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1 Introduction

OBELiX: A Curated Dataset of Crystal Structures
and Experimentally Measured lonic Conductivities for
Lithium Solid-State Electrolytes

Félix Therrien,** Jamal Abou Haibeh,*® Divya Sharma,® Rhiannon Hendley,%¢ Leah Wairimu
Mungai,“f Sun Sun,® Alain Tchagang,® Jiang Su,® Samuel Huberman,” Yoshua Bengio,*
Hongyu Guo,® Alex Hernandez-Garcia,* Homin Shin,®

Solid-state electrolyte batteries are expected to replace liquid electrolyte lithium-ion batteries in
the near future thanks to their higher theoretical energy density and improved safety. However,
their adoption is currently hindered by imperfect electrode-electrolyte interfaces and a lower ef-
fective ionic conductivity, a quantity that governs charge and discharge rates. Identifying highly
ion-conductive materials using conventional theoretical calculations and experimental validation is
both time-consuming and resource-intensive. While machine learning holds the promise to expedite
this process, relevant ionic conductivity and structural data is scarce. Here, we present OBELiX,
a database of ~600 synthesized solid electrolyte materials and their experimentally measured room
temperature ionic conductivities gathered from literature and curated by domain experts. Each ma-
terial is described by their measured composition, space group and lattice parameters. A full-crystal
description in the form of a crystallographic information file (CIF) is provided for ~320 structures for
which atomic positions were available. We discuss various statistics and features of the dataset and
provide training and testing splits carefully designed to avoid data leakage. Finally, we benchmark
seven existing ML models on the task of predicting ionic conductivity and discuss their performance.
The goal of this work is to facilitate the use of machine learning for solid-state electrolyte materials
discovery.

electrolyte in LIBs—permits new design choices that ultimately

Lithium-ion batteries (LIBs) used in most consumer electronics
and electric vehicles have seen immense progress in terms of en-
ergy density, power density, safety and durability. However, their
performance is reaching a plateau. Solid-state batteries are re-
garded as the next generation of batteries that may allow sig-
nificant improvement over these characteristics 2. The key dif-
ference between these two technologies is their electrolyte, the
medium which allows the transport of ions during charge and
discharge. A solid-state electrolyte (SSE)—as opposed to a liquid
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lead to better battery properties?, let alone the fact that they are
not flammable unlike their liquid counterparts.

Ionic conductivity (o), expressed in siemens per centime-
ter (S/cm), measures how easily ions can move through a
medium or material. Ideal SSEs, also called “superionic” or
“fast-ionic” conductors, are electrolytes that exhibit ionic con-
ductivity comparable to those observed in liquid electrolytes and
molten solids (> 1 mS/cm). Only a handful of room temper-
ature ideal SSEs are known thus far within a small number
of classes of materials: LISICON (e.g., Lij4ZnGe4O14), NASI-
CON (e.g., Li1‘3A10'3Ti1_7(P04)3), garnet (e.g., Li7Li3ZI'2012), per-
ovskite (e.g., Liy sLag sTiO3), and argyrodite (e.g., LigPSsCl)2.

Until now, the discovery of novel SSEs has largely relied on an
incremental, experimental approach which consists, for example,
of substituting atoms and elements in known compounds. This
has allowed the discovery of some highly ion-conductive mate-
rials, but greatly limits the search space given that the experi-
mental synthesis and characterization of a new, stable, inorganic
solid-state electrolyte is a difficult and costly process that can take
months to years?.
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Table 1 Comparison of our dataset (OBELiX) with existing ones based on key features and labels. For features, the numbers represent the number of
entries with that feature that are labeled with at least one experimental or computational ion transport property (not necessarily ionic conductivity).

Numbers in parentheses represent proprietary or private data.

Dataset Labels Features

Oy C 0P Comp. Spg Lattice CIFs
Sendek et al. 0 0 317 317 317 317
Jalem et al. 0 0 318 318 318 318
He et al.| (SPSE) 0 0 75 (12k) 75 (12k) 75 (12k) 75 (12k)
Hargreaves et al.|(Lilon) 465 820 820 0 0 0
Laskowski et al. 1346 1346 1346 0 (344) 0 (344) 0 (344)
McHalffie et al. 571 571 571 0 (571) 0 (571) 0 (571)
Shon and Min n.a. 4032 4032 0 0 0
Yang et al.| (DDSE) (1939) (2448) 2448 0 0 0
OBELiX 599 599 599 599 599 321

Computational discovery, on the other hand, requires time-
consuming atomistic simulations, such as ab initio molecular
dynamics (AIMD) which is based on density functional the-
ory (DFT), to accurately capture the complex relationship be-
tween ionic conductivity and the material’s structure and com-
position3°12 These calculations can take from several hours to
a few days for a single ionic conductivity and their parameters
are often materials specific. Therefore, they are not well suited
for large-scale explorations of hypothetical materials.

Machine learning (ML) has the potential to greatly accelerate
the discovery of novel SSEs. Naturally, it can be used to pre-
dict ionic conductivity directly using, for example, graph neural
networks (GNNs), which have been used extensively and success-
fully in materials science®1Z, Machine-learned force fields or
interatomic potentials (MLFF or MLIP) can also be used to obtain
ionic conductivity through molecular dynamics in the “classical”
way while using significantly less resources18. Finally, generative
frameworks can accelerate dynamics simulations1? and, provided
that good ionic conductivity models are developed, there exists a
wide range of frameworks that could generate new materials con-
ditioned on that property?223, However, the main obstacle to the
development and validation of these models—and to some extent
theoretical models—is the scarcity of relevant experimental ionic
conductivity and structural datasets. Indeed, as detailed in the
next section, the few datasets that exist contain partial material
descriptions and ionic conductivity measurements at various or
unspecified temperatures. To the best of our knowledge there
does not exist another open access dataset of experimental room
temperature ionic conductivities with corresponding full crystal
descriptions.

In this work, we assembled OBELiX (Open solid Battery
Electrolytes with Li: an eXperimental dataset), a curated database
of 599 synthesized solid electrolyte materials and their exper-
imentally measured room temperature ionic conductivity along
with descriptors of their space group, lattice parameters, and
chemical compositior] The database is analyzed in terms of the
distribution of ionic conductivity, space groups, elements, and re-

« OBELIX is available here: github.com/NRC-Mila/OBELiX

2| Journal Name, [year], [vol.], 1@

peated compositions. We also propose a training and testing split
that avoids data leakage between similar entries while balancing
distributions of properties across splits. We use this split to bench-
mark the performance of 7 machine learning models at directly
predicting room temperature ionic conductivity (orr).-

We believe that this dataset and benchmark can significantly
spur the use of ML for the discovery of novel solid-state battery
materials. It may be small but it is important to realize that
the database represents a large fraction of all materials whose
ionic conductivity has been characterized experimentally. Impor-
tantly, this database has been carefully curated by domain experts
and formatted by machine learning scientists to facilitate its use
by this community. Finally, we believe that this benchmark can
encourage novel machine learning research tailored to low-data
regimes.

2 Related work

Crystal structure databases such as the Materials Project?4 or the
Inorganic Crystal Structure Database (ICSD)252¢ contain large
amounts of potential candidates for solid-state electrolytes. For
example, Sendek et al.® screened more than 12,000 Li-containing
crystals for Li-ion SSEs using multiple criteria, thereby identifying
317 candidates, among which 21 crystals that showed promise
as SSEs were selected from an ML-guided model. The ionic
conductivity of these 21 structures was estimated theoretically.
Jalem et al.® annotated 318 compounds by calculating ion mi-
gration energy barriers (Ej), a less accurate but computationally
lighter property that relates to ionic conductivity. Bayesian opti-
mization was employed to screen candidate compounds with low
Ej,. He et al.”Z compiled a database of over 90,000 crystal struc-
tures, including more than 7,000 structures with preliminary ion-
transport data obtained through geometric analysis, and 12,000
activation energy values (E;) calculated using the bond valence
site energy method. Additionally, they manually extracted 75 CIF
files from literature data. They employed empirical and geometri-
cal methods to estimate the minimum energy paths of these struc-
tures and obtain Ej, but they did not predict o.

On the experimental side, the Liverpool Ionics (Lilon) Dataset®
reports 820 entries containing chemical composition, structural
family, and ionic conductivity at different temperatures (from
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https://github.com/NRC-Mila/OBELiX
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5dd00441a

Page 30of 10

Open Access Article. Published on 16 January 2026. Downloaded on 1/17/2026 1:46:50 AM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

5 to 873°C) measured by alternating current impedance spec-
troscopy, among which 465 entries were at room temperature.
Laskowski et al.? gathered a dataset of 1346 entries with com-
positions, space group, and corresponding orr, with a subset of
344 compounds whose structures are manually matched with an
ICSD ID. The full dataset, including references, is only available as
a pdf file. While we were preparing OBELiX the same group of au-
thors published a new dataset partially based on Laskowski et al. ol
that contains a total of 571 compounds with experimentally mea-
sured ionic conductivities at room temperature. Since OBELiX
is also based on Laskowski et al.?, it has a significant overlap with
McHaffie et al. 10 that will be discussed in Section [3.2]

Shon and Min™¥ used text mining to extract more than 4000
ionic conductivity measurements from 1457 papers. Each ionic
conductivity measurement is associated with a composition and
about 350 are also associated with a “structure type”. Measure-
ment temperature is not specified and compositions are not al-
ways fully described. A recent study by Yang et al."2 intro-
duced the Dynamic Database of Solid-State Electrolyte (DDSE) to
facilitate the exploration of structure-performance relationships
and accelerate the discovery of high-performance solid-state elec-
trolytes (SSEs). The database contains performance data for 2448
materials (at time of writing), including ionic conductivity ob-
tained from experimental reports, across a broad temperature
range (132.40-1261.60 K). lonic conductivity data is only avail-
able upon request to the authors.

These recent reports greatly increased the amount of readily
available experimental ionic conductivity data. However, they
contain limited structural information: the databases by Shon and
Min™ and Yang et al."2 contain only a qualitative structure de-
scription for some materials, the Lilon dataset only includes the
structural family and the dataset by Laskowski et al.?! is limited to
space group information. Although the full crystallographic infor-
mation of the 344 compounds of the Laskowski dataset for which
the ICSD ID is provided could be retrieved, the proprietary ICSD
is not available to most researchers in the ML community. Table
summarizes the differences in terms of available features across
the databases discussed above.

The lack of precise structural information labeled with ionic
conductivity makes it difficult (1) to compare experimental values
with theoretical predictions which require full crystal descriptions
and (2) to train machine learning models to accurately predict
ionic conductivity.

3 Data

3.1 Background

While the combination of the composition, lattice parameters and
space group is often sufficient to qualify materials, they do not
fully describe the crystal structure because in general they do not
specify the positions of each atom. Some, but not all, experimen-
tal papers perform an additional analysis (Rietveld refinement) of
the X-ray powder diffraction pattern to estimate atomic positions.
Only in these cases is it possible to obtain a full description of
the crystal including atomic positions which is necessary to build
a crystal information file (CIF). This is why it is not possible to
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Li,La,Zr,0,,

Li,InCl,
o : 94% occupancy of Li at 96h site 0 : 87.5% occupancy of In at 2a site

a) ™ :35% occupancy of Li at 24d site b) @ : 7% occupancy of In at 4g site

Fig. 1 Examples of solid state electrolyte materials with partial occupan-
cies.

obtain CIF files for all entries in our dataset. The full crystal de-
scription including atomic positions is the information required to
perform, for example, molecular dynamics simulations or density
functional theory calculations.

In contrast to theory-based data found in the Materials Project,
for example, experimental compositions often feature fractional
numbers (real numbers rather than integers) resulting from par-
tially vacant sites or disorder associated with partial cation sub-
stitution. Consider, for example, composition Kg 1Lig9SbO3. At a
specific location in the crystal (a site) there is a 90% probability
of finding a lithium (Li) atom and a 10% probability of finding a
potassium (K) atom. Site occupancy does not need to add up to
one since sites are often partially empty.

Such partial occupancy is ubiquitously observed in Li-ion
SSEs27 and it plays a crucial role in creating diffusion pathways.
For example, the orr of tetragonal LiyLi3Zr,O;, with a space
group of I141/acd (no. 142) is two orders of magnitude smaller
than that of the same garnet framework of cubic Li;Li3Zr,01;
with Ia-3d (no. 230) (see Figure ). In this case, the disorder-
ing and partial occupation of Li (at the 96h site) promotes the
Li-ion conduction. In the halide structure of Li3;InClg (Figure ),
the substitution of one Li+ with the In3+ cation introduces two
intrinsic vacancies, to which is attributed the high ogt of that ma-
terial. In sum, in order to screen SSEs with high ogr, it is highly
desirable to include partial occupancy as a key feature of the ma-
terials.

3.2 Data collection

We built our dataset starting from the Liverpool Ionics Dataset
and the Laskowski dataset by selecting materials for which the
experimental room temperature ionic conductivity, space group
and lattice parameters could be obtained. We manually retrieved
missing information (e.g. lattice parameters or ogy) from the
original paper’s table or figures. Through this procedure, we
obtained a total of 599 distinct entries including an additional
15 entries from other sources. Figure [2b shows the number of
common entries between these two datasets and ours. Note that

Journal Name, [year], [vol.], 1@ |3
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OBELIX shares 256 entries with the dataset introduced recently
by McHaffie et al.1Y. Of these entries, 238 are also part of the
Laskowski dataset which originates from the same group of au-
thors.

Ionic conductivity is usually reported as a property of the mate-
rials in the powder form, which includes the effect of defects and
grain boundaries. It is referred to as “total” ionic conductivity.
The ionic conductivity of individual grain is sometimes reported
as the “bulk” ionic conductivity. When both were available we
recorded both. This is relevant because the total ionic conduc-
tivity of materials not only depends on their crystal structure but
also on factors such as the size of particles.

For each material, we recorded the total composition including
the number of formula unit Z. For example, the unit cell composi-
tions of Li3POy4 could be LigP,Og and Lij,P401¢ with Z=2 for the
space group pnm21 (no. 31) and Z=4 for pnma (no. 62), respec-
tively. This added information makes the computation of density
and volumetric density possible for every material in the dataset.

To the best of our capacity, we have ensured that the reported
structural information in OBELiX corresponds exactly to the same
material for which the ionic conductivity was measured. We also
filtered the dataset for exact duplicates and ensured that near du-
plicates were truly different materials. It is common for papers
to report ionic conductivity measured elsewhere when synthesiz-
ing a material and vice versa for structural information. If not
caught, this can lead to two entries with the exact same ionic
conductivity, only one of which is the actual material for which it
was measured.

The ICSD is a large database of experimental data in the form

4] Journal Name, [year], [vol.], 1@

of crystal information files (CIF) that contain full crystal descrip-
tions including atomic positions. Given that a significant portion
of publications in this field have crystal information in the ICSD,
we searched the database for all entries matching the lattice, pa-
rameters composition and associated publication. We found 234
exact matches with our entries, for which we obtained the CIFs.
We also manually retrieved crystal information for 27 entries. Fi-
nally, we searched the ICSD and the Materials Project for struc-
tures that matched the space group and closely matched the com-
position (4 0.05) and lattice parameters (4 3%) of our entries
and found 60 additional CIF files (labeled as close matches). This
forms a total of 321 entries with CIF information.

Because the ICSD is a proprietary database, we are not able to
publish 292 of the CIF files and can only link our entries to their
corresponding ICSD ID. However, to reach a broader audience, in
agreement with the ICSD, we openly publish a set of 292 CIF files
for which a normally distributed random noise with standard de-
viation 0.01 (¢ ~ N(0,0.01)) in fractional coordinates was added
to the original atomic positions. This noise was added while mak-
ing sure that the full symmetry of the crystal was preserved. We
measured the effect of noise on model performance (see section
and found that it made little to no difference (see the SI for
more details).

3.3 Data splits

Experimental papers in this field often measure ionic conductivity
for several variations of the same materials while changing the
composition slightly. This can lead to multiple entries that are
very similar and often have similar ionic conductivities. There are
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Fig. 3 lonic conductivity of entries in the dataset that have the same composition and space group. The color shows the largest relative difference
between lattice parameters within a set of entries with same space group and composition. The inset shows the distribution of differences with the
mean ionic conductivity of the sets in log scale. It is scaled proportionally to the rest of the plot.

also several entries in our dataset that have the same composition,
which may also lead to similar ionic conductivities. To avoid data
leakage when testing machine learning models on OBELiX and to
fairly compare new models in the future, we provide a split of the
data where entries from the same paper or that have the same
composition must be in the same set (training or testing).

To obtain this split, we used a Monte Carlo method that moved
groups of entries from one set to the other to minimize (1) the
difference between the distribution of log ionic conductivity be-
tween the two sets and (2) the difference between their respective
subsets containing CIF files. The algorithm also ensured that the
final test set represented between 20% and 30% of the data. This
algorithm is available on our public repository.

The obtained distribution of log ionic conductivity in each set
and subset is presented in Figure |2 along with the proportion
of each crystal family and space group. The test set represents
20.2% of the full dataset and 20.9% of the subset that has CIF
files.

The distributions in log space of ionic conductivity for the two
sets are very similar. Note that the entries plotted at 10~!5 were
reported as having a conductivity of “less than 10~'9” without a
quantitative value. The proportion of crystal families and space
groups is also fairly similar between the two sets, except for space
group 167, which is much more prevalent in the training set. This
is due to the fact that a large group of entries (106) with space
group 167 were either from the same paper or had the same com-
position. This meant that the entire group could not be split be-
tween the two sets without leaking either a paper or a composi-
tion.

The dataset contains 55 space groups, 4 of which are only in

the test set. Figure[2k shows the prevalence of the 55 different el-
ements that are present in the dataset. All entries contain lithium
(by design) and most of them contain oxygen. Phosphorus, lan-
thanum, sulfur and titanium follow as the most prevalent ele-
ments. Silver is the only element that is not found in the training
set (it is only in the test set).

About 75% (245/321) of the entries with atomic information
have some level of partial occupancy (disorder). The proportion
of partially occupied structures in each split was not controlled for
explicitly, but it is similar in the test (53/67) and train (192/254)
splits. For the rest of the entries, when atomic positions and occu-
pations are unknown, it is not always possible to tell if a structure
is disordered.

4 Benchmarks

In this section, we benchmarked how well existing models per-
form on the new dataset. This evaluation is essential for deter-
mining whether these models can be effectively applied or if there
is a need to develop new models better suited for the task.

We note that experimental data intrinsically embeds errors and
uncertainty associated not only with various sources of measure-
ment techniques but also with data extraction from figures and
inconsistent labeling (e.g., bulk, grain boundary, or total ionic
conductivity are often indistinguishably reported). Before assess-
ing the performance of predictive models it makes sense to quan-
tify the uncertainty (“performance”) of experimental data acqui-
sition. Thankfully, our dataset contains 48 sets of compositions
and space groups that have multiple entries, spanning a total of
122 entries. These entries and their corresponding ionic conduc-
tivities are plotted in Figure The color represents the max-

Journal Name, [year], [vol.], 1@ |5
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imum difference in lattice parameters between any two entries
of a same set. The maximum difference is of only 1.2% for all
sets, which gives us confidence that grouped materials are in fact
the same. This means that these materials were synthesized and
their ionic conductivity measured two or more times, most likely
by different researchers. This represents a unique opportunity to
quantify experimental uncertainty and reproducibility. The inset
of Figure [3|shows the distribution of log ionic conductivities with
respect to the mean of each set of repeated materials. The root
mean squared deviation from the set averages of the log(ogr) is
of 0.63 and the mean absolute deviation from the set medians is
of 0.41. The latter can be compared to the model’s mean abso-
lute error when predicting log ionic conductivity and represents
its lower bound. Therefore, any model that would be reported
as having lower MAE than that value would most likely be over-
trained.

4.1 Baselines

To evaluate the performance of ML models on OBELiX, we tested
five widely adopted graph neural networks developed specif-
ically for materials science applications, PaiNN22 SchNet=?,
M3GNet2L, SO3Net®2) and CGCNN®=3 on the subset of the dataset
that contains CIF files. These graph-based models, where each
node represents an atom, effectively capture atomic interactions
while preserving molecular invariance, enabling accurate mate-
rial property predictions when trained on large datasets®%, On
the full dataset, where atomic positions are not always available,
we also tested two standard machine learning models, a random
forest (RF) and a multilayer perceptron (MLP).

The RF and the MLP use the composition, space group and
lattice parameters as inputs where the composition is a vector
containing the occurrence (€ R) of each element of the periodic
table. The 3D geometric models use the crystal structure as their
input and build different representations from that structure. The
crystal structure contains the composition and space group infor-
mation implicitly, but the models are not given that information
explicitly. The way atomic and structural information is processed
and aggregated into a single learned representation for each ma-
terial is a defining aspect of each of the models. Therefore, for
most experiments, we did not alter the models’ representations
beyond what could be modified with hyperparameters. However,
since none of the models could take into account partial occu-
pancy of the sites and a large portion of entries contain such dis-
order, we created disordered versions of CGCNN and SO3Net with
a slightly modified atomic embedding. For all other experiments,
occupations were rounded to the nearest integer before being fed
to the models.

4.2 Setup

To optimize the training process and assess the stability of the
models, we implemented a 5-fold cross-validation strategy. For
hyperparameter optimization, we employed a grid search strat-
egy across a predefined space of 100 randomly sampled hyperpa-
rameter sets for each model. This number was selected to strike a
balance between comprehensive exploration of the hyperparam-
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eter space and computational feasibility. In the case of RF and
MLP where training is extremely fast; all hyperparmeter sets were
tested. The hyperparameter space was carefully designed for each
model based on its unique architecture and requirements (see Ta-
ble S2 in the SI for a complete list). For example, PaiNN’s search
space included parameters such as the cutoff distance, number of
interactions, and batch size.

We computed the mean absolute error (MAE) between the pre-
dicted and the measured ionic conductivities to evaluate the per-
formance of each configuration. Specifically, the average valida-
tion MAE across all folds in the cross-validation process was used
to assess each setup’s effectiveness. The hyperparameter set that
achieved the lowest average validation MAE was selected as the
best-performing configuration. After choosing the best hyperpa-
rameters, each model was retrained on the entire training set and
evaluated on the test set. A detailed table of the selected hyper-
parameters for each model is included in the SI (Table S2).

Pretraining can enhance model performance by initializing
weights with knowledge from larger datasets and related tasks,
which is then fine-tuned on a smaller, task-specific dataset. We
pretrained PaiNN and SchNet on the Materials Project with a
band gap prediction task. In this case we fixed the trained rep-
resentation (PaiNN or SchNet) and trained the output model (an
MLP followed by a pooling layer) on OBELiX. For M3GNet and
CGCNN we use pretrained models that were available on their
public repositories. The M3GNet model was trained on formation
energy per atom whereas CGCNN was trained on Fermi energy
both from the Materials Project. As recommended in their re-
spective documentation, we fine-tuned the models by training all
model parameters starting from the trained models.

4.3 Discussion

Figure 4 and Table S1 present our benchmarking results and Fig-
ure S1 presents the corresponding parity plots. The MLP and the
RF were trained on the full training set, but tested on both the
full test set (in orange) and the subset of the test set that has CIF
files (in red). The goal is to be able to compare their performance
directly with geometric models, given that the variance of the CIF
subset is larger.

The two simple models, RF and MLP, outperform all 3D ge-
ometric models both in the cross-validation and the test perfor-
mance even when comparing with the subset of the test set that
has CIF files. There are two factors that could explain this re-
sult. First, the RF and the MLP used the full training set of 478
structures while the other models were limited to the subset of
254 entries that have CIF files. Second, the geometric models use
crystal information to infer properties of the crystal, but they do
not properly handle partial occupancies which, as discussed be-
fore, are very common in SSE materials and are present in about
3/4 of our CIF files. In order to use these models without mod-
ification on our dataset we rounded occupancies to the nearest
integers which can lead to important changes in the composition.

To partly verify the above claim that dataset size and the pres-
ence of partial occupancy can explain the increased performance
of the simple models, we retrained them on the subset of en-
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Fig. 4 Benchmarking of various ML models. The same data is tabulated in Table S1. Simpler models outperform geometric GNNs.

tries that have CIF files only. Doing so, the MAE of the MLP
increased to 3.15 while that of the RF was maintained at 1.87.
Therefore, dataset size does seem to have a significant impact on
the MLP and may explain the difference in performance between
that model and the larger models. Random forest still performs
well even given less data. Rounding compositions to the nearest
integer on the other hand, had little effect on both the RF and
the MLP. Rounding compositions is similar to rounding site occu-
pancy, but it does not have exactly the same effect. Nevertheless,
it indicates that the absence of partial occupancy likely does not
explain the difference in performance between the simple models
and the more complex ones.

To further explore the effects of partial occupancy, which, as
explained in Section is an important concept in this field,
we introduce new implementations of both CGCNN and SO3Net
(dis-CGCNN and dis-SO3Net) that take into account partial oc-
cupation (disorder). In both cases, the atomic embedding is re-
placed with a site embedding that is an average over the element
embeddings weighted by occupancy. We trained these models us-
ing the same optimal hyperparameters as their original version.
The results presented in Figure |4 and at the bottom of Table S1
show a small improvement in cross-validation performance but it
does not translate into significantly better test performance.

The 3D geometric models not only performed poorly compared
to simple ML models using less structural information, but their
performance on the test set was barely better or sometimes worse
than predicting the median of the training set (doted line in Fig-
ure [). This shows that these large models can easily overfit
small experimental datasets which was also observed in other
studies®>. Moreover, given that the cross-validation splits were
chosen randomly within the training set and that the test set was
build using the method described in Section the relatively
large difference in performance between the validation and test-
ing sets illustrate the importance of carefully building leakage-

free test sets and that choosing the test set randomly would have
most likely led to a false impression of performance.

It is important to note that there may exist more recent GNN
architectures that perform better on this task, however given the
fact that some of the more recent models tested here still per-
form equally or close to state-of-the-art models on scalar predic-
tive tasks# we do not believe these newer models would perform
significantly better on OBELiX and would likely suffer from the
same limitations.

Pretraining of 3D geometric models offers some marginal im-
provements for PaiNN, SchNet and CGCNN. As mentioned in Sec-
tion the pretraining of PaiNN and SchNet restricts the train-
able model size which may reduce accuracy while increasing gen-
eralizability. This would explain their slightly higher validation
MAE and lower training MAE. To measure the effect of the fine-
tuning strategy alone we also fine-tuned PaiNN and SchNet by al-
lowing all parameters to change. Under this strategy, PaiNN and
SchNet had validations MAEs of 1.66+0.21 eV and 1.81+0.31 eV
while their test MAEs were of 2.60 €V and 2.81 eV respectively.
From this limited study, the fine-tuning strategy seems to explain
the increased validation MAEs of PaiNN and SchNet in Figure
Therefore, in concert with a more restricted fine-tuning strategy,
a better pretrained representation might compensate for the re-
duced expressivity and increase both accuracy and generalizabil-
ity, but a much more in-depth analysis of the possible pretraining
labels and datasets would be required. In the case of CGCNN and
M3GNet which were fine-tuned by allowing all model parame-
ters to change, it is possible that the pretraining property used
for CGCNN was “closer” (or more relevant) to ionic conductiv-
ity which allowed it to stay in the same weight “basin” and take
advantage of the pretrained model’s generalizability.

It is important to bear in mind that the variability of the predic-
tion accuracy is high in this small data regime as illustrated by the
validation MAEs’ standard deviations and that much of the differ-
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ence between models falls within that variability. Performance
is dependent on the (random) choice of cross-validation splits
which ultimately dictate the choice of hyperparameters. Complex
GNNs with more hyperparameters are more prone to overfitting
hyperparameters to a specific set of splits which makes them par-
ticularly difficult to tune and compare. Indeed, the variability
across folds is smaller for the RF and MLP than for the GNNs.

5 Limitations

We have built OBELiX as carefully as possible making sure that all
features match the measured ionic conductivity correctly. How-
ever, since data is reported and measured in very different ways
across journals and decades, there most probably remains in-
consistencies between some of the entries especially in terms of
atomic positions which are particularly difficult to measure and
report. We will continue to improve the dataset as these issues
come to light.

Varying factors outside the composition and crystal structure
including the measurement conditions (frequency, pressure, mea-
suring device, metalization, etc.) and the microstructure (grain
size, porosity, phase purity, etc.) that depend on the fabrication
process (sintering, cold/hot press, pulverization, heat treatment,
etc.) may have important effects on the measured ionic conduc-
tivity. The absence of these factors in OBELiX sets a bound to the
performance of the models presented here that is partially, but not
fully captured by the experimental uncertainty discussed in sec-
tion[4 The repeated materials presented in Figure 3] could serve
as a useful starting point to identify which of these numerous
factors have the most impact on the measured conductivity and
dictate what additional features could be added to the dataset.

OBELIX is small for ML standards. The difficulty of building
an experimental dataset is that there is only a limited number
of experiments that were actually performed. Section [4| shows
how challenging it is to train existing models on such a small
data regime. Ultimately, it highlights the need for models, train-
ing architectures and benchmarks tailored for small data regimes,
that could benefit numerous applied fields with similarly limited
experimental data (e.g.36). Moreover, OBELiX can be used as
a tool to validate and improve molecular dynamics (MD) based
methods which are widely applicable across materials science and
could later serve as a way to generate a significantly larger com-
putational database of ionic conductivity. For example, in subse-
quent work, we are currently using a susbet of OBELiX to compare
the performance of MLFFs and ab-inito methods when predicting
ionic conductivity with various MD simulation conditions. Our
dataset provides an opportunity to quantitatively test the perfor-
mance of MLFFs on long timescale MD simulations or ML meth-
ods such as LiFlow1? aimed at accelerating them.

We benchmarked ionic conductivity prediction on our dataset
with popular existing models as is and using standard training
and hyperparameter tuning. We are aware that performance
could be improved by modifying the model architectures, training
procedure or with data augmentation, but we consider that these
methods would not be “baselines” and are outside the scope of
this paper.
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6 Conclusion and outlook

In this paper, we presented OBELiX, a dataset of 599 materials
with experimental room temperature ionic conductivities curated
by domain experts, including 321 structures with full crystallo-
graphic information. We gathered these materials from exist-
ing databases and manually extracted data from the literature
to build a consistent, easy-to-access database of solid-state elec-
trolyte materials. We benchmarked several ML models and found
that the simple random forest model had the best predictive per-
formance. Modern geometric GNNs on the other hand, likely
over-fit and were unable to perform well on our carefully de-
signed test set. These findings highlight the immense opportunity
for improvement in ML methods specific to this task and tailored
for low data regimes.

We hope that OBELiX will serve as a reference point to train and
test ionic conductivity models for the ML and computational ma-
terials science community in general, ultimately advancing solid-
state battery technology.

Data availability

All data is freely available on our public repository
(github.com/NRC-Mila/OBELiX) as a single csv or xlsx file
accompanied by a set of 321 CIF files, including 291 with
added random noise. The same data is also available on
Kaggle (www.kaggle.com/datasets/flixtherrien/obelix). = Code
for benchmarking, configuration files for each experiment as
well as data analysis and processing scripts are available on our
public repository. All experiments were performed with OBELiX
version 1.0.0 (doi.org/10.34740/kaggle/dsv/11789455). We
will continue to update OBELiX with new data. Contributions to
the dataset are encouraged through a form on our repository.

Author contributions

Conceptualization: H.S., A.H.-G., H.G., F.T.; Data curation: R.H.,
J.A.-H., ET., H.S.; Formal analysis: F.T., J.A.H., D.S.; Funding ac-
quisition: Y.B., H.G., H.S.; Investigation: All authors; Methodol-
ogy: F.T., J.A.H., D.S.; Project administration: F.T., A.H.-G., H.G.,
H.S.; Resources: Y.B., H.G., H.S.; Software: F.T., JAH., D.S.,
L.W.M., A.H.-G.; Supervision: F.T., A.H.-G., H.G., H.S., S.H.; Vali-
dation: F.T., J.A.-H., D.S., AH.-G., H.S.; Visualization: F.T, J.A.H.,
H.S.; Writing — original draft: F.T, J.A.H., H.S.; Writing — review
& editing: All authors

Conflicts of interest

There are no conflicts of interest to declare.

Acknowledgements

The authors acknowledge support from the National Research
Council Canada (NRC) through a collaborative R&D grant (AI4D-
core-132). This project was undertaken thanks to funding from
IVADO and the Canada First Research Excellence Fund.

Notes and references

1 J. Janek and W. G. Zeier, Nature energy, 2016, 1, 1-4.
2 J. Janek and W. G. Zeier, Nature Energy, 2023, 8, 230-240.

Page 8 of 10


https://github.com/NRC-Mila/OBELiX
https://www.kaggle.com/datasets/flixtherrien/obelix
https://doi.org/10.34740/kaggle/dsv/11789455
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5dd00441a

Page 9 of 10

Open Access Article. Published on 16 January 2026. Downloaded on 1/17/2026 1:46:50 AM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

3

4

10

11

12

13

14

15

16

17

18

19

20

21

J. Betz, G. Bieker, P. Meister, T. Placke, M. Winter and
R. Schmuch, Advanced energy materials, 2019, 9, 1803170.
S. Zhao, W. Jiang, X. Zhu, M. Ling and C. Liang, Sustainable
Materials and Technologies, 2022, 33, e00491.

A. D. Sendek, Q. Yang, E. D. Cubuk, K.-A. N. Duerloo, Y. Cui
and E. J. Reed, Energy & Environmental Science, 2017, 10,
306-320.

R. Jalem, K. Kanamori, I. Takeuchi, M. Nakayama, H. Ya-
masaki and T. Saito, Scientific reports, 2018, 8, 5845.

B. He, S. Chi, A. Ye, P. Mi, L. Zhang, B. Pu, Z. Zou, Y. Ran,
Q. Zhao, D. Wang et al., Scientific Data, 2020, 7, 151.

C. J. Hargreaves, M. W. Gaultois, L. M. Daniels, E. J. Watts,
V. A. Kurlin, M. Moran, Y. Dang, R. Morris, A. Morscher,
K. Thompson et al., npj Computational Materials, 2023, 9, 9.
F. A. Laskowski, D. B. McHaffie and K. A. See, Energy & Envi-
ronmental Science, 2023, 16, 1264-1276.

D. B. McHaffie, Z. W. Iton, J. M. Bienz, F. A. Laskowski and
K. A. See, Digital Discovery, 2025, 4, 1518-1533.

Y.-J. Shon and K. Min, ACS omega, 2023, 8, 18122-18127.

F. Yang, E. C. dos Santos, X. Jia, R. Sato, K. Kisu,
Y. Hashimoto, S.-i. Orimo and H. Li, Nano Materials Science,
2024, 6, 256-262.

G. Ceder, S. P. Ong and Y. Wang, Mrs Bulletin, 2018, 43, 746~
751.

J. Qi, S. Banerjee, Y. Zuo, C. Chen, Z. Zhu, M. H. Chandrappa,
X. Liand S. P. Ong, Materials Today Physics, 2021, 21, 100463.
A. Bielefeld, D. A. Weber and J. Janek, ACS applied materials
& interfaces, 2020, 12, 12821-12833.

J. Schmidt, M. R. Marques, S. Botti and M. A. Marques, npj
Computational Materials, 2019, 5, 1-36.

K. T. Butler, D. W. Davies, H. Cartwright, O. Isayev and
A. Walsh, Nature, 2018, 559, 547-555.

D. Wines and K. Choudhary, arXiv preprint arXiv:2412.10516,
2024.

J. Nam, S. Liu, G. Winter, K. Jun, S. Yang and R. Gomez-
Bombarelli, arXiv preprint arXiv:2410.01464, 2024.

A. Hernandez-Garcia, A. Duval, A. Volokhova, Y. Bengio,
D. Sharma, P. L. Carrier, Y. Benabed, M. Koziarski and
V. Schmidt, arXiv preprint arXiv:2310.04925, 2023.

R. Zhu, W. Nong, S. Yamazaki and K. Hippalgaonkar, Matter,

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

Digital Discovery

View Article Online
DOI: 10.1039/D5DD00441A

2024, 7, 3469-3488.

C. Zeni, R. Pinsler, D. Ziigner, A. Fowler, M. Horton, X. Fu,
S. Shysheya, J. Crabbé, L. Sun, J. Smith et al., arXiv preprint
arXiv:2312.03687, 2023.

A. Merchant, S. Batzner, S. S. Schoenholz, M. Aykol, G. Cheon
and E. D. Cubuk, Nature, 2023, 624, 80-85.

A. Jain, S. P. Ong, G. Hautier, W. Chen, W. D. Richards,
S. Dacek, S. Cholia, D. Gunter, D. Skinner, G. Ceder et al.,
APL materials, 2013, 1, 011002.

A. Belsky, M. Hellenbrandt, V. L. Karen and P. Luksch, Acta
Crystallographica Section B: Structural Science, 2002, 58, 364—
369.

M. Hellenbrandt, Crystallography Reviews, 2004, 10, 17-22.
J. C. M. Madrid and K. K. Ghuman, Advances in Physics: X,
2021, 6, 1848458.

J. Riebesell, H. Yang, R. Goodall and S. G. Baird, Pymatviz:
visualization toolkit for materials informatics, 2022, https:
//github.com/janosh/pymatviz, 10.5281/zenodo.7486816
- https://github.com/janosh/pymatviz.

K. Schiitt, O. T. Unke and M. Gastegger, Proceedings of the
38th International Conference on Machine Learning, ICML
2021, 18-24 July 2021, Virtual Event, 2021, pp. 9377-9388.
K. Schiitt, P.-J. Kindermans, H. E. S. Felix, S. Chmiela,
A. Tkatchenko and K. Miiller, Neural Information Processing
Systems, 2017.

C. Chen and S. P. Ong, Nature Computational Science, 2022,
2, 718-728.

K. T. Schiitt, S. S. Hessmann, N. W. Gebauer, J. Lederer and
M. Gastegger, The Journal of Chemical Physics, 2023, 158,
144801.

T. Xie and J. C. Grossman, Physical review letters, 2018, 120,
145301.

S. Liu, W. Du, Y. Li, Z. Li, Z. Zheng, C. Duan, Z.-M. Ma, O. M.
Yaghi, A. Anandkumar, C. Borgs, J. T. Chayes, H. Guo and
J. Tang, Advances in neural information processing systems,
2024, 36, 66084-66101.

V. Fung, J. Zhang, E. Juarez and B. G. Sumpter, npj Computa-
tional Materials, 2021, 7, 84.

J. Abed, J. Kim, M. Shuaibi, B. Wander, B. Duijf, S. Mahesh,
H. Lee, V. Gharakhanyan, S. Hoogland, E. Irtem et al., arXiv
preprint arXiv:2411.11783, 2024.

Journal Name, [year], [vol.], 1@ |9


https://github.com/janosh/pymatviz
https://github.com/janosh/pymatviz
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5dd00441a

Open Access Article. Published on 16 January 2026. Downloaded on 1/17/2026 1:46:50 AM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Digital Discovery Page 10 of 10
View Article Online
DOI: 10.1039/D5DD00441A

Data availability

All data is freely available on our public repository (github.com/NRC-Mila/OBELiX) as a single csv or xlsx
file accompanied by a set of 321 CIF files, including 291 with added random noise. The same data is also
available on Kaggle (www.kaggle.com/datasets/flixtherrien/obelix). Code for benchmarking, configuration
files for each experiment as well as data analysis and processing scripts are available on our public repository.
All experiments were performed with OBELiX version 1.0.0 (doi.org/10.34740/kaggle/dsv/11789455). We
will continue to update OBELiX with new data. Contributions to the dataset are encouraged through a
form on our repository.


https://github.com/NRC-Mila/OBELiX
https://www.kaggle.com/datasets/flixtherrien/obelix
https://doi.org/10.34740/kaggle/dsv/11789455
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5dd00441a

