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A data-driven approach to control stimulus responsivity of
functional polymer materials: Predicting thermoresponsive color-
change properties of polydiacetylene

Risako Shibata,® Nano Shioda,? Hiroaki Imai,? Yasuhiko Igarashi,® Yuya Oaki*~?

Sensing devices are fabricated using stimuli-responsive materials. In general, the responsivity is controlled by designing
molecules and materials based on professional experience. If predictors are constructed for the responsivity control, the
number of experiments can be reduced without consumption of time, cost, and effort. However, such dynamic properties
of functional polymer materials are not easily predicted because of the small data and complex structure-function
relationship. How to prepare dataset and train small data remain significant challenges. The present work shows
construction and application of a prediction model for controlling thermoresponsive color-changing properties of layered
polydiacetylenes (PDAs). The responsivity was changed by the intercalated guest molecules. The training dataset was
prepared from a series of the photographs representing the color at each temperature. The prediction model of the
thermoresponsivity, namely color-changing temperature, was constructed by combining machine learning and our chemical
insight on the small experimental data. The thermoresponsivity of the newly synthesized layered PDAs was predicted by the

model. The modeling methods can be applied to predicting various dynamic properties of functional polymer materials.

1. Introduction

Stimuli-responsive molecules and materials have various
applications, such as sensors and actuators.’™'' An input
external stimulus, such as thermal, chemical, optical, and
mechanical stimuli, is converted to a specific output
responsiveness by molecules and materials. Visible and/or
fluorescent colors are used for detection of the applied stresses.
The responsivity, such as sensitivity, chromaticity, and
reversibility, is tuned by design and synthesis of chromophores
and their organization states. In general, such molecules and
materials are designed by professional experiences and
synthesized with trial and error. If data-driven approach is
effectively applied to these processes, the responsivity can be
efficiently tuned without consumption of time, cost, and effort.
Although this motivation is rational, data-driven approaches are
not easily applied to designing such functional soft materials
because of the following reasons. One of the problems is
insufficient data size of typical experimental works for the use
of conventional machine-learning (ML) algorithms. Another
problem is how to prepare the dataset suitable for ML based on
the non-numerical experimental results. The targeted problem,
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i.e. stimuli responsivity, should be translated to a ML-solvable
problem. For example, photographs, spectra, and their changes
are needed to be converted to ML-applicable data. Moreover,
as dynamic properties are related to the complex structural
hierarchy from molecules to organized states, the factors
related to the properties as the features are not easily prepared
only using conventional tools for automatic generation of
descriptors. In this manner, ML has not been fully applied to
experimental studies for controlling the properties of stimuli-
responsive materials because of the issues in data size, data
curation for the targets, and preparation of the descriptors.
Although ML has been applied to design polymers and soft
materials, such as polymers, gels, liquid crystals, and bubbles, in
recent years,'>22 the further methodological advances are
required to develop the methods for small experimental data.
The present work shows construction of a prediction model for
thermoresponsive color-changing properties of layered PDA
(Fig. 1). Based on the photographic data, a straightforward
linear regression model was prepared by sparse modeling for
small data (SpM-S). The data acquisition, curation, and
modeling methods can be applied to construct the predictors of
the other stimuli-responsive functional materials with small
data.
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Fig. 1. Schematic illustration for predicting thermoresponsive color-changing properties of layered PDA. (a) PCDA monomer. (b) Guest amines. (c) Guest-intercalated
layered PDA with the topochemical polymerization. (d) Photographs for preparing thermoresponsive color-changing properties. (e) Small dataset containing the color
transition temperature (T = y, objective variables) and physicochemical parameter of the guests (xg,, explanatory variables). (f) SpM-S for extraction of the descriptors
and model construction. (g) Synthesis of layered PDA with intercalating new guests based on the predicted Tys.

PDA, a conjugated polymer, exhibits color changes in response
to external stimuli, such as thermal, chemical, and frictional
stresses.?>30 A wide variety of sensing devices and systems
were fabricated using PDA. The stresses induce the molecular
motion and subsequent shortening the effective conjugation
length of PDA main chain. The stimuli responsivity has been
controlled by the molecular design.3*™*3 Our group has studied
intercalation approach to control the responsivity of the layered
PDAs (Fig. 1a—d).*>=>2 The layered structure of an amphiphilic
diacetylene (DA) monomer, 10,12-pentacosadiynoic acid
(PCDA), is topochemically polymerized in the solid crystalline
state (Fig. 1a,c). Whereas the layered PDA derived from PCDA
shows the blue-to-red color transition around 65 °C with
heating (Fig. 1d), the color-changing temperature varied in the
range of —0.2 to 146 °C depending on the intercalated guests,
such as metal ions and alkyl amines, in the interlayer space (Fig.
1b,d).**? However, the responsivity control based on the
experience and intuition meets the limitations for both the
molecular-design and intercalation approaches. Here we used
ML to construct the predictor for controlling the responsivity.
In recent years, ML has been widely used in general
materials science.>*% Most of the algorithms are suitable for
big data. Sufficient size of data is not prepared for all the

2| J. Name., 2012, 00, 1-3

experimental works. In small data, conventional ML algorithms
cause problems, such as overtraining. Recent studies have
proposed the specific methods for small data, such as transfer
and active learnings.5%7 In our group, sparse modeling for
small data (SpM-S) has been studied; the approach combining
ML and our chemical insight provides straightforward and
interpretable predictors.®®73 SpM-S was used for the simple
numerical data, such as yield, size, and capacity, directly
obtained from the experimental works. The approach was not
applied to small experimental data requiring the curation prior
to the use, such as photograph and graph. If the targeted data
and problem are converted to SpM-S applicable formats in an
appropriate manner, the approach can be applied to small data
in the broader fields. In the present work, a prediction model
for the thermoresponsive color-changing properties of the
layered PDA was constructed by SpM-S (Fig. 1d—g). After the
training dataset was prepared from a series of the photographic
data (Fig. 1d,e), combination of ML and chemical insight
provides the predictors based on the small data (Fig. 1f). The
model successfully predicted the thermoresponsivity of the
layered PDAs with the intercalation of new unknown guests (Fig.
1g). Based on these results, if the targeted stimuli responsivity

This journal is © The Royal Society of Chemistry 20xx
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is converted to the appropriate dataset, the predictors can be
constructed by SpM-S even on small experimental data.

2. Results and discussion
2. 1. Preparation of Datasets from Photographs

The data the thermoresponsive color-changing
properties were extracted from our previous works and newly
added in the present work (Fig. 1b—d and Figs. S1-S3 and Tables
S1-S3 in the Electronic Supplementary Information (ESI)).*4->1
The layered PDAs show the color changes from blue to red with
increasing temperature (T / °C) (Fig. 1d). Whereas the layered
PDA without the guest showed the blue-to-red color transition
around 65 °C, for example, the color transition was observed
around 80 and 100 °C with the intercalation of tetradecylamine
(C14-NH3) and p-xylylenediamine (p-Xy), respectively (Fig. 2a,b).
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Fig. 2. Data curation of the thermoresponsive color-changing properties. (a,b)
Photographs representing the relationship between T and color of layered PDA with the
intercalation of C;4-NH, (a) and p-Xy (b). (c,d) Approximation of the relationship between
T and Ax / Axpa (€ach plot) generated from the photographic data using sigmoidal
function (red curve) for PDA-C14-NH; (c) and PDA-p-Xy. The same data for the other
amines were summarized in Fig. S3 in the ESI.

The original experimental data is a series of the photographs
exhibiting the color of the sample at different temperature. The
color of the photographs was converted to the red-color
intensity (x) based on the RGB values using an international
standard (See Experimental Method in the ESI). An increment of
x (Ax = x — xo) was calculated at each T in reference to the initial
state before heating (xo). Then, Ax was normalized by dividing
the maximum Axmax (AX / Axmax). The relationship between T and
Ax / Dxmax Was prepared for each layered PDA containing 75
different guests (Fig. 2c,d and Fig. S3 in the ESI). The T-(Ax /
AXmax) CUrve was approximated to sigmoidal function Eq. (1)
using two constants a and b with the coefficient of
determination (R?).

Ax 1
AXmax  1+exp{-b(T-a)}

Eq. (1)
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In the curve, the constant a corresponds to the golarschange
temperature reaching 0.5Ax / Axmax (Fi@CLe)) PR/ RIN384AE2H
corresponds to the slope representing the temperature
responsivity. The observed T-Ax plots were approximated using
Eq. (1) with optimizing a and b to minimize R? value. The average
R?values were 0.952 + 0.066 for all the data (Table S4 in the ESI).
The fitting function was prepared with the specific a and b for
each sample (Fig. 2c,d and Fig. S3 in the ESI). The color-
transition temperature (Tis) was defined as T to reach 0.5Ax /
AXmax, Namely a in Eq. (1). Sigmoidal function is a suitable
approximation to describe the temperature-responsive
chromaticity change. Sigmoidal function generally exhibits the
following trend of the increase in y: gentle increases in the initial
and final stages and steep increase in the middle range. The
same trend was experimentally observed for the
thermoresponsive color-changing behavior of PDAs (Fig. 2c,d).
As the variation of the chromaticity change, Ax / Axmay, is limited
in the specific range, this behavior is also represented by
sigmoidal function. In this manner, the thermoresponsive color-
changing properties based on a series of photographs were
converted to the numerical data.

Twrs as objective variable (y) was calculated for the layered
PDA with the intercalated 75 different guests, such as alkyl
amines, cationic polymers, and aromatic amines (Table S1in the
ESI). These guests are numbered as S005, S006, ..., S161 in our
group. Table 1 summarizes the explanatory variables (xgn: n = 1—
17) as the potential descriptors corresponding to the
physicochemical parameters of the guest molecules, such as
boiling point (xge) and dipole moment (xg16).

Table 1. List of explanatory variables.

XGn Parameter Unit 2Method
X61 HSP dispersion MPal/? H
X2 HSP polarity MPa'2 H
X3 HSP hydrogen bonding MPa'2 H
XGa Density gcm™ H
XGs Molecular volume cm? mol™ H
X66 Molecular surface area cm? mol™ H
Xa7 Boiling point (1.01 x 10° Pa) °C H
Xe8 Melting point (1.01 x 10° Pa) °C H
XG9 Ovality - H
XG10 Molecular weight g mol™ R
X611 bLog P - R
X612 “TPSA (10710 m)2 R
X613 Molecular length 10 m R
XG14 Minimum of partial charge density Cm G
X615 Polarizability (1070 m)? G
Xa16 Dipole moment Debye G

XG17 Valence of amine -

@ Softwares: HSP-ip (H), RDKit (R), Gaussian (G) (See ESI). ? Logarithm of
partition coefficient to water and octanol. ¢ Topological polar surface area.

J. Name., 2013, 00, 1-3 | 3
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Fig. 3. Construction of the T, prediction model. (a) Weight diagram of ES-LiR. (b)
Relationship between the estimated and measured Ty for the training (black, 65
y) and test (red, 10 y) datasets using the model Eq. (2) comprising of five xa, (Xca,

X612, X614, Xa16, aNd Xe17).

2. 2. Construction of Ty Predictor

The original 75 data was divided into the training and test
datasets containing 65 y and 10 y, respectively (Tables S2 and
S3 in the ESI). The variable selection was carried out using the
training dataset (Fig. 3 and Table S2 in the ESI). As the
correlation coefficients of xg, (n = 5, 6, 9, 10) were larger than
0.9 (Fig. S4 in the ESI), these four xg, were removed to avoid the
multicollinearity. In SpM-S,%8 the significance of xg, was
visualized in the weight diagram of exhaustive search with
linear regression (ES-LiR) (Fig. 3a).%®73 Linear regression models
were prepared using the training dataset in all the possible
combinations of 13 xg, (n = 1-4, 7, 8, 11-17), 213-1 (= 8.2 x 103)
combinations, with five-fold (CV). The
constructed models were sorted in the ascending order of the

cross validation

cross-validation error (CVE) values. The positive and negative
coefficients of xg, were represented by the warm and cool
colors in the diagram, respectively (Fig. 3a). The more
frequently used xg, was displayed by the more densely colored
bar in the vertical axis. Based on the weight diagram, we
selected five xap, (XG4, XG12, XG14, XG16, aNd Xg17) as the descriptors
to prepare the linear regression model Eq. (2).

y = 8.85xG4 — 6.66xG12 — 7.38xG14 — 5.76xG16 + 12.04xG17 +
68.67 ... Eq. (2)

4| J. Name., 2012, 00, 1-3

As the coefficients of this linear regression are normalizedin
frequency distribution with mean 0 and>$taAdaPePdeiatenta)
the contribution of each xg, can be comparable. The
relationship between the estimated and measured Ty had root
mean squared error (RMSE) 15.9 °C for the training dataset (65
y, black circles) and 25.3 °C for the test dataset (10 y, red circles)
(Fig. 3b). The coefficient of determination (R?) was 0.388 for the
training dataset and 0.139 for the test dataset. Five-fold CV was
carried out using the merged dataset of the training and test
ones (75 y) (Fig. S5 in the ESI). In the five-fold CV, the regression
equations had the same positive and negative coefficients as
those in Eqg. (2). RMSE was 15.6 + 1.2 °C for training data and
17.3 £ 4.1 °C for test data. The RMSE values in the five-fold CV
imply that the model Eq. (2) is not overtrained in the training
dataset but generalizable. The RMSE and R? values are not so
high to predict Ty precisely. On the other hand, the relationship
between the estimated and predicted values in Fig. 3b indicates
that the overall trends of the higher and lower Tis are roughly
described by the model. In general, a model with high
prediction accuracy (e.g. RMSE and R? values) is not easily
constructed based on small data because of the lack of data size.
In addition to these quantitative metrics, whether the overall
trend is described by the model or not is qualitatively evaluated
by the plots representing the relationship between the
estimated and predicted values.®®5° If the model describing the
overall trend is constructed based on small data, the next
experiments can be accelerated with reducing the number of
trials. In this manner, a linear regression model for predicting
Tirs of the layered PDA was constructed by SpM-S.

The contribution of each descriptor to Tis was studied based
on the positive and negative of the coefficients with our
chemical insight. Density (xg4) and valence (xg17) of the guests
have the positive correlation to Tys. If the guest molecule with
the higher density (larger xga) is intercalated in the interlayer
space, the more densely packed guests can provide the rigid
layered structure. The divalent guest amines also form the rigid
layered structure with anchoring the layers by both the
terminals. The minimum value of the partial charge density
(xc14) shows the negative correlation. The guests with
heteroatoms in the alkyl chain or aromatic ring, such as
secondary amines and pyridine rings, have the larger xg14 values
compared with the other primary amines (Tables S2 and S3 in
the ESI). These guest molecules direct formation of the soft
layered structures with the weakened interlayer interaction
leading to a decrease in Tis because of the loose packing.
Topological polar surface area (TPSA, xg4) and dipole moment
(xc16) have the negative correlation to Tys. As the guest
molecules with the smaller xgs and xgi16 are organized and
packed in the interlayer space with van der Waals interaction,
an increase in Ty is derived by the more rigid layered structure.
In this manner, the contribution of each xg, can be interpretable
by our experience and chemical insight. In the present study,
the gest monoamines and diamines with the alkyl chain,
cycloalkane, aromatic and heteroaromatic rings, and alcohol
were mainly used for the training (Table S1 in the ESI). The other
amines, such as those containing branched alkyl chains and
ethers, were not fully trained in the present model. In addition,

This journal is © The Royal Society of Chemistry 20xx
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the more different types, such as amino acids, macromolecules,
and polyamines, need to train with adding the more data. The
more accurate model can be constructed with adding the data.
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Fig. 4. Model construction using the other ML algorithms. (a—e) Relationship
between the estimated and measured T, for the training dataset (black, 65 y) and
test dataset (red, 10 y) for ML-R (a), LASSO (b), RF-R (c), SV-R (d), and NN-R (e). (f)
RMSE values of the constructed models for the training (gray) and test (pink)
datasets.

2. 3. Model construction using other ML algorithms

The model construction was carried out based on the same
training and test datasets using the following other linear and
nonlinear ML algorithms (Fig. 4): multiple linear regression
(MLR) without variable selection, least absolute shrinkage and
selection operate (LASSO), random forest regression (RF-R),
support vector regression (SV-R), and neural network
regression (NN-R). Whereas the relationship between the
estimated and observed Tis were approached to the diagonal
line for the training dataset, the large error was found for the
test dataset (Fig. 4a—e). Fig. 4f summarizes the RMSE values to
the original training and test datasets. The other algorithms
provide the slightly smaller RMSE values to the training dataset
compared with that of the model constructed by SpM-S. In

This journal is © The Royal Society of Chemistry 20xx
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contrast, the larger RMSE values were obtained,to,the test
dataset. In the case of LASSO, the |&fgetO0-HUBEPDEP4RE
descriptors x, (2, 5-8, 10, 12, 13, 15) was used for the model.
These results imply that the other algorithms lead to the
overfitting to the training dataset and lowering the
generalizability to the test dataset. The similar results were
obtained in our previous works using small data.6%707475 SpM-S
provides the accurate model comparable to the other models
even though the number of the selected descriptors is limited.
The linear regression model comprised of the selected
descriptor and coefficient has interpretability and
straightforwardness. The smallest RMSE value to the test
dataset means the generalizability to unknown test data. In this
manner, SpM-S is a suitable approach to small data in terms of
the accuracy, interpretability, and generalizability.

2. 4. Prediction-Based Syntheses of New Layered PDA

Nine commercial amines (S901-S909) were selected as the new
guests (Fig. 5a and Table S5 in the ESI). These molecules were
not used in the previous works and datasets for the model
construction. Prior to the experiments, the predicted Ty was
calculated using the model Eq. (2). These guest-intercalated
precursor layered crystals were synthesized by self-organization
from the solution containing the host PCDA and guest amine
with the evaporation of solvent.*> The layered PDA with the
intercalated guests was obtained by the UV-light irradiation.
The intercalated structures were analyzed by X-ray diffraction
(XRD) and Fourier-transform infrared (FT-IR) spectroscopy (Fig.
S6 in the ESI). The thermoresponsive color-changing properties
were observed by heating the samples (Fig. 5b). The actual Ty
was calculated from the T—(Ax / Axmax) relationship by
approximation using Eq. (1) (Fig. S7 in the ESI). The predicted
and actual Ty values were summarized using the red circles in
Fig. 5c. The RMSE value of the actual Tis was 15.6 °C comparable
to that of the training data (15.9 °C, black circles in Fig. 5c). The
results indicate that Ty of the guest-intercalated layered PDA
can be predicted using the model. Although the guests have
been selected based on our experience and intuition, the more
efficient selection can be achieved using the predictor in the
future. Moreover, the similar approach can be applied to the
design of DA monomers to achieve tailored
responsivity.

molecular
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Fig. 5. Prediction-based synthesis of the layered PDA with the intercalation of new guests. (a) Molecular structure of new guests $901-S909. (b) Photographs

representing the relationship between T and color of the layered PDA with the intercalation of the new guests $901-S909. The measured T, was noted with the
photographs. (c) Relationship between the estimated and measured T, for the training dataset (black, 65 y) and newly synthesized ones (red, 9 y).

3. Conclusions

A dynamic function of polymer material has been predicted
based on small experimental data with assistance of ML, SpM-
S. Layered PDAs show the thermoresponsive color-change
properties depending on the intercalated guest molecules. As
the color-changing properties were represented by a series of
photographs in our experimental studies, the ML-applicable
data was prepared at the initial data-curation step. The
relationship between T and Ax / Axmax representing the
thermoresponsivity was approximated by sigmoidal function to
conversion of the photographic data to the numerical data for
ML. A constant in the fitting function was set as y. The
descriptors were extracted from the weight diagram
representing the contribution of each x,. The straightforward
and interpretable linear model was constructed for predicting
Tus by SpM-S. Furthermore, Tis of the layered PDA with
intercalating the new guest was predicted prior to the

6 | J. Name., 2012, 00, 1-3

experiment. The actual Tis was consistent with the predicted
one. These results indicate the successful construction of the Ty
predictor for the layered PDA. In general, dynamic functions of
polymer materials are not easily predicted because of the
complex structural hierarchy. The present approach combining
data curation and SpM-S can be applied to the other stimuli-
responsive materials with input triggers (e.g. temperature,
concentration, pH, and light) and output signals (e.g. color
change, phase and structural transitions, morphology change,
current). Moreover, designing the other functional polymer
materials can be achieved using the present method based on
small data.
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the ESI. The following datasets are available at GitHub of our
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as csv file with simplified molecular input line entry system
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dataset; Table S3 as csv file for the test dataset. The following
codes are available at the above website: ES-LiR; Drawing
weight diagram; The other ML algorithms as the reference.
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