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A data-driven approach to control stimulus responsivity of 
functional polymer materials: Predicting thermoresponsive color-
change properties of polydiacetylene 

Risako Shibata,a Nano Shioda,a Hiroaki Imai,a Yasuhiko Igarashi,b Yuya Oaki*,a  

Sensing devices are fabricated using stimuli-responsive materials. In general, the responsivity is controlled by designing 

molecules and materials based on professional experience. If predictors are constructed for the responsivity control, the 

number of experiments can be reduced without consumption of time, cost, and effort. However, such dynamic properties 

of functional polymer materials are not easily predicted because of the small data and complex structure-function 

relationship. How to prepare dataset and train small data remain significant challenges. The present work shows 

construction and application of a prediction model for controlling thermoresponsive color-changing properties of layered 

polydiacetylenes (PDAs). The responsivity was changed by the intercalated guest molecules. The training dataset was 

prepared from a series of the photographs representing the color at each temperature. The prediction model of the 

thermoresponsivity, namely color-changing temperature, was constructed by combining machine learning and our chemical 

insight on the small experimental data. The thermoresponsivity of the newly synthesized layered PDAs was predicted by the 

model. The modeling methods can be applied to predicting various dynamic properties of functional polymer materials.

1. Introduction  

Stimuli-responsive molecules and materials have various 

applications, such as sensors and actuators.1–11 An input 

external stimulus, such as thermal, chemical, optical, and 

mechanical stimuli, is converted to a specific output 

responsiveness by molecules and materials. Visible and/or 

fluorescent colors are used for detection of the applied stresses. 

The responsivity, such as sensitivity, chromaticity, and 

reversibility, is tuned by design and synthesis of chromophores 

and their organization states. In general, such molecules and 

materials are designed by professional experiences and 

synthesized with trial and error. If data-driven approach is 

effectively applied to these processes, the responsivity can be 

efficiently tuned without consumption of time, cost, and effort. 

Although this motivation is rational, data-driven approaches are 

not easily applied to designing such functional soft materials 

because of the following reasons. One of the problems is 

insufficient data size of typical experimental works for the use 

of conventional machine-learning (ML) algorithms. Another 

problem is how to prepare the dataset suitable for ML based on 

the non-numerical experimental results. The targeted problem, 

i.e. stimuli responsivity, should be translated to a ML-solvable 

problem. For example, photographs, spectra, and their changes 

are needed to be converted to ML-applicable data. Moreover, 

as dynamic properties are related to the complex structural 

hierarchy from molecules to organized states, the factors 

related to the properties as the features are not easily prepared 

only using conventional tools for automatic generation of 

descriptors. In this manner, ML has not been fully applied to 

experimental studies for controlling the properties of stimuli-

responsive materials because of the issues in data size, data 

curation for the targets, and preparation of the descriptors. 

Although ML has been applied to design polymers and soft 

materials, such as polymers, gels, liquid crystals, and bubbles, in 

recent years,12–22 the further methodological advances are 

required to develop the methods for small experimental data. 

The present work shows construction of a prediction model for 

thermoresponsive color-changing properties of layered PDA 

(Fig. 1). Based on the photographic data, a straightforward 

linear regression model was prepared by sparse modeling for 

small data (SpM-S). The data acquisition, curation, and 

modeling methods can be applied to construct the predictors of 

the other stimuli-responsive functional materials with small 

data.  
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Fig. 1.   Schematic illustration for predicting thermoresponsive color-changing properties of layered PDA. (a) PCDA monomer. (b) Guest amines. (c) Guest-intercalated 

layered PDA with the topochemical polymerization. (d) Photographs for preparing thermoresponsive color-changing properties. (e) Small dataset containing the color 

transition temperature (Ttrs = y, objective variables) and physicochemical parameter of the guests (xGn, explanatory variables). (f) SpM-S for extraction of the descriptors 

and model construction. (g) Synthesis of layered PDA with intercalating new guests based on the predicted Ttrs.  

PDA, a conjugated polymer, exhibits color changes in response 

to external stimuli, such as thermal, chemical, and frictional 

stresses.23–30 A wide variety of sensing devices and systems 

were fabricated using PDA. The stresses induce the molecular 

motion and subsequent shortening the effective conjugation 

length of PDA main chain. The stimuli responsivity has been 

controlled by the molecular design.31–43 Our group has studied 

intercalation approach to control the responsivity of the layered 

PDAs (Fig. 1a–d).45–52 The layered structure of an amphiphilic 

diacetylene (DA) monomer, 10,12-pentacosadiynoic acid 

(PCDA), is topochemically polymerized in the solid crystalline 

state (Fig. 1a,c). Whereas the layered PDA derived from PCDA 

shows the blue-to-red color transition around 65 °C with 

heating (Fig. 1d), the color-changing temperature varied in the 

range of −0.2 to 146 °C depending on the intercalated guests, 

such as metal ions and alkyl amines, in the interlayer space (Fig. 

1b,d).44–52 However, the responsivity control based on the 

experience and intuition meets the limitations for both the 

molecular-design and intercalation approaches. Here we used 

ML to construct the predictor for controlling the responsivity. 

In recent years, ML has been widely used in general 

materials science.53–60 Most of the algorithms are suitable for 

big data. Sufficient size of data is not prepared for all the 

experimental works. In small data, conventional ML algorithms 

cause problems, such as overtraining. Recent studies have 

proposed the specific methods for small data, such as transfer 

and active learnings.61–67 In our group, sparse modeling for 

small data (SpM-S) has been studied; the approach combining 

ML and our chemical insight provides straightforward and 

interpretable predictors.68–73 SpM-S was used for the simple 

numerical data, such as yield, size, and capacity, directly 

obtained from the experimental works. The approach was not 

applied to small experimental data requiring the curation prior 

to the use, such as photograph and graph. If the targeted data 

and problem are converted to SpM-S applicable formats in an 

appropriate manner, the approach can be applied to small data 

in the broader fields. In the present work, a prediction model 

for the thermoresponsive color-changing properties of the 

layered PDA was constructed by SpM-S (Fig. 1d–g). After the 

training dataset was prepared from a series of the photographic 

data (Fig. 1d,e), combination of ML and chemical insight 

provides the predictors based on the small data (Fig. 1f). The 

model successfully predicted the thermoresponsivity of the 

layered PDAs with the intercalation of new unknown guests (Fig. 

1g). Based on these results, if the targeted stimuli responsivity 
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is converted to the appropriate dataset, the predictors can be 

constructed by SpM-S even on small experimental data.  

2. Results and discussion 

2. 1. Preparation of Datasets from Photographs  

The data about the thermoresponsive color-changing 

properties were extracted from our previous works and newly 

added in the present work (Fig. 1b–d and Figs. S1–S3 and Tables 

S1–S3 in the Electronic Supplementary Information (ESI)).44–51 

The layered PDAs show the color changes from blue to red with 

increasing temperature (T / °C) (Fig. 1d). Whereas the layered 

PDA without the guest showed the blue-to-red color transition 

around 65 °C, for example, the color transition was observed 

around 80 and 100 °C with the intercalation of tetradecylamine 

(C14-NH2) and p-xylylenediamine (p-Xy), respectively (Fig. 2a,b).  

 

 
Fig. 2.   Data curation of the thermoresponsive color-changing properties. (a,b) 

Photographs representing the relationship between T and color of layered PDA with the 

intercalation of C14-NH2 (a) and p-Xy (b). (c,d) Approximation of the relationship between 

T and Δx / Δxmax (each plot) generated from the photographic data using sigmoidal 

function (red curve) for PDA-C14-NH2 (c) and PDA-p-Xy. The same data for the other 

amines were summarized in Fig. S3 in the ESI. 

The original experimental data is a series of the photographs 

exhibiting the color of the sample at different temperature. The 

color of the photographs was converted to the red-color 

intensity (x) based on the RGB values using an international 

standard (See Experimental Method in the ESI). An increment of 

x (Δx = x − x0) was calculated at each T in reference to the initial 

state before heating (x0). Then, Δx was normalized by dividing 

the maximum Δxmax (Δx / Δxmax). The relationship between T and 

Δx / Δxmax was prepared for each layered PDA containing 75 

different guests (Fig. 2c,d and Fig. S3 in the ESI). The T–(Δx / 

Δxmax) curve was approximated to sigmoidal function Eq. (1) 

using two constants a and b with the coefficient of 

determination (R2).  

∆௫

∆௫೘ೌೣ
ൌ

ଵ

ଵାୣ୶୮ሼି௕ሺ்ି௔ሻሽ
   …   Eq. (1) 

In the curve, the constant a corresponds to the color-change 

temperature reaching 0.5Δx / Δxmax (Fig. 1e). The constant b 

corresponds to the slope representing the temperature 

responsivity. The observed T–Δx plots were approximated using 

Eq. (1) with optimizing a and b to minimize R2 value. The average 

R2 values were 0.952 ± 0.066 for all the data (Table S4 in the ESI). 

The fitting function was prepared with the specific a and b for 

each sample (Fig. 2c,d and Fig. S3 in the ESI). The color-

transition temperature (Ttrs) was defined as T to reach 0.5Δx / 

Δxmax, namely a in Eq. (1). Sigmoidal function is a suitable 

approximation to describe the temperature-responsive 

chromaticity change. Sigmoidal function generally exhibits the 

following trend of the increase in y: gentle increases in the initial 

and final stages and steep increase in the middle range. The 

same trend was experimentally observed for the 

thermoresponsive color-changing behavior of PDAs (Fig. 2c,d). 

As the variation of the chromaticity change, Δx / Δxmax, is limited 

in the specific range, this behavior is also represented by 

sigmoidal function. In this manner, the thermoresponsive color-

changing properties based on a series of photographs were 

converted to the numerical data.  

Ttrs as objective variable (y) was calculated for the layered 

PDA with the intercalated 75 different guests, such as alkyl 

amines, cationic polymers, and aromatic amines (Table S1 in the 

ESI). These guests are numbered as S005, S006, …, S161 in our 

group. Table 1 summarizes the explanatory variables (xGn: n = 1–

17) as the potential descriptors corresponding to the 

physicochemical parameters of the guest molecules, such as 

boiling point (xG6) and dipole moment (xG16).  

 

Table 1. List of explanatory variables. 

xGn Parameter Unit aMethod 

xG1 HSP dispersion MPa1/2 H 

xG2 HSP polarity MPa1/2 H 

xG3 HSP hydrogen bonding MPa1/2 H 

xG4 Density g cm−3 H 

xG5 Molecular volume cm3 mol−1 H 

xG6 Molecular surface area cm2 mol−1 H 

xG7 Boiling point (1.01 × 105 Pa) °C H 

xG8 Melting point (1.01 × 105 Pa) °C H 

xG9 Ovality – H 

xG10 Molecular weight g mol−1 R 

xG11 bLog P – R 

xG12 cTPSA (10–10 m)2 R 

xG13 Molecular length 10–10 m R 

xG14 Minimum of partial charge density C m−3 G 

xG15 Polarizability (10–10 m)3 G 

xG16 Dipole moment Debye G 

xG17 Valence of amine – – 

a Softwares: HSP-ip (H), RDKit (R), Gaussian (G) (See ESI). b Logarithm of 

partition coefficient to water and octanol. c Topological polar surface area. 
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Fig. 3.   Construction of the Ttrs prediction model. (a) Weight diagram of ES-LiR. (b) 

Relationship between the estimated and measured Ttrs for the training (black, 65 

y) and test (red, 10 y) datasets using the model Eq. (2) comprising of five xGn (xG4, 

xG12, xG14, xG16, and xG17).  

2. 2. Construction of Ttrs Predictor  

The original 75 data was divided into the training and test 

datasets containing 65 y and 10 y, respectively (Tables S2 and 

S3 in the ESI). The variable selection was carried out using the 

training dataset (Fig. 3 and Table S2 in the ESI). As the 

correlation coefficients of xGn (n = 5, 6, 9, 10) were larger than 

0.9 (Fig. S4 in the ESI), these four xGn were removed to avoid the 

multicollinearity. In SpM-S,68 the significance of xGn was 

visualized in the weight diagram of exhaustive search with 

linear regression (ES-LiR) (Fig. 3a).69,73 Linear regression models 

were prepared using the training dataset in all the possible 

combinations of 13 xGn (n = 1–4, 7, 8, 11–17), 213–1 (= 8.2 × 103) 

combinations, with five-fold cross validation (CV). The 

constructed models were sorted in the ascending order of the 

cross-validation error (CVE) values. The positive and negative 

coefficients of xGn were represented by the warm and cool 

colors in the diagram, respectively (Fig. 3a). The more 

frequently used xGn was displayed by the more densely colored 

bar in the vertical axis. Based on the weight diagram, we 

selected five xGn (xG4, xG12, xG14, xG16, and xG17) as the descriptors 

to prepare the linear regression model Eq. (2).   

y = 8.85xG4 − 6.66xG12 − 7.38xG14 − 5.76xG16 + 12.04xG17 + 
68.67 … Eq. (2) 

As the coefficients of this linear regression are normalized in 

frequency distribution with mean 0 and standard deviation 1, 

the contribution of each xGn can be comparable. The 

relationship between the estimated and measured Ttrs had root 

mean squared error (RMSE) 15.9 °C for the training dataset (65 

y, black circles) and 25.3 °C for the test dataset (10 y, red circles) 

(Fig. 3b). The coefficient of determination (R2) was 0.388 for the 

training dataset and 0.139 for the test dataset. Five-fold CV was 

carried out using the merged dataset of the training and test 

ones (75 y) (Fig. S5 in the ESI). In the five-fold CV, the regression 

equations had the same positive and negative coefficients as 

those in Eq. (2). RMSE was 15.6 ± 1.2 °C for training data and 

17.3 ± 4.1 °C for test data. The RMSE values in the five-fold CV 

imply that the model Eq. (2) is not overtrained in the training 

dataset but generalizable. The RMSE and R2 values are not so 

high to predict Ttrs precisely. On the other hand, the relationship 

between the estimated and predicted values in Fig. 3b indicates 

that the overall trends of the higher and lower Ttrs are roughly 

described by the model. In general, a model with high 

prediction accuracy (e.g. RMSE and R2 values) is not easily 

constructed based on small data because of the lack of data size. 

In addition to these quantitative metrics, whether the overall 

trend is described by the model or not is qualitatively evaluated 

by the plots representing the relationship between the 

estimated and predicted values.68,69 If the model describing the 

overall trend is constructed based on small data, the next 

experiments can be accelerated with reducing the number of 

trials. In this manner, a linear regression model for predicting 

Ttrs of the layered PDA was constructed by SpM-S.  

The contribution of each descriptor to Ttrs was studied based 

on the positive and negative of the coefficients with our 

chemical insight. Density (xG4) and valence (xG17) of the guests 

have the positive correlation to Ttrs. If the guest molecule with 

the higher density (larger xG4) is intercalated in the interlayer 

space, the more densely packed guests can provide the rigid 

layered structure. The divalent guest amines also form the rigid 

layered structure with anchoring the layers by both the 

terminals. The minimum value of the partial charge density 

(xG14) shows the negative correlation. The guests with 

heteroatoms in the alkyl chain or aromatic ring, such as 

secondary amines and pyridine rings, have the larger xG14 values 

compared with the other primary amines (Tables S2 and S3 in 

the ESI). These guest molecules direct formation of the soft 

layered structures with the weakened interlayer interaction 

leading to a decrease in Ttrs because of the loose packing. 

Topological polar surface area (TPSA, xG4) and dipole moment 

(xG16) have the negative correlation to Ttrs. As the guest 

molecules with the smaller xG4 and xG16 are organized and 

packed in the interlayer space with van der Waals interaction, 

an increase in Ttrs is derived by the more rigid layered structure. 

In this manner, the contribution of each xGn can be interpretable 

by our experience and chemical insight. In the present study, 

the gest monoamines and diamines with the alkyl chain, 

cycloalkane, aromatic and heteroaromatic rings, and alcohol 

were mainly used for the training (Table S1 in the ESI). The other 

amines, such as those containing branched alkyl chains and 

ethers, were not fully trained in the present model. In addition, 
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the more different types, such as amino acids, macromolecules, 

and polyamines, need to train with adding the more data. The 

more accurate model can be constructed with adding the data.   

 

 
Fig. 4.   Model construction using the other ML algorithms. (a–e) Relationship 

between the estimated and measured Ttrs for the training dataset (black, 65 y) and 

test dataset (red, 10 y) for ML-R (a), LASSO (b), RF-R (c), SV-R (d), and NN-R (e). (f) 

RMSE values of the constructed models for the training (gray) and test (pink) 

datasets. 

 

2. 3. Model construction using other ML algorithms 

The model construction was carried out based on the same 

training and test datasets using the following other linear and 

nonlinear ML algorithms (Fig. 4): multiple linear regression 

(MLR) without variable selection, least absolute shrinkage and 

selection operate (LASSO), random forest regression (RF-R), 

support vector regression (SV-R), and neural network 

regression (NN-R). Whereas the relationship between the 

estimated and observed Ttrs were approached to the diagonal 

line for the training dataset, the large error was found for the 

test dataset (Fig. 4a–e). Fig. 4f summarizes the RMSE values to 

the original training and test datasets. The other algorithms 

provide the slightly smaller RMSE values to the training dataset 

compared with that of the model constructed by SpM-S. In 

contrast, the larger RMSE values were obtained to the test 

dataset. In the case of LASSO, the larger number of the 

descriptors xn (2, 5–8, 10, 12, 13, 15) was used for the model. 

These results imply that the other algorithms lead to the 

overfitting to the training dataset and lowering the 

generalizability to the test dataset. The similar results were 

obtained in our previous works using small data.69,70,74,75 SpM-S 

provides the accurate model comparable to the other models 

even though the number of the selected descriptors is limited. 

The linear regression model comprised of the selected 

descriptor and coefficient has interpretability and 

straightforwardness. The smallest RMSE value to the test 

dataset means the generalizability to unknown test data. In this 

manner, SpM-S is a suitable approach to small data in terms of 

the accuracy, interpretability, and generalizability.  

 

 

2. 4. Prediction-Based Syntheses of New Layered PDA  

Nine commercial amines (S901–S909) were selected as the new 

guests (Fig. 5a and Table S5 in the ESI). These molecules were 

not used in the previous works and datasets for the model 

construction. Prior to the experiments, the predicted Ttrs was 

calculated using the model Eq. (2). These guest-intercalated 

precursor layered crystals were synthesized by self-organization 

from the solution containing the host PCDA and guest amine 

with the evaporation of solvent.45 The layered PDA with the 

intercalated guests was obtained by the UV-light irradiation. 

The intercalated structures were analyzed by X-ray diffraction 

(XRD) and Fourier-transform infrared (FT-IR) spectroscopy (Fig. 

S6 in the ESI). The thermoresponsive color-changing properties 

were observed by heating the samples (Fig. 5b). The actual Ttrs 

was calculated from the T–(Δx / Δxmax) relationship by 

approximation using Eq. (1) (Fig. S7 in the ESI). The predicted 

and actual Ttrs values were summarized using the red circles in 

Fig. 5c. The RMSE value of the actual Ttrs was 15.6 °C comparable 

to that of the training data (15.9 °C, black circles in Fig. 5c). The 

results indicate that Ttrs of the guest-intercalated layered PDA 

can be predicted using the model. Although the guests have 

been selected based on our experience and intuition, the more 

efficient selection can be achieved using the predictor in the 

future. Moreover, the similar approach can be applied to the 

molecular design of DA monomers to achieve tailored 

responsivity.  
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Fig. 5.   Prediction-based synthesis of the layered PDA with the intercalation of new guests. (a) Molecular structure of new guests S901–S909. (b) Photographs 

representing the relationship between T and color of the layered PDA with the intercalation of the new guests S901–S909. The measured Ttrs was noted with the 

photographs. (c) Relationship between the estimated and measured Ttrs for the training dataset (black, 65 y) and newly synthesized ones (red, 9 y). 

3. Conclusions 

A dynamic function of polymer material has been predicted 

based on small experimental data with assistance of ML, SpM-

S. Layered PDAs show the thermoresponsive color-change 

properties depending on the intercalated guest molecules. As 

the color-changing properties were represented by a series of 

photographs in our experimental studies, the ML-applicable 

data was prepared at the initial data-curation step. The 

relationship between T and Δx / Δxmax representing the 

thermoresponsivity was approximated by sigmoidal function to 

conversion of the photographic data to the numerical data for 

ML. A constant in the fitting function was set as y. The 

descriptors were extracted from the weight diagram 

representing the contribution of each xn. The straightforward 

and interpretable linear model was constructed for predicting 

Ttrs by SpM-S. Furthermore, Ttrs of the layered PDA with 

intercalating the new guest was predicted prior to the 

experiment. The actual Ttrs was consistent with the predicted 

one. These results indicate the successful construction of the Ttrs 

predictor for the layered PDA. In general, dynamic functions of 

polymer materials are not easily predicted because of the 

complex structural hierarchy. The present approach combining 

data curation and SpM-S can be applied to the other stimuli-

responsive materials with input triggers (e.g. temperature, 

concentration, pH, and light) and output signals (e.g. color 

change, phase and structural transitions, morphology change, 

current). Moreover, designing the other functional polymer 

materials can be achieved using the present method based on 

small data.  
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Data availability 

The data supporting this article have been included as part of 

the ESI. The following datasets are available at GitHub of our 

group (https://github.com/Oaki-Group/202511_PDA) (DOI: 

https://doi.org/10.5281/zenodo.18060256): Tables S1 and S5 

as csv file with simplified molecular input line entry system 

(SMILES) and mol2 files; Table S2 as csv file for the training 

dataset; Table S3 as csv file for the test dataset. The following 

codes are available at the above website: ES-LiR; Drawing 

weight diagram; The other ML algorithms as the reference. 
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