculations
became computationally feasible.

3.1 Comparison with other models

3.1.1 Hiickel Hamiltonian

We start from the Hiickel Hamiltonian, as it forms the base for
many more advanced model Hamiltonians. We define the model
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in second quantized notation as

Y 4 (alai6+ ajcaia)

Hyge(,1) = Y & Ai—
7 <ijo

e
= Ho({e,1}")

where d}; (dis) creates (annihilates) an electron with spin ¢ in
the p,-AO located on atom i and #A; = Y5 d;fad,-c counts the to-
tal number of electrons on atom i. The onsite orbital energy ¢;,
also known as the core resonance integral «, is often discarded
as it only accounts for a constant energy shift when all atoms
are equivalent. This is true for idealized geometries, (i.e. equal
bond lengths) that do not contain any heteroatoms such as ni-
trogen or oxygen“®. The second term, 13k is the kinetic energy
or hopping integral, also known as the resonance integral 8 in
the chemistry literature. This sum only runs over <i,j>, which
are connected atoms i and j (i.e. directly bonded, also termed
nearest-neighbour atoms). An illustration of this interaction for
benzene is shown in Fig. In solid-state physics, equation
is also known as the tight-binding model.

The Hiickel Hamiltonian is a one-particle Hamiltonian that can
also comprise the non-interacting part Hy of a more general in-
teracting Hamiltonian, with a specific parameter set {g,s}Hick,
This Hamiltonian does not explicitly include electron-electron in-
teractions, neither between electrons on the same atom i, with
different spin o, nor between electrons on different atoms. This
omission limits the model’s ability to accurately describe polar
bonding4® and to predict the correct singlet-triplet energy split-
ting for a given electron configuration“!, both of which are chem-
ically significant.

In polymers, these limitations are also evident: the Hiickel
Hamiltonian fails to reproduce experimentally observed features
such as negative spin densities in linear polyenes#Z48 topologi-
cal solitons in odd polyenes*Z, and nonlinear optical properties
in conjugated polyenes4?, Nevertheless, the Hiickel Hamilto-
nian has been successful in providing a realistic description of
charge mobility in conjugated polymer systems=, after the inclu-
sion of electron-phonon coupling terms, leading to the Holstein
model. Overall, however, it has to be noted that the neglect of
explicit electron-electron interaction in the Hiickel model is of-
ten too drastic an approximation to answer chemically relevant
questions.

3.1.2 Hubbard and extended Hubbard Hamiltonian

To overcome the shortcomings of the Hiickel model, one can try to
improve this description through the inclusion of some electron-
electron interaction. Starting from the non-interacting Hamilto-
nian Hy and adding the electron-electron interaction term U, de-
fined as the interaction between two electrons on the same atom,
will yield the Hubbard Hamiltonian (see also Fig. [2b):

Uw . os
HHub({SJ,U}HUb):Ho(€7f)+32”i(ni—1)7 2
i
where we have denoted the model parameters for Hy,, as a

unique set {&,7,U " because parameters should not generally
be transferred from one model Hamiltonian to another21>2,
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(a) Hiickel (b) Hubbard

(c) extended Hubbard
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(d) PPP

Fig. 2 lllustration of the different model Hamiltonians on benzene. For each model, all interactions with respect to a specific m-orbital (highlighted
in purple) are depicted. In the Hiickel Hamiltonian, only hopping terms (dark blue) are included. In the Hubbard model, an on-site interaction term
(purple) is added for each site. By also including parametrised interactions between nearest neighbours (solid green) and optionally also next-nearest
neighbours (dashed green), one obtains the extended Hubbard Hamiltonian. In the PPP model, interaction terms between all sites are included (teal),
and the interaction strength is scaled based on the inter-atomic distance between the sites.

The Hubbard model has been widely applied in solid-state
physics, but has also seen a more limited use in chemical con-
texts12, The most common application of Hubbard-type models
in chemistry is the DFT+U method, a density functional theory
(DFT) approach, where the U parameter is included in the func-
tional form for strongly correlated systems. As certain regimes
of the Hubbard Hamiltonian (e.g. the half-filled 1D Hubbard
model) have an analytical solution >3 the model can also be used
as a benchmark for the development of novel quantum chemical
methods for strongly correlated systems.

In conjugated n-electron systems, long-range electron-electron
interactions often play a crucial role* which are not described
by the Hubbard model. This has qualitatively significant conse-
quences, for instance, the standard Hubbard model cannot de-
scribe the correct excited-state ordering in linear polyenes®™2 or a
bound exciton in polymers (a bound state of an electron and a
hole) due to the restriction to local, same-atom electron-electron
interactions characterized by U%8. To describe bound excitons
with the Hubbard model, some form of inter-atomic electronic in-
teraction is necessary and one usually defines an extended Hub-
bard Hamiltonian (Figure [2d)

HexHub({gvtv va}Hub) =

Hy(e,t) + %Zﬁi(ﬁi* 1)+% Z Vij(fi — zi) (A — 2)63)
i <i,]>

where the second sum usually runs over nearest and optionally
next-nearest neighbour atoms i and j. The effective charge z
of the atomic core i, evaluated when 7m-electrons are removed
(so z; = 1 for carbon atoms) is often not considered for infinite
systems, but must be included for finite systemsl. It has been
shown, however, that even the extended Hubbard model does
not predict bound excitons in conjugated polymers=%57 and that
long-range electron-electron interactions, as included in the PPP
Hamiltonian, are essential for their description4€.

4 Journal Name, [year], [vol.], 1

3.1.3 PPP Hamiltonian

Finally, the PPP Hamiltonian (Figure with the inclusion of
long-range Coulomb interaction between all atoms is given as

HPPP({£3t7 U7V}PPP) =

Ho(&l)+%zﬁi(ﬁi— 1)+ % Y Vii(hi —z)(Aj—zj),

i iZ]
where the only difference from the extended Hubbard model in
equation (3), apart from the different parameter set, is that re-
striction to nearest or next-nearest neighbour atoms in the third
term is lifted. The inter-atomic electron-electron interaction in
the PPP Hamiltonian is often parametrised either through the

Ohno potential®?
Vij= v ) 5)
\/1 + (Ugyrij/14.397)2
or the Mataga-Nishimoto potential>%
Vi = v ©

1+Uégri; /14397’

where both potentials are interpolations between a Coulomb po-
tential at long distances (given in A) and the U parameter (given
in eV) at short distances r;; and therefore do not introduce an-
other parameter, as one might assume from equation (4). The
relative permittivity €., was not explicitly included in the original
parametrisation schemes in equations and (@) (thus assuming
& = 1), but can be added to describe effective screening due to
the o-electrons®?. We discuss this further in section[4.1.2]

When comparing the different models, we can say that in the
weak coupling limit, where U/t < 1, all model Hamiltonians be-
come Hiickel-like. In this regime the description with a Hiickel
Hamiltonian can be very effective with a single parameter ¢ or
t/U. In the intermediate coupling range, the explicit parameter
U yields both the (extended) Hubbard and PPP Hamiltonian. The
main difference is in the functional form of the electronic inter-
action V: Whereas V in the extended Hubbard model is a tun-
able but generally constant parameter for all nearest-neighbour
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or next-nearest neighbours, it is distance-dependent for the PPP
Hamiltonian. A detailed comparison between the PPP and Hub-
bard Hamiltonians for finite graphene and polycyclic aromatic hy-
drocarbons (PAH) found that the PPP Hamiltonian succeeds in
accounting for long-range interactions. These interactions effec-
tively screen ionic charges, whereas the standard and extended
Hubbard Hamiltonian can fail to capture this behaviour>L. In
conclusion, the PPP model has been found to be generally better
suited for describing the electronic properties of PAHs and related
conjugated systems than the Hubbard models or even simpler
Hiickel Hamiltonians®! and therefore constitutes the minimum

viable parametrisation for these molecular systems.

3.2 Validation

The PPP Hamiltonian is semi-empirical in its nature and in theory
less general than a full abinitio treatment. In practice, the much
more involved and computationally expensive ab initio methods
often struggled to match the agreement with experiment as ob-
tained through simpler and faster PPP model calculations®?. Of
course, one could argue that this is unsurprising, given that semi-
empirical PPP parameters represent a fit to experimental data.
However, this argument falls short because the PPP parameters
for a specific small molecular system (e.g. ethene or benzene)
have been shown to transfer well to other systems far outside
the original parametrisation regime. Explaining this success of
the PPP model from a theoretical standpoint has posed a great
challenge. In general, the theoretical justifications for the various
approximations have been given much later, well after their ad
hoc introduction and demonstrated success. One of the reasons
for this delay, has been that detailed abinitio calculations were
computationally demanding and only once they became feasible,
was it possible to mimic these approximations within the ab initio
framework. Here we present the most consequential approxima-
tions invoked in the PPP model, namely rm-electron treatment,
zero differential overlap, and semi-empirical parameters, and dis-
cuss their theoretical justification and limitations.

3.2.1 m-electron systems

We have already discussed a distinction between o- and 7-MOs
in the case of planar conjugated molecules for HMO theory and
in the PPP model. In the w-electron approximation electrons in
0-MOs are not treated explicitly but their effective interactions
with the 7-electrons in the corresponding MOs enter through the
model parametrisation. The rm-electron approximation therefore
results in a significant reduction from an all-electron space to just
the valence m-electron subspace. Both the Hiickel and the PPP
model thus align naturally with the chemical intuition of organic
chemists, where predominantly the z-bonds are considered to de-
scribe chemical reactivity.

A theoretical validation for reducing the full electronic Hamil-
tonian to a valence m-electron Hamiltonian, is given by the effec-
tive valence shell Hamiltonian .#” approach32/60-65  Here the
complete molecular electronic Hamiltonian is cast into a formally
exact effective Hamiltonian which acts solely within the valence
space®®. This approach can mimic the approximations made
for the PPP Hamiltonian, such as the z-electron approximation,
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through an ab initio Hamiltonian and evaluate their merit. Within
this approach, it has been validated that, although not explic-
itly included in the PPP Hamiltonian, o- and #-orbital relaxation,
6 — o, n—r and o — n-correlations are included through adjust-
ment of parameters when accounting for correlation effects®,
Furthermore, the m-electron approximation within the ab initio
effective Hamiltonian 7" is exact and generally also holds for the
semi-empirical Hamiltonian. This is true as long as complicated
effective n-body interaction terms with n > 3 can be neglected for
the ab initio Hamiltonian, or alternatively included in an averaged
fashion in the PPP Hamiltonian®26467, While the n-electron ap-
proximation in general relies on the planarity of the molecule, this
can be extended to include non-planar conformations through a
simple cosine functional dependency with the torsional angle for
the kinetic energy/hopping term.24

3.2.2 Zero Differential Overlap

The zero differential overlap (ZDO) approximation assumes or-
thonormal AOs and results in a very reduced set of integrals that
have to be considered. Within the ZDO approximation there are
no two-body two-centre resonances, hybrid and exchange inte-
grals, or three- and four-centre integrals®¥. The kinetic energy
integrals are usually assumed to include only nearest-neighbour
interactions. This very reduced description is commonly ex-
plained by recasting the basis over symmetrically orthogonalized
Lowdin orbitals, which only truly holds when correlation contri-
butions are included®. Effective valence Hamiltonian . cal-
culations on benzene and cyclobutadiene show that in the case
where correlation contributions are included correctly most two-
electron resonance, hybrid, and exchange matrix integrals be-
come very small. Furthermore, almost all three- and four-centre
two-electron integrals can be considered negligible, corroborat-
ing the ZDO approximation for the PPP Hamiltonian®®, For the
kinetic energy integrals, it is found that non-nearest neighbour
integrals can be non-negligible/©2¢0,

3.2.3 Transferability of semi-empirical parameters

The transferability of parameters between different systems is a
core objective for a semi-empirical approach, and often implic-
itly assumed. As already discussed in section [2.3] semi-empirical
calculations can fail dramatically when used outside the valid
parametrisation range. It is therefore relevant to theoretically un-
derstand how transferability can be maximized. An important
validation of the semi-empirical parameters and their transfer-
ability for the PPP Hamiltonian has been provided by Freed and
coworkers in their extensive work on the effective valence Hamil-
tonian V35161765 They showed that for # calculations of
ethylene, trans-butadiene, cyclobutadiene, hexatriene and ben-
zene, remarkable transferability of correlated integrals could be
obtained®#©2 However, this transferability critically depends on
the correct inclusion of correlation interaction. The importance of
correlation for the transferability of the parameters had already
been noted earlier, specifically for the parametrisation of electron-
electron interaction©®,

From a computational perspective, the need to include consid-
erable electron correlation for the approximations underlying the
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PPP Hamiltonian to hold and thereby reach accurate results poses
a significant challenge. A full configuration interaction (FCI, also
called exact diagonalisation in physics) calculation will quickly
become unfeasible due to its exponential scaling, even for a re-
duced Hilbert space such as with the PPP Hamiltonian. Even
a more restricted inclusion of correlation, where excitations in
the configurations of a reference wave function are considered to
some order (single, double, triple excitation etc.) will become
intractable for larger systems due to their generally high poly-
nomial scaling. Still, for FCI a complete description of electron
correlation within the model is reached, and thus any remaining
discrepancy between experimental data and the FCI results orig-
inates from neglected effects outside the scope of the model or
its parameters and can inform an updated model description. For
early examples of this exact model diagonalisation approach, see
for instance Refs. [47/4969H74

4 PPP then

In this section, we will illustrate why and how the PPP Hamilto-
nian has remained relevant over so many years, even after its orig-
inal intended use in small conjugated molecules was subsequently
taken over by more general full abinitio methods.
on conjugated polymers to showcase this development. Conju-
gated polymers are quasi-one-dimensional systems where the PPP
Hamiltonian has been widely applied with great success. Two ex-
emplary polymers,trans-polyacetylene and poly(para-phenylene-
vinylene) are shown in Fig.

SO

Fig. 3 trans-polyacetylene (top) and poly(para-phenylene-vinylene) (bot-
tom)

We focus

Increased theoretical interest in polymers arose after the suc-
cessful synthesis of thin polyacetylene filmsZ2 and following the
discovery of conductance for doped polyacetyleneZ®7Z, which
was awarded the Nobel Prize in Chemistry in 2000. These find-
ings opened up a large field of technical applications such as
plastic field-effect transistors, electromagnetic shielding, nonlin-
ear optical devices, photovoltaic devices and light-emitting de-
vicesZ8 in particular, following the discovery of electrolumines-
cence in phenyl-based polymers, such as poly(para-phenylene-
vinylene) 2.

The theoretical understanding of such polymers can be chal-
lenging due to the extended size of these systems. Furthermore,
electron-electron interactions are only weakly screened (due to
the low dimensionality of the system) and therefore electron
correlation has to be considered”8. The interaction strength
is commonly characterized as weak in phenyl-based polymers
such as poly(para-phenylene-vinylene) and as intermediate, in
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between the weak and strong electron-electron interaction lim-
its, for polyenes such as trans-polyacetyleneZ8,

While an abinitio treatment with correlated methods would
be the preferred choice in case of strong electron-electron inter-
action, this becomes very challenging due to the large system
sizes one has to reach to extrapolate to the infinite system size
limitZ2. The simpler independent particle description with single-
determinant ab initio methods such as RHF, UHF or DFT will not
be sufficient for the intermediate-coupling regime. It has there-
fore been advantageous to revert to different model Hamiltoni-
ans, where we will discuss here specifically results with the PPP
Hamiltonian. Our primary focus is the FCI approach because it
unambiguously showcases the strengths and limitations of a cho-
sen model and basis, separated from any potential approxima-
tions invoked in the method used to solve it8%. Finally, we will
also discuss an approximate FCI-type solver, the density matrix
renormalization group (DMRG) method, and how it benefitted
uniquely from the PPP Hamiltonian in describing polymeric sys-
tems.

4.1 FCI studies

We have already seen in section [3.2] that electron correlation has
to be considered for the fundamental approximations of the PPP
Hamiltonian to hold. A valid question one can ask then is how
much correlation needs to be included to obtain reliable results?
An early comparison between various levels of perturbation the-
ory and FCI calculations on the electronic structure of benzene
found correlation to be important, and the convergence in the
perturbation series towards the FCI result to be slow in terms
of excitations®®, Additional evidence for the importance of elec-
tron correlation was established for linear polyenes through ex-
perimental observation®! and subsequent theoretical confirma-
tion/8283,

Based on these findings, another key point was raised regarding
the influence of the interaction strength on the necessary level of
electron correlation®®: Depending on the interaction strength in
a system, either of the two respective reference basis representa-
tions (MO and valence bond (VB) basis) can become inadequate
to resolve polyene spectra, unless solved for FCI, where both
approaches become equivalent®®. As already discussed earlier,
polyenes usually fall in the intermediate interaction regime8/78
and a FCI treatment can therefore give reassurance that interac-
tions are adequately described.

4.1.1 Size extensivity

The FCI approach for polyenes and polymers is not only important
for the correct characterisation and ordering of electronic states,
but additionally for its inherent size extensivity. Size extensivity
is achieved when the energy of the system scales correctly with
the increasing number of repeated units. Due to the large system
sizes of conjugated polymers, any correlated method would need
to treat smaller oligomers first and extrapolate from these results
to the polymers4®84  This can however only be done faithfully
with correlated methods that are size extensive.

While FCI is size extensive, this property is lost if the CI ex-
pansion is truncated, as is the case with configuration interaction
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singles and doubles (CISD)72, There are, however, other widely
used correlated methods such as coupled cluster (CC) that are
size extensive and have been employed with the PPP Hamilto-
nian to calculate infinite-chain properties from cyclic polyenes by
extrapolating from smaller chain lengths®2. For these systems,
single-reference CC calculations break down, when correlation
effects become sufficiently strong in larger polyenes®®®. This is es-
pecially true when a mean-field solution is taken as the reference
state. Extensions to the CC approach with a valence bond ref-
erence872U on the other hand, have been shown to work well,
also in the highly correlated limit. Another successful descrip-
tion of strong correlation within the coupled cluster method has
been developed recently with the PPP Hamiltonian and the pair
Coupled Cluster Doubles (pCCD) approach?®2,

4.1.2 Validation of parameters

FCI describes the entire energy spectrum exactly within the cho-
sen basis. For the PPP Hamiltonian, this amounts to the 7-
electron subspace and all # — n* excitations, which can be com-
pared with experimental results. FCI calculations therefore shift
focus away from the amount of correlation included, to the va-
lidity of the parameters and the model itselfZ4. Only then it is
clear if the approximations made are appropriate. Various FCI
calculations with the PPP Hamiltonian have been performed for a
diverse set of conjugated 7-electron systems#Z72/74 showing that
the standard parameters can qualitatively reproduce the lowest
excited states.

The original parametrisation predated extensive CI calcula-
tions?? and was based on experimental data and either SCF
or limited CI calculations (e.g. CIS) 74, The standard param-
eters were considered to demonstrate robustness and transfer-
ability”% because they hold up well once electron correlation is
accounted for. The proper inclusion of electron correlation in
excited state calculations is thus preferable over reparametrisa-
tion of the model as previously undertaken for mean-field ap-
proaches®>2.

Later, screened parameters were proposed?# that better de-
scribe the high-energy excited states of phenyl-based polymers?>
and were successfully used in oligoacenes as well?®.  The
screening was originally suggested as an environmental effect
in the condensed phase, which reduces the effective charge of
n-electrons over larger distances.
phenyl-systems=>2 concluded, however, that the screening param-
eters had to be included even in the gas phase. The screening ef-
fect was thus attributed to the screening effect of the o-electrons
rather than external environment effects?.

Further FCI calculations on

4.1.3 Validation of model

FCI calculations not only allow validation of the chosen param-
eters, but also of the model itself. Within a given basis, for the
exact FCI result, the ambition often became to reach a sub-0.1eV
accuracy in the theoretical assignment of experimental spectraZ4,
This is a challenging demand because many small effects can play
a role in experiments and might not easily be included in the
model.

As a concrete example, we mention symmetry-adapted FCI
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calculations of the anthracene molecule, essentially three fused
benzene molecules along one axis, where a range of effectsZ%
prohibited the PPP model description from reaching sub-0.1eV
accuracy. The first of the effects is symmetry-breaking, which
is not captured by the symmetry-adapted basis that is utilized.
Another effect is vibronic coupling or nonadiabatic coupling,
which is neglected in the PPP model due to the underlying Born-
Oppenheimer (BO) approximation. In the BO approximation, the
motion of atomic nuclei are assumed to be decoupled from the
motion of electrons and only affect the electrons parametrically.
This is usually an excellent approximation, but can fail when elec-
tronic states become degenerate or nuclear motion relative to the
electronic timescale cannot be neglected®Z,

An additional source of potential discrepancy between FCI
studies and experimental data can be the relaxation of the molec-
ular structure in the excited state from the ground state geometry.
While this effect was considered in the anthracene study”#, the
authors caution that for accurate relaxation energies the differ-
ence between solid-state experimental data and gas-phase molec-
ular calculations has to be considered as a solid-state shift in en-
ergy of up to 0.2 — 0.3€eV.

While every single effect described here can potentially be ad-
dressed and corrected for in a model, solving the augmented
model computationally becomes harder and harder. The hope
then is to understand a model and its limitations confidently and
exactly for smaller systems, so that the approximations can be
made with reassurance in bigger systems. Researchers can differ
significantly in their perception of such models, which also influ-
ences how they are employed and benchmarked. Some believe
that exploring the model itself holds value, and in this context
FCI calculations are particularly interesting. There are also oth-
ers who view the model as simply a tool for understanding the
experimental reality, thus being more interested in the reproduc-
tion of experimental results. In this case, FCI can provide the
benchmark data to support the use of more approximate methods
to focus on questions of experimental interest.

4.2 Beyond FCI studies
4.2.1 Benchmark for other correlated methods

One of the most important uses for FCI calculations is the vali-
dation of more approximate methods. The PPP Hamiltonian with
FCI has been used extensively to benchmark the accuracy of var-
ious methods, and has been used for the development of new
methods as well?®
PPP Hamiltonian played in the introduction of the density ma-
trix renormalization group (DMRG) technique into the chemistry
community in the next section. In this section, we focus on the ex-
tensive work of Paldus and coworkers, who used the PPP Hamil-

tonian®288HIL9HLIO £or various coupled cluster approaches.

. We will discuss the significant role that the

In an extensive body of work, Paldus and coworkers showed
that the CCSD approach breaks down for annulenes (strongly cor-
related cyclic polyenes) and conceived an approximate coupled-
pair method (ACPQ) that could deliver close to FCI results for
these systems.8. Later, the valence bond coupled cluster ap-
proach with singly and doubly excited cluster amplitudes (VB-

Journal Name, [year], [vol.], 1 |7


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5dd00445d

Open Access Article. Published on 15 January 2026. Downloaded on 1/15/2026 11:40:06 PM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Digital Discovery

CCSD) was developed and tested by the same group for the PPP
Hamiltonian on n-electron systems, especially for strongly corre-
lated systems. In a severely resource-constrained compute en-
vironment, the PPP Hamiltonian offered a way to check exact
solutions and furthermore allowed the exploration of the en-
tire range of correlation effects, simply by tuning the hopping
term/resonance integral®??. Together, these features meant that
the PPP Hamiltonian played a significant role in the methodolog-
ical development of the coupled cluster approach®1L,

4.2.2 Beyond the reach of FCI with the density matrix renor-
malization group

One of the greatest challenges with FCI is that the computational
effort for an FCI calculation will scale exponentially with the in-
creasing system size. Different strategies have been employed to
reduce the Hilbert space size of the problem and push the onset of
computational infeasibility further out. Such techniques include
employing a reduced model Hamiltonian, such as the PPP Hamil-
tonian, or exploiting the symmetries of the Hamiltonian, leading
to a block-diagonalisable Hamiltonian. Eventually, however, ex-
ponential scaling is inevitable.

For conjugated polyenes and more complex polymer systems,
we have seen throughout this chapter that accurate treatment
of correlation is essential. Furthermore, there was considerable
interest in reaching much larger system sizes than what could
be afforded by an FCI treatment. Consequently, the adaptation
of the density matrix renormalization group method (DMRG)112
for chemistry in the context of model Hamiltonians in the 1990s
marked a great opportunity to tackle conjugated systems beyond
what was previously possible48.,

There are several reasons why DMRG using the PPP Hamilto-
nian is particularly useful for the treatment of conjugated poly-
DMRG is size extensive for one dimension?!3 varia-
tional, and therefore in theory systematically improvable un-
til FCI accuracy. Furthermore, the computational scaling is re-
duced due to the sparsity of the PPP Hamiltonian14, An ad-
ditional advantage for DMRG is the particle-hole symmetry of
the PPP Hamiltonian, originally described for the HMO theory by
the Coulson-Rushbrooke theorem1° and discussed for the PPP
Hamiltonian by Pariserl1®, This symmetry is also known under
the name of alternacy symmetry or pseudoparity and has been ex-
ploited together with spatial and spin-flip symmetries in DMRG-
calculations to target high-lying excited states14. For these rea-
sons, unprecedented lengths of polymer chains containing 100
carbon atoms could be accurately investigated using DMRG48.
This answered long-standing questions in excited state ordering,
exciton binding energies, and solved problems in linear and non-
linear spectroscopy of conjugated polymer systems. It also con-

clusively confirmed the usefulness of DMRG for chemistry, which
4811171125

mers.

was then later also extended to ab initio Hamiltonians.

5 PPP today

In the previous section, we have shown how the relatively simple
PPP model has helped to gain theoretical understanding of exper-
imentally relevant electronic and optical properties in conjugated
polymers. This process can be viewed as gaining understanding
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from a given structure (molecule, polymer, etc.) through elec-

tronic structure calculations and is shown in the top of Fig.
The results of these calculations are properties of the system of

Conventional

calculation .
Structure ﬂ Properties
Inverse Design problem
?
Structure }4— == = e = wmmm | Properties

Fig. 4 Inverse design problem, adapted from ref. (126, with permission
from AIP Publishing

interest, such as the electronic structure, optical spectra or sim-
ilar. These properties can be compared with experimental data
and may be refined through more accurate calculations or a better
model. While this process has been successful in gaining insight,
it can also be relatively slow because it involves many calcula-
tions.

There is also no guarantee that the calculated properties are
useful or even insightful for experimental chemists searching for
new systems of interest. These molecular engineering problems
could, for example, include the search for a better catalyst or a
more efficient photovoltaic materials. Ideally, calculations could
also deliver insight for the opposite problem, as indicated in
Fig. [ from some defined properties to a new and improved
structure. This is known as the inverse design problem"126-128/and
has been discussed extensively in the context of high-throughput
screening.

One of the challenges inherent in the inverse design problem
is the vastness of chemical space, by some estimates consisting of
100 molecules?28, Often, researchers do not feel completely in
the dark and believe that chemical intuition can reduce this space
considerably to some of the most relevant regions. Even if this is
true, the question is how human chemical intuition can be trans-
lated into actionable instructions for a computer. One strategy
that has been employed is the use of design rules to significantly
reduce the chemical space before the computationally intensive
search using virtual screening, machine learning, and genetic al-
gorithms.12¢, These design rules, or simply chemical intuition,
have a long history in organic chemistry. One of the early ex-
amples is Hiickel’s rule, which is derived from HMO theory and
predicts compounds with (4n+2) m-electrons to be aromatic®,

The PPP Hamiltonian has been discussed in this context as a
tool to derive a cheap scoring function2? and has been used as
a tool to formulate and verify design rules126i1307134 The ppp
Hamiltonian has been employed in the construction of design
rules, especially for its ability to treat larger system sizes than
otherwise would be possible with ab initio multi-configurational
methods!30, Furthermore, the particle-hole symmetry of the PPP
Hamiltonian has proved useful in the determination of the ener-
getic ordering and form of molecular orbitals in radical emitter
systems, but particle-hole symmetry is broken by chemical substi-
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tution31. Proposals include specifically tailored design rules for
systems such as acenes130, radical-based organic light-emitting
diodes (OLEDs)132 magnetic molecules!23, photo-induced spin-
polarisation facilitated by spin-orbit coupling’34 and a more gen-
eralized framework description of design rules for the PPP Hamil-
tonian'120,

We focus our discussion in the following sections on two rele-
vant application fields, singlet fission and the search for molecules
with an inverted singlet-triplet energy gap (InveST). These con-
stitute two very challenging inverse design problems, and we will
describe the challenges in modelling and how the PPP Hamilto-
nian specifically has been used to gain insight and formulate de-
sign rules.

5.1 Singlet fission

The study of singlet fission in molecules is largely motivated by
the desire to develop photovoltaics with increased efficiency. The
overall efficiency in solar cells is limited to around 30% (Shockley-
Queisser limit!3>) with the assumption that one absorbed pho-
ton can yield one electron-hole pair3®. This limit could be cir-
cumvented if one photon can generate multiple electron-hole
pairs. For dye-sensitized solar cells it was suggested13Z that
this could be achieved through the process of singlet fission,
where in most discussed cases an organic chromophore in an
excited singlet state transfers energy to a neighbouring ground-
state chromophore or chromophores, to produce two triplet ex-
cited states38 (for a schematic illustration see also Fig. [5a). The
efficiency for an ideal solar cell with this process rises to nearly
50% 1371138 ;

The inverse design problem to find the right chromophores is
complicated by the fact that singlet fission appears to be highly
system-specific, with different mechanisms proposed13¢, The
search for suitable chromophores therefore cannot be limited to
finding the optimal electronic structure of the chromophores, but
must eventually also include the dynamic evolution132
triplet states. Furthermore, environmental effects may need to
be included explicitly, as polar solvents can cause the electronic
energy levels of the chromophores to fluctuate in the same order
of magnitude as the original isolated chromophores’ level split-
ting'130,

of the two

The PPP Hamiltonian has been used in the context of singlet
fission in different capacities, and here we can only give a small
selection. One study found design rules based on PPP computed
spectra that predict the spectra of acene-based molecules, includ-
ing oligomers with unusual bonding geometries and heteroatom
substitutions?2%, Other use cases include FCI calculations to
engineer chromophore properties through substitution with het-
eroatoms or substituents for a more efficient singlet fission. Inves-
tigated systems range from pyrene with inter-molecular singlet
fission149 to diphenylpolyenes that support endoergic to isoergic
singlet fission with increasing chain length14L.

Another focus is on the adaption of the PPP model to include
additional physical effects such as electron-phonon interactions
in polyenes that affect the singlet fission process’42. The result-
ing Hamiltonian is called the PPP-Peierls (PPPP) model, and it
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accounts for the larger flexibility in polyenes compared to rigid
structures such as solids or even acenes. The PPP model was
also adapted to include an intermolecular interaction component
between two different chromophores, where only a minimal en-
hancement in performance due to singlet fission was found for a
pentacene-Cg solar cell143,

ES S . ISC akulad T
1 1 j Ti<o 1
@ s, * /‘_R/I'sc AE(S,T,)<0
T1 T1
SO SD SO

(a) Singlet Fission (b) InveST

Fig. 5 Schematic illustration of the SF process (adapted from ref. (138
with permission from American Chemical Society, copyright 2010) and
the InveST mechanism (adapted from ref. [144] with permission from
Elsevier, copyright 2021)

5.2 Inverted singlet-triplet energy gap

Another very challenging inverse design problem is the discov-
ery of more efficient organic light-emitting diode (OLED) materi-
als. There are several factors that limit the internal quantum ef-
ficiency (IQE), which defined as the ratio between the number of
generated photons to the number of injected electrons4>, While
singlet excitons in OLEDs are fluorescent, triplet excitons are
normally non-emissive and decay non-radiatively to the ground
statel140, Additionally, the desired singlet excitons are only gen-
erated in a 1:3 ratio relative to the triplet excitons, due to the spin
statistics of recombining charge carriers14Z,

The final impediment is embodied in Hund’s multiplicity rule
that places the first excited singlet state S; of an organic closed-
shell molecule higher in energy than the corresponding first ex-
cited triplet state 7. Defining the singlet-triplet energy gap as
AEgr = S| — T1, molecules that obey Hund’s rule therefore have a
positive value for AEgr. This indicates that energetically popula-
tion transfers from the singlet to the triplet state is favoured in a
process called intersystem crossing (ISC).

The focus in the development of new OLED materials has there-
fore been to address these limitations through molecular engi-
neering. The efficiency in OLEDs has been improved by introduc-
ing phosphorescent emitters that make the triplet state bright as
well as by reducing AEgr, so that thermally activated delayed flu-
orescence (TADF), due to a reverse ISC (RISC), becomes possible.

The theoretical discovery of two stable organic molecules with
an inverted singlet-triplet energy gap’40148 (InveST), where
AEgr < 0, marked an important achievement, that has significant
potential to improve OLED efficiency. For InveST molecular sys-
tems, the triplet excitons avoid thermalization and are instead
converted through an energetically favourable RISC to the fluo-
rescent singlet exciton42. A schematic illustration of the InveST
mechanism is shown in Fig.

Finding molecules with InveST properties has been challeng-
ing, which is somewhat unsurprising given the dearth of ex-
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amples of Hund’s rule violations either experimentally or the-
oretically before 2019144, There has been a large effort to
theoretically predict new InveST molecules and to understand
the underlying process to create useful design rules!>?. Ex-
perimentally, there has also been confirmation for some InveST
moleculesI4Z148II51HIS3] - A great challenge in treating InveST
molecules theoretically has been the inadequacy of uncorrelated
excited-state methods and linear response TD-DFT to describe the
InveST phenomenon1401154,

It has been shown1>>"137 that the inclusion of accurate elec-
tron correlation is crucial to reproduce inverted gaps. This is
due to one of the characteristic features in InveST molecules: a
minimal exchange integral between the frontier orbitals (HOMO
and LUMO), that in turn elevates the importance of the spin-
polarization!>2 an otherwise smaller effect. Spin-polarization
can then even reverse the sign of AEgy. To describe spin-
polarization effects, electron correlation with at least double ex-
citations from an HF reference is necessary-24.

The inverse design problem for InveST molecules is a very ac-
tive research field, where theoretical efforts have taken a promi-
nent role and are complemented by experiment2?, Here again,
we will focus on just the PPP Hamiltonian, its specific benefits for
the study of InveST molecules and how it has been applied so far.

Some computational challenges, such as the need for higher-
order electron correlation treatment, can be more easily over-
come with the PPP Hamiltonian. Furthermore, even the small-
est proposed InveST systems are at the edge of what standard
correlated ab initio methods can reach4%, The PPP Hamiltonian
can therefore help to make larger systems accessible and reveal
general trends1®8, The absolute value of AEgr can be rather
small’>? and is in the same order as the error of the computa-
tional methods2?, Chemical accuracy is therefore required to
determine the sign of AEgy with confidence, and a PPP FCI cal-
culation could help identify critical effects such as environment,
correlation contribution etc. A very early PPP Hamiltonian study,
predating the renewed interest in InveST molecules by decades,
found molecules such as propalene, pentalene and heptalene in
violation of Hund’s rule for D, symmetry, but in agreement with
it for a relaxed Cyj, symmetry 129,

The PPP Hamiltonian has been discussed in the context of high-
throughput screening for InveST molecules as a scoring function,
to filter out the most promising InveST candidates, that can be
investigated more closely by higher-level ab initio methods122,
One of the attractive features of the PPP Hamiltonian as a scoring
function, is the cheap and simple description relative to other ap-
proaches, while still capturing the most important physics122, In
that case, the electronic structure was solved with configuration
interaction singles and perturbative double excitations for a very
efficient virtual screening. The authors mention two main con-
cerns with their findings: the inability to correctly predict oscil-
lator strengths and restriction to n-electron transitions. It seems
to be an open challenge to strike the balance between a cheap
scoring function on the one hand and a sufficiently accurate de-
scription, potentially requiring more costly inclusion of correla-
tion interactions.

For triangulene systems with the PPP Hamiltonian, it was
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shown that triple excitations of the HF reference are non-
negligible for the description of the excited states when the tran-
sition energy is compared with FCI calculations1®9, Further work
by some of the same authors found that within the PPP model
space, a negative AEgy can be explained by a network of alter-
nating electron-donor and acceptor groups in the molecular rim,
rather than the triangular molecular structure itself1>8,

6 PPP tomorrow

As detailed above, the PPP Hamiltonian can be viewed as a “min-
imum viable parametrisation of conjugated chemistry”, with a
long and influential history in the development of new theoret-
ical methods. It is 'minimal’ in that it offers a highly reduced
representation of the full electronic structure problem, explicitly
treating only the 7-electrons, yet still providing an insightful de-
scription for many molecules of chemical or technological inter-
est. Over the past seven decades, the PPP model was able to
provide insights into extended systems that were otherwise un-
reachable, and it has propelled the development of novel compu-
tational methods in quantum chemistry.

As the PPP model is well established nowadays and many
smaller systems have been calculated accurately with existing
methods, it can be used as a valuable reference to benchmark
novel methods. While the PPP approach is rooted in the same
molecular orbital framework as most ab initio methods, it replaces
the cumbersome integral evaluation with a more lightweight
parametrisation of the electronic interactions. Due to this model
character, it is easy to tune the parameters and explore specific
regimes directly, such as the weak and strong coupling limits,
which allows for a straightforward testing of new computational
approaches across different correlation regimes. There has also
been substantial progress in clarifying the scope and limits of the
model itself, and different parametrisation techniques have been
developed to maximize the predictive power of the PPP model.

Meanwhile, quantum computing is emerging as a promising
alternative to mitigate the unfavourable scaling of traditional
quantum chemistry methods by leveraging quantum mechanical
principles to represent and manipulate quantum states more effi-
ciently than classical methods. While current noisy intermediate-
scale quantum (NISQ)-era devices lack the error correction and
scalability required for chemically accurate simulations of large
systems, rapid hardware progress suggests that the first fault-
tolerant quantum computations for chemistry are soon within
reach’®ll However, these early fault-tolerant quantum computers
will offer only very limited computational resources, thus requir-
ing reduced problem descriptions and optimal utilization of the
available resources to obtain meaningful results162163)

Here, we propose the PPP Hamiltonian as an ideal candidate
for insightful calculations in such a resource-constrained com-
pute environment, since it can be considered the minimum viable
model of organic molecules that still captures the essential chem-
istry. The n-electron approximation of the PPP model allows for
a drastic reduction of the Hilbert space size and requires signifi-
cantly fewer resources compared to an ab initio calculation, even
when considering only a minimal basis set. To illustrate this on
a simple example, we compare an ab initio treatment of benzene
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with the corresponding PPP model Hamiltonian. For the ab initio
description, a minimal STO-3G basis set for the 6 carbon and 6
hydrogen atoms results in a total of 72 spin orbitals, while the PPP
Hamiltonian only requires two spin orbitals per carbon atom, thus
describing benzene with a total of 12 spin orbitals. For quantum
computing applications, the reduction in the number of spin or-
bitals translates directly into an equivalent reduction of the num-
ber of qubits needed to represent the system. This makes PPP
a prime candidate for calculations on early quantum computers
that possess only a limited number of (logical) qubits.

Another advantage of the PPP model can be found in the ZDO
approximation, which leads to a very sparse Hamiltonian matrix.
In the atomic orbital representation that we have used in equa-
tion for the PPP Hamiltonian, all terms are diagonal, except
for the nearest-neighbour hopping terms 7;;. The same is true
for the real-space valence-bond description of the PPP Hamilto-
nian1®4, whereas the molecular orbital representation of the PPP
Hamiltonian is less sparse and has more terms®>8163 The AO
representation of the PPP model will have a formal scaling of
O(N?) in the number of Hamiltonian terms without any further
screening, where N is the number of orbitals. In contrast, the MO
representation of the PPP Hamiltonian’®> and general ab initio
Hamiltonians'.%® formally scale as O(N*). The actual number of
terms for the MO PPP Hamiltonian will still be greatly lower than
an abinitio Hamiltonian due to the neglect of three- and four-
site two-electron integrals in the ZDO approximation. For quan-
tum computing applications, sparser Hamiltonians require fewer
terms to be encoded on the device, thereby reducing the number
of gate operations needed to represent a given Hamiltonian in a
quantum circuit. Another potential advantage of the PPP model
in that context is that many interaction parameters will be identi-
cal, especially for idealized molecular structures, such that these
terms can be grouped and implemented more efficiently 1677169
The advantages of the PPP model for quantum computing are
summarized schematically in Fig.[f]

/ reducN

- circuit depths

enables
+ QPE =FCl | QC
+correct approx. —# coeffs./params

- # qubits
wited states /

Fig. 6 Scheme illustrating the mutual benefits of employing the PPP
model in quantum computing applications for chemistry.

While the PPP Hamiltonian is ideally suited as an early test bed
for developing quantum computing applications, the reverse is
also true, as illustrated in Fig. @ The PPP model, conceived in
a resource-constrained environment and therefore often used in
more approximate treatments of systems, benefits greatly when
more correlation contributions can be considered, ideally solv-
ing the system exactly. This is particularly true when calculat-
ing excited-state properties, as these may necessitate a multi-
reference treatment of the wave function while capturing multi-
ple, potentially close-by states. Furthermore, some approxima-
tions discussed before for the PPP model, are only truly valid
when considerable electron correlation is included. The pursuit of
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exact solutions has been prohibitive beyond modest system sizes
within the classical computing paradigm due to the exponential
scaling of the underlying problem.

Here, the quantum computing equivalent of an FCI calcula-
tion, the quantum phase estimation algorithm (QPE), offers a
more favourable polynomial scaling compared to the exponen-
tially scaling classical FCI computation. The minimal descrip-
tion of the m-electron PPP Hamiltonian provides an additional
advantage to reach larger systems efficiently with limited quan-
tum resources, especially in the calculation of spectroscopic prop-
erties that are classically unfeasible. The combined quantum
semi-empirical approach (QPE+PPP) will also be more efficient
than a minimal quantum-ab initio approach (QPE+STO-3G, as
discussed before for the benzene molecule). Strong correlation
effects will be better and more efficiently described in the minimal
semi-empirical calculation than the minimal ab initio calculation,
due to their implicit inclusion in the parametrisation2/¢4, More-
over, the included correlation interaction in the QPE calculation
will ensure that the approximations of the PPP Hamiltonian (z-
electron, ZDO, transferability of the semi-empirical parameters)
are truly valid analogous to the classical FCI studies.

In the same spirit as in the classical case, the PPP model need
not only be applied in FCI-type calculations such as QPE, but
can also serve as a benchmark model to validate more approx-
imate quantum algorithms. Similarly to its use in the develop-
ment of approximate correlated classical methods, particularly for
CC-variants and DMRG applications in chemistry, the PPP Hamil-
tonian could be used as a resource-efficient test system for early
fault-tolerant algorithms that only capture a limited degree of cor-
relation, such as quantum subspace methods, filtering techniques,
and statistical approaches70,

For these reasons, we conjecture that the PPP Hamiltonian is
ideally suited for early fault-tolerant quantum computing appli-
cations and vice versa. Within this framework, different avenues
and possibly new tradeoffs might present itself that were tradi-
tionally not considered. As an example, we return to the previ-
ously mentioned choice of representing the PPP model in three
different bases (AO/MO/VB). It is not clear if the MO represen-
tation, which is predominant in classical applications, is also the
optimal choice for a quantum computer. For the PPP Hamiltonian,
the AO representation offers the most compact representation and
also the least resource demands. The traditional drawback of the
AO representation against the two other approaches, MO and VB,
has been the difficulty to truncate this basis. Therefore, AO repre-
sentations of the PPP Hamiltonian commonly necessitate an FCI
calculation, something that comes naturally with the QPE algo-
rithm.

The largest classical FCI calculation to date was for the propane
molecule, C;Hg, with a minimal STO-3G basis which required the
description of 26 electrons in 23 spatial orbitals (equivalent to 46
spin orbitals)1ZL, This limitation of classical FCI to a double-digit
number of spin orbitals highlights the potential utility of quantum
computers already with a comparable number of logical qubits,
particularly when employing model Hamiltonians such as the PPP
model. By pairing QPE with PPP, one can achieve a chemically
meaningful yet highly efficient description in terms of qubit re-
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sources which requires only very limited circuit depth thanks to
the sparsity of the PPP Hamiltonian. Hence, this combination is a
particularly promising candidate for early impactful applications
of fault-tolerant quantum computing in chemistry.
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