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Explainable Active Learning Framework for Ligand Bind-
ing Affinity Prediction

Satya Pratik Srivastava,a Rohan Gorantla,b,c,Sharath Krishna Chundrua, Claire J.R.
Winkelmanc, and Antonia S.J.S. Mey∗c,d , Rajeev Kumar Singh∗a

Active learning (AL) prioritises which compounds to measure next for protein–ligand affinity when
assay or simulation budgets are limited. We present an explainable AL framework built on Gaussian
process regression and assess how molecular representations, covariance kernels, and acquisition poli-
cies affect enrichment across four drug-relevant targets. Using recall of top active compound, we find
that dataset identity which is target’s chemical landscape sets the performance ceiling and method
choices modulate outcomes rather than overturn them. Fingerprints with simple Gaussian process
kernels provide robust, low-variance enrichment, whereas learned embeddings with non-linear ker-
nels can reach higher peaks but with greater variability. Uncertainty-guided acquisition consistently
outperforms random selection, yet no single policy is universally optimal; the best choice follows
structure-activity relationship (SAR) complexity. To enhance interpretability beyond black-box se-
lection, we integrate SHapley Additive exPlanations (SHAP) to link high-impact fingerprint bits to
chemically meaningful fragments across AL cycles, illustrating how the model’s attention progressively
concentrates on SAR-relevant motifs. We additionally provide an interactive active learning analysis
platform featuring SHAP traces to support reproducibility and target-specific decision-making.

1 Introduction

Drug discovery is the process of identifying new molecules that
can target a disease state with novel chemical compounds rang-
ing from small molecules 1–3 to anti-bodies3,4. One way of ap-
proaching small molecule drug discovery is by identifying a bi-
ological target, e.g., a protein or other relevant biomolecule to
alter their functional state by inhibition. One key property that
can help identify novel inhibitors for a protein target is optimi-
sation of the protein-ligand binding affinity. As such, accurate
in-silico and experimental estimation of protein–ligand binding
affinities are essential properties to measure and predict dur-
ing hit identification across vast chemical libraries and system-
atic optimization of congeneric series during hit–to–lead cam-
paigns5–7. High–throughput screening remains a cornerstone of
small-molecule discovery, but rising assay complexity and cost
increasingly preclude exhaustive use8. As discovery shifts to-
ward medium–throughput, biophysics-rich assays supported by
structure-guided optimisation with alchemical free-energy meth-
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b School of Informatics, University of Edinburgh, Edinburgh EH8 9AB, U.K.
c EaStCHEM School of Chemistry, University of Edinburgh, Edinburgh EH9 3FJ, U.K.,
Email id : Antonia.mey@ed.ac.uk, ORCID ID : https://orcid.org/0000-0001-7512-
5252

ods (AFE)2,6,9–11, the goal centers around exploring chemical
space effectively under a budget. This budget can determine
both the number of evaluations measurements or computational
predictions by only assessing a few hundred compounds per cy-
cle5,6,12. Biophysical assays such as surface plasmon resonance
(SPR) provide kinetics-resolved confirmation of binding and are
widely used when functional assays are noisy, non-specific, or fail
to identify tractable series13,14. Yet their medium-to-low through-
put constrains campaign scale. Similarly, AFE calculations can
prospectively prioritise substitutions but remain computationally
intensive. In both cases, identifying the most promising set of
compounds with the fewest computational or experimental eval-
uations and minimising the overall budget is desirable.

Active learning (AL), a subset of machine learning, has
emerged as a framework to address this challenge2,9,15. By
training a surrogate model, quantifying predictive uncertainty,
and iteratively prioritising the next most informative compounds,
AL turns limited assays or compute into maximal information
gain, improving enrichment while reducing reliance on brute-
force screening9,15–18. In practice, AL balances exploitation that
is refining known high-activity scaffolds, against exploration that
probes novel chemotypes that may unlock new structure-activity
relationship (SAR). This trade-off is controlled by the acquisi-
tion strategy19,20. As a result, AL has been deployed for lig-
and binding affinity prediction and multi-property lead optimi-
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sation under assay- or simulation-constrained budgets2,9,15,18,20.
Notwithstanding its potential, AL is not a "one-size-fits-all" solu-
tion15,21. Its performance is significantly dependent on a com-
plex interplay of methodological choices, including the underly-
ing machine learning model, the molecular representation, the
kernel function, and the acquisition protocol19,21. Outcomes vary
with the chemical landscape of the library, the molecular repre-
sentation, the surrogate model choice, and the acquisition pro-
tocol15,19,21. Moreover, surrogate models and representations
from deep learning models can behave as “black boxes,” limiting
chemical intuition and trust in recommendations22–24. AL has
been applied successfully on individual targets2,25,26 and specific
workflows10,27,28, and recent efforts have begun to systematically
explore different strategies and parameters15,21. Open questions
remain around clarifying when different AL designs are most ef-
fective, why performance varies across chemical spaces, and find-
ing ways to incorporate explainability into the selection process
of the AL cycles to help with guiding design choices that can be
experimentally verified.

In this work we combine explainability while exploring seven
acquisition protocols with five Gaussian-process kernels and three
molecular representations (ECFP4, MACCS, ChemBERTa) in a
fixed budget-setting for pharmaceutically relevant targets taken
from literature (TYK2, USP7, D2R, MPro). We show that dataset
identity i.e., the target’s chemical landscape dominates achiev-
able enrichment, and that representation–kernel choices trade off
robustness (fingerprints with simple kernels) versus peak perfor-
mance (learned embeddings with non-linear kernels) is an im-
portant decision factor. To move beyond black-box selection, we
integrate SHapley Additive exPlanations29 (SHAP) to map high-
impact fingerprint bits to chemically interpretable fragments over
AL cycles, revealing how model focus sharpens onto SAR-relevant
motifs. To allow easy visualisation and analysis of various AL
strategies in combination with the SHAP analysis, we provide
an Active Learning Analysis Platform. This platform provides a
way to visualise this comprehensive analysis across all diverse
settings and targets and integrates SHAP traces to support re-
producibility and target-specific decision-making. It can easily
be adapted to different protocols and targets to provide a com-
prehensive and interactive understanding of different AL strate-
gies and their impact on chemical space. Our code is available at
https://github.com/caithmac/activelearning

2 Methods

2.1 Active learning setup

Central to our active learning framework is a methodology that
employs principles of Bayesian Optimization (BO)30. BO is an
iterative strategy for optimizing black-box functions that are ex-
pensive to evaluate. It operates by building a probabilistic sur-
rogate model of the objective function, which is then used to in-
telligently select the most promising points to evaluate next. In
our framework, the surrogate model approximates the relation-
ship between molecular structure and binding affinity across the
chemical space of ligands. An acquisition function (AF) uses the
model’s estimates and uncertainties to select the next batch of

compounds for evaluation. The model is then updated with the
new data, and the process is repeated. The ultimate goal of this
iterative process is to find the compound with the highest affinity,
as summarised by the objective in Eq. 1.

X̂ = argmax
x∈X

f (x) (1)

Here, f (x) represents the true but unknown binding affinity of a
given compound (molecule) x. The search space X represents the
entire library of candidate compounds available for evaluation.
The goal of BO is to find the optimal compound X̂ that maximizes
the affinity, while minimizing the number of expensive evalua-
tions of f (x) (i.e., experiments or simulations).

2.2 Gaussian Process as surrogate model

The most common and effective class of surrogate models for
Bayesian Optimization are Gaussian Processes (GPs)31. A GP
is a non-parametric model, defined by its mean function m(x) and
covariance, i.e., kernel function k(x,x′) which measures the sim-
ilarity between two points. The GP is defined by the following
equation 2

f (x)∼ GP(m(x),k(x,x′)) (2)

Gaussian functions can model the unknown affinity function
f(x) on a distribution of functions , and they are incredibly adapt-
able at approximating nonlinear functions, which are needed to
traverse the vast chemical space.

2.3 Acquisition strategies in AL cycles

Compound selection within the active learning loop is guided
by an acquisition strategy; here we use the generalized Upper
Confidence Bound (UCB) acquisition function20,32. This function
balances exploring new molecules with exploiting known good
binders by linearly weighting the model’s estimated mean affinity
and its associated uncertainty. The acquisition score for a com-
pound x is determined as follows,

sacq(x) = α ·µ(x)+β ·σ(x). (3)

Here, µ(x) is the estimated mean affinity for x, σ(x) is the esti-
mated standard deviation (uncertainty), α is a parameter weight-
ing exploitation (mean prediction), and β is a parameter weight-
ing exploration (uncertainty)17. Seven distinct acquisition strate-
gies have been examined by varying α and β parameters over the
acquisition cycles.

The seven distinct active learning acquisition protocols in this
study were designed to systematically probe the trade-off be-
tween exploration and exploitation. Each protocol began with
an initial random batch of 60 compounds to seed the model,
followed by 10 acquisition cycles of 30 compounds each. The
exploration-exploitation balance was controlled by dynamically
varying the α and β parameters in the generalized Upper Confi-
dence Bound (UCB) acquisition function: sacq(x) = α · µ(x)+ β ·
σ(x).

This framework allows for three primary modes: pure explo-
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ration (α = 0,β = 1), which prioritizes molecules with the high-
est uncertainty (σ(x)); pure exploitation (α = 1,β = 0), which
selects the most promising estimated affinity (µ(x)); and a bal-
anced strategy (α = 0.5,β = 0.5). The specific schedules for each
protocol are summarised in Table 1.

Beyond simple baselines like the Random and UCB-Balanced
protocols, we designed several dynamic strategies to model dif-
ferent discovery campaign philosophies:

• UCB-Alternate: This protocol alternates every cycle be-
tween pure exploration and pure exploitation to explicitly
separate the search for novel chemotypes from the refine-
ment of known active scaffolds.

• UCB-Sandwich: This strategy “sandwiches” a long phase of
intensive exploitation (6 cycles) between two short phases of
initial and terminal exploration (2 cycles each), modeling a
campaign that quickly focuses on a promising region before
a final check for missed opportunities.

• UCB-Gradual: This protocol mimics a phased discovery
campaign, beginning with broad exploration (3 cycles),
transitioning to a balanced search (4 cycles), and concluding
with focused exploitation (3 cycles) as the SAR landscape
becomes better defined.

Table 1 Overview of Active Learning Acquisition Protocols. Each protocol
starts with an initial batch of 60 randomly selected compounds, followed
by 10 cycles of 30 compounds. Shorthand: R=Random, E=Explore
(α = 0,β = 1), X=Exploit (α = 1,β = 0), B=Balanced (α = 0.5,β = 0.5).
Numbers in parentheses indicate the number of compounds acquired in
that step.

Protocol Name Acquisition Schedule (10 Cycles of
30 Compounds)

Random Baseline [R(30)] × 10

UCB-Balanced [B(30)] × 10

UCB-Alternate [E(30), X(30)] × 5

UCB-Sandwich [E(30)] × 2 + [X(30)] × 6 + [E(30)]
× 2

UCB-Explore-heavy [E(30)] × 7 + [X(30)] × 3

UCB-Exploit-heavy [X(30)] × 7 + [E(30)] × 3

UCB-Gradual [E(30)] × 3 + [B(30)] × 4 + [X(30)]
× 3

2.4 Model Validation and Hyperparameter Handling

To ensure the robustness of our models and the validity of their
uncertainty estimates, we incorporated several validation and
regularization techniques.

2.4.0.1 Hyperparameter Optimization and Regularization.
Kernel hyperparameters and the model’s likelihood were opti-
mized in each AL cycle by maximizing the marginal log-likelihood
using the Adam optimizer for 100 epochs. To correct for poten-
tial model miscalibration, we implemented weakly informative

Gamma priors on the GP model’s likelihood noise (Γ(1.1,0.05))
and the kernel’s lengthscale parameter (Γ(3.0,6.0)), a step proven
to be critical for producing reliable uncertainty estimates (Supple-
mentary Figure S.1).

2.4.0.2 Uncertainty Calibration Diagnostics. A core premise
of UCB-based active learning is that the model’s predictive uncer-
tainty, σ(x), is well calibrated. To validate this, we performed a
suite of calibration diagnostics at the final cycle of each exper-
iment. We calculated and analyzed three key metrics: Proba-
bility Integral Transform (PIT) Histograms to assess distribu-
tional correctness, Reliability Diagrams to check the accuracy of
confidence intervals, and the Negative Log Predictive Density
(NLPD) to provide an overall score for the predictive distribution.

2.4.0.3 Preprocessing Ablation Study for ChemBERTa. To
investigate the sensitivity of non-Tanimoto kernels to the scale
of high-dimensional ChemBERTa embeddings, we conducted a
comprehensive ablation study. We compared four preprocessing
strategies: (i) no preprocessing, (ii) StandardScaler, (iii) Stan-
dardScaler followed by PCA to 50 components, and (iv) Stan-
dardScaler followed by PCA to 100 components.

2.5 Molecular representations and kernel choices

When using GPs, we need to convert chemical SMILES string with
numerical feature vectors. An efficient molecular representation
can reduce the complexity of the problem by capturing only rele-
vant information. Capturing all the relevant structure and chem-
ical information , maintaining low dimensionality and provid-
ing chemical intuition are the challenges that any representation
method has to deal with. By using three different molecular rep-
resentations, we explore different aspects each with their unique
tradeoffs. We use ECFP Fingerprints, i.e., Extended-Connectivity
Fingerprints with radius 4, consisting of 4,096 binary features33.
MACCS Keys, with 166-bit binary fingerprints representing pre-
defined molecular fragments 34, and, ChemBERTa Embeddings,
generated using the pre-trained ChemBERTa-77M-MTR model35.

The choice of kernel function is fundamental to the GP’s abil-
ity to model correlations between data points based on their
similarity. We explore five distinct covariance kernel functions
viz., Tanimoto, Linear, Radial Basis Function (RBF), Rational
Quadratic (RQ), and Matérn (ν = 1.5). Please refer to the Sup-
plementary Information (SI) for further details. For all kernels
that include hyperparameters (i.e., Linear, RBF, RQ, and Matérn),
these parameters (e.g., lengthscale ℓ, shape parameter α, out-
putscale s, and noise variance σ2

n ) were optimized by maximizing
the marginal log-likelihood during model training36,37. For fur-
ther information please refer to SI.

2.6 Model Explainability with SHAP

We incorporated SHapley Additive exPlanations (SHAP)29,38 to
quantify the contribution of individual molecular features to GP
model predictions across active learning cycles. For a molecule x,
the prediction f (x) is decomposed into a baseline φ0 and additive
contributions from M features,
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f (x) = φ0 +
M

∑
i=1

φi(x), (4)

where φi(x) denotes the SHAP value for feature i. Feature im-
portance was computed as the mean absolute SHAP value across
a held-out test set of Ntest molecules,

Importancei =
1

Ntest

Ntest

∑
j=1

|φi(x j)|. (5)

For each AL cycle, SHAP values were evaluated on 100 test
molecules randomly sampled from the unqueried pool, using a
background of 50 randomly sampled compounds from the train-
ing set to initialise the shap.KernelExplainer. The top ten fea-
tures ranked by mean absolute SHAP value were retained for de-
tailed analysis.The stability and robustness of these feature attri-
butions were validated through quantitative analysis across dif-
ferent acquisition protocols.

For models trained on ECFP fingerprints, selected features
were mapped back to molecular fragments using RDKit. To ad-
dress the ambiguity of mapping ECFP bits (due to bit colli-
sions or multiple environments), we implemented an affinity-
prioritized algorithm. Atom environments corresponding to top-
ranked fingerprint bits were first identified in all molecules con-
taining the bit. These molecules were then sorted by descending
affinity. The environment from the highest-affinity compound was
extracted using Chem.FindAtomEnvironmentOfRadiusN, canoni-
calised to a SMILES string, and used as the representative frag-
ment. These fragments were then ranked by a combined score of
frequency and SHAP magnitude. This procedure ensures the iden-
tified chemical substructures are those most strongly associated
with high-potency predictive signal and allows for a mechanistic
interpretation of how AL reshapes the model’s representation of
structure–activity relationships.

2.7 Experimental setup and evaluation

In order to evaluate the AL setup, we follow the fixed cost ap-
proach by Gorantla et al.15 in acquiring a total of 360 com-
pounds for each individual experiment. Each experiment starts
with 60 randomly selected compounds, followed by 10 cycles
of selecting 30 new compounds per cycle, using different explo-
ration/exploitation strategies.

The cycle is then repeated for each experiment, and parameter
combinations undergo repeated cycles. Suitable steps for updat-
ing and acquisition are undertaken to allow for unbiased compar-
ison across dataset.

In this work, a single "experiment" refers to one complete,
10-cycle active learning simulation for a specific combination of
dataset, molecular representation, kernel, acquisition protocol,
and random seed.

For each dataset-representation-kernel combination, all seven
acquisition strategies were evaluated, resulting in a total of
4× 3× 5× 7 = 420 distinct experiments. The vast scope of the
experiments poses a challenge to visualise and evaluate these re-
sults.

The entire computational study, including the training of all GP

models, required approximately 4 hours of wall-clock time on
a single NVIDIA RTX 4090 GPU. This demonstrates the practical
feasibility of applying our comprehensive benchmarking frame-
work.

Recall of Top Compounds (Rk) metric quantifies the fraction
of truly high-affinity compounds (top k%) that are successfully
identified by the active learning process, relative to the total num-
ber of such compounds present in the entire dataset. It is calcu-
lated using the following equation 6,

Rk =
Nk

discovered

Nk
total

, (6)

where Nk
discovered is the number of compounds found in the ac-

quired set that belong to the top k% class, and Nk
total is the total

number of compounds that actually belong in the top k% most
active ones based on the observed activity in the entire dataset.
Recall was computed for top 2% (R2) and 5% (R5) of compounds.

To provide a more comprehensive and robust assessment of
early enrichment performance, we also report two additional
standard metrics. The Enrichment Factor (EFk) measures how
many times more frequently active compounds are found within
the top k% of a ranked list compared to a random selection. It is
defined as:

EFk =
Hit rate in top k%

Overall hit rate
(7)

An EFk of 1.0 corresponds to random performance. In this study,
we report EF at 1%, 2%, and 5%.

To mitigate the sensitivity to a fixed cutoff k, we also report
the Boltzmann-Enhanced Discrimination of ROC (BEDROC)
score39. BEDROC is a metric that preferentially rewards the iden-
tification of active compounds at the top of a ranked list without
requiring an arbitrary cutoff. It applies an exponential weight to
each compound based on its rank, such that hits at the begin-
ning of the list contribute much more to the final score than those
found later. Following common practice for virtual screening, we
use an α parameter of 20.0, which heavily focuses the evaluation
on the top portion of the ranked list. The score ranges from 0 (no
enrichment over random) to 1 (perfect ranking).

2.8 Data for the study

The active learning framework has been evaluated using four
diverse protein target datasets viz, TYK2 (Tyrosine Kinase 2)9,
USP7 (Ubiquitin Specific Peptidase 7)40, D2R (Dopamine D2 Re-
ceptor)41, and MPRO (SARS-CoV-2 Main Protease)26. It is impor-
tant to note that while Thompson et al.9 describes TYK2 as a con-
generic series derived from a single synthetic scaffold, our anal-
ysis using RDKit’s Murcko decomposition identified 104 distinct
Murcko scaffolds, reflecting minor structural variations within the
series. In contrast, USP7, D2R, and MPRO demonstrate substan-
tially higher diversity (N/M ≈ 0.41-0.45), reflecting more struc-
turally varied compound collections. Details of datasets are pro-
vided in SI. Table 2 summarises some relevant details across the
four datasets used.

We note that the datasets employ different affinity measures
(pKi for TYK2 and D2R; pIC50 for USP7 and MPRO), as shown
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in Table 2. As these units are derived from different assay types
and are not directly comparable, our study does not make direct,
quantitative comparisons of the absolute affinity values across
targets. Instead, our primary performance metric, Recall of Top
Compounds (Rk), is based on a relative, percentile-based thresh-
old. For each dataset, the “top k%” active compounds are deter-
mined by internally ranking the molecules based on their specific
affinity measure. This approach allows for a valid comparison of
the enrichment efficiency of the AL strategies across the different
chemical landscapes, without relying on a comparison of the raw
activity scales.

Table 2 Dataset Properties.

Property TYK2 USP7 D2R MPRO

Binding Measure pKi pIC50 pKi pIC50
Ligands (Total) 9997 1799 2502 2062
Scaffolds (Unique) 104 770 1034 934
Std Dev (p-value) 1.36 1.31 1.44 0.91
N/M ratio 0.0104 0.428 0.413 0.452

3 Results and Discussion
While the conceptual idea of an active learning cycle is quite
straightforward, the myriad of choices that one can make around
surrogate models, acquisition functions, kernel choices, and
molecular representations poses a challenge. Finding an optimal
combination of choices may not be practical and evaluating the
increasingly large number of combinations is difficult to assess
and visualise. Lastly, active learning cycles are often black box
systems allowing for little explainability of what the models are
learning. Combining active learning with a SHapley Additive ex-
Planations (SHAP)29,38 analysis can provide some indications of
model learning. With our results, we highlight that optimal AL
strategies are highly context-dependent, underscoring the criti-
cal influence of inherent dataset characteristics and the complex
interactions among methodological choices. In the following sec-
tion, we present a comprehensive study of dataset characteristics
followed by an analysis of how different methodological choices
influence active learning performance. Furthermore, we explore
how a versatile web-based tool aids in understanding complex re-
sults. Lastly, we use SHAP to understand if the AL cycles pick
up patterns that lead to explainable properties that could be har-
nessed by medicinal chemist in designing effective AL strategies.

3.1 Chemical landscape sets difficulty - scaffold diversity
patterns anticipate AL headroom

We evaluated four therapeutically relevant targets with distinct
chemistry—TYK2, USP7, D2R, and MPRO—to probe how dataset
composition shapes active learning (AL) outcomes.

Scaffold diversity, as determined by the ratio of unique scaf-
folds to total molecules (N/M) is the main differentiator between
the datasets. TYK2 exhibits exceptionally low diversity (N/M ≈
0.01), indicating a highly constrained chemical space dominated
by few structural motifs. On the other hand, USP7, D2R, and
MPRO exhibit significantly greater diversity (N/M ≈ 0.41-0.45),
which is indicative of more structurally diverse compound collec-

tions.
Scaffold diversity directly impacts molecular similarity patterns

within each dataset as evident in figure 2. For instance, TYK2’s
constrained chemical space is particularly evident with ECFP fin-
gerprints, which show highly skewed similarity distributions with
the majority of compound pairs exhibiting low Tanimoto simi-
larities as evident from figure 2A. ChemBERTa embeddings and
MACCS, on the other hand, display broader distributions cen-
tered at higher similarity values as evident from figure 2B, and
C demonstrating how different representations highlight struc-
tural homogeneity differently. In contrast, USP7, D2R, and MPRO
show wider and more diverse internal similarity distributions
across all three molecular representations—ECFP, MACCS, and
ChemBERTa (Figure 2 A, B, C). ECFP fingerprints produce sharp
peaks at low similarity values, whereas MACCS keys and Chem-
BERTa embeddings give more spread-out distributions because
they capture molecular structure in different ways.

Dataset diversity patterns have direct implications for active
learning performance. While the more expansive chemical land-
scape of USP7, D2R, and MPRO offers more chance of strategic
compound selection, constrained chemical space like TYK2 re-
stricts the opportunity for diversified exploration. Further dataset
diagnostics are provided in the SI.

3.2 AL analysis platform

With 420 experiments run, the complexity of our results, which
include four datasets, three molecular representations, five ker-
nels, and seven protocols, necessitates a new way of presenting
the results beyond graphs. To address this and promote trans-
parency and reproducibility, we have developed the Active Learn-
ing Analysis Platform, an interactive web tool which is freely ac-
cessible. As shown in Fig. 1, this platform offers access to all the
comprehensive experiments and analysis we did on each target
dataset, enabling researchers to explore our findings interactively.

3.3 Dataset characteristics drive performance variation

The chemical space properties have a significant effect on active
learning performance. With Recall of Top Compounds Rk values
ranging from 0.5052 for the constrained TYK2 dataset to 0.9942
for the more diverse MPRO dataset indicating that performance
varies significantly across datasets. Visual summary of the distri-
bution of all experimental outcome with every dataset is available
at https://shapanalysis.streamlit.app/.

Statistical analysis demonstrates that the intrinsic properties of
the target dataset are the most dominant factor in determining
achievable performance. To quantify the relative contributions of
our methodological choices, we conducted a four-factor ANOVA
(Type II Sums of Squares) on the final recall (Rk) values from
all non-random protocols. The full model explained a substantial
proportion of the variance in performance (R2=0.84,Adjusted R2

= 0.82).
To properly assess effect sizes, we computed omega-squared

(ω2), an unbiased estimator of the population effect size,
along with 95% bootstrap confidence intervals (1,000 iterations).
Dataset identity exhibited the largest effect (ω2 = 0.31, 95%
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Fig. 1 Screenshots of the interactive Active Learning Analysis Platform. (A) The main landing page, which offers two primary ways to engage
with the tool: loading a complete, pre-analyzed demo dataset or uploading custom data files via the sidebar. (B) A view of the ’Feature Evolution
Analysis’ tab, which visualizes how the importance of top molecular features, as measured by their mean SHAP values, changes dynamically across the
different phases (Random, Explore, Exploit) of the active learning cycles. (C) The "How to Explore Our Results" section, providing clear, step-by-step
instructions for users to either explore the platform’s built-in findings or analyze their own data for comparison..

Fig. 2 Molecular Similarity Distributions Across Datasets and Representations. Kernel Density Estimate (KDE) plots illustrate the distribution
of pairwise Tanimoto similarity scores for compounds within the TYK2 , D2R , MPRO and USP7 datasets, as perceived by different molecular
representations. For each dataset, the similarity profiles generated by ECFP4 , MACCS , and ChemBERTa are compared. The ECFP fingerprints
consistently show distributions heavily skewed towards low similarity across all datasets, particularly for TYK2, D2R, and MPRO. In contrast, both
MACCS keys and ChemBERTa embeddings provide broader similarity distributions, often centered at higher values, indicating their capacity to capture
more diverse structural relationships than ECFP.
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CI [0.28, 0.35]; F(3, 994) = 640.37, p < 0.001), confirming
that the chemical landscape sets fundamental performance con-
straints. Notably, the interaction between dataset and kernel in-
teraction showed a similarly large effect (ω2 = 0.31; F(12, 994)
= 160.22, p < 0.001), demonstrating that kernel effectiveness is
highly context-dependent.

Other factors made smaller but significant contributions: ker-
nel choice (ω2 = 0.09, 95% CI [0.07, 0.11]; F(4, 994) = 135.27,
p < 0.001), molecular representation (ω2 = 0.03, 95% CI [0.02,
0.04]; F(2, 994) = 91.47, p < 0.001), and the kernel × finger-
print interaction (ω2 = 0.04; F(8, 994) = 29.08, p < 0.001). The
acquisition protocol, while statistically significant (F(5, 994) =
12.44, p < 0.001), had the smallest main effect (ω2 = 0.01, 95%
CI [0.004, 0.019]), suggesting its role is to modulate outcomes
within the constraints imposed by the dataset and model architec-
ture. This statistical evidence reinforces that optimal active learn-
ing strategies are highly context-dependent, with dataset charac-
teristics and their interactions with methodological choices play-
ing the dominant role.

The Post-hoc Tukey HSD analysis showed that all UCB-based
protocols performed significantly better than random selection
in terms of mean Recall of Top Compounds Rk with all adjusted
p-values less than 0.05, indicating strong statistical significance.
However, there is no significant difference between the UCB pro-
tocols themselves, as all adjusted p-values were greater than 0.05.
The practical impact of these improvements is measured using
Cohen’s d effect sizes, which were larger, ranging from 0.934
ucb-balanced vs random to 1.308 ucb-explore-heavy vs ran-
dom, revealing that UCB strategies had a strong advantage over
random selection.

No one set of Kernel function, acquisition technique or molec-
ular representation worked optimally in every circumstance. The
best configuration for each dataset highlights the range of possi-
ble Rk values from 0.5052 for TYK2 to 0.9942 for MPRO, indicat-
ing that different datasets require different optimal setups.

3.4 Impact of Molecular Representation and Kernel Func-
tions

Performance is significantly impacted by the kernel function and
selected molecular representation. Our findings demonstrate no
universally optimal combination, consistent with significant par-
tial η2

p values for Dataset:Kernel interaction (65.92%) and Ker-
nel:Fingerprint interaction (18.97%) in the ANOVA analysis.

3.4.0.1 Molecular Representations ECFP fingerprints exhib-
ited the most consistent and strong performance. Mean 2% Recall
of Top Compounds (Rk) of 0.37±0.31 across all datasets and pro-
tocols. ECFP demonstrated strong performance across a range of
dataset-kernel combinations, particularly excelling in USP7 and
MPRO with mean Rk values of 0.57±0.33 and 0.49±0.33, respec-
tively. While ChemBERTa occasionally outperformed ECFP on
specific combinations, ECFP provided superior predictability and
delivered consistently reasonable performance even when other
approaches yielded less than satisfactory results on challenging
datasets like D2R and TYK2.

ChemBERTa embeddings exhibited a high-variance perfor-

Fig. 3 Overall Active Learning Performance Across Datasets. This com-
posite figure summarizes key active learning performance metrics for each
dataset, aggregating results across all kernel, molecular representation,
and acquisition strategy combinations. (A) Performance Distribution
Across Datasets: Violin plots illustrating the distribution of final 2%
Recall of Top Compounds (Rk) values for each dataset (TYK2,USP7,
MPRO,D2R). The horizontal lines within each violin indicate the mean
(µ) and median (red) Rk values, while the shape reflects the density of
results. (B) Learning Curves by Dataset: Average 2% Recall of Top
Compounds (Rk) over the 10 active learning cycles, demonstrating per-
formance evolution for each dataset. All plots aggregate data across all
method combinations and replicates unless otherwise specified.

mance profile characterized by exceptional peaks and notable fail-
ures. When optimally paired with non-linear kernels i.e Matérn
and RBF on USP7 and MPRO, ChemBERTa achieved the high-
est individual Rk of 0.99 on MPRO. This representation proved
susceptible to significant performance loss under suboptimal con-
ditions. On challenging datasets viz. D2R and TYK2, identical
kernel combinations yielded dramatically lower mean Rk values,
with some as low as 0.02±0.01 and a mean BEDROC of 0.003 ±
0.01 for the Matérn kernel on TYK2, highlighting ChemBERTa’s
context-dependency and unpredictable efficacy.

MACCS fingerprints demonstrated the most consistent perfor-
mance profile despite achieving the lowest overall mean Rk of
0.27±0.18. This representation exhibited remarkably stable per-
formance across different datasets, with substantially lower inter-
dataset variance compared to ECFP or ChemBERTa. Even while
MACCS rarely reached peak performance, its consistency makes
it a reliable baseline when predictable results are prioritized over
maximum performance. Notably, MACCS achieved competitive
performance on D2R with Rk = 0.61 when paired with the Tan-
imoto kernel, demonstrating its potential for specific dataset-
kernel synergies.

3.4.0.2 Kernel Functions The Matérn and RBF kernels have
been observed with the highest performance potential albeit a
significant dataset-dependent variability. These kernels achieved
the study’s peak Rk values of 0.9942 for MPRO with Matérn,
and 0.97 for USP7 with Matérn when conditions were favor-
able, particularly with ChemBERTa or ECFP on receptive datasets
viz. MPRO and USP7. For instance, MPRO with RBFKernel
had a mean Rk of 0.75 ± 0.31, and USP7 with RBFKernel had
0.72± 0.33, a mean BEDROC of 0.6± 0.3, and a mean Enrich-
ment Factor at 2% (EF2) of 27.9±21.3. Conversely, these same
kernels performed appallingly on challenging datasets, with TYK2
yielding mean Rk values as low as 0.04± 0.04, a mean BEDROC

Journal Name, [year], [vol.],1–12 | 7
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near zero (0.003±0.01) and an EF2 of approximately 1.1±0.8 on
(Matérn) and 0.03± 0.02 (RBF), clearly showing their high-risk,
high-reward characteristics.

The Linear and Tanimoto kernels delivered consistent, mod-
erate performance across all tested conditions. Linear kernel
achieved mean Rk of 0.35±0.14 on D2R and 0.29±0.13 on TYK2,
and a mean Enrichment Factor at 2% (EF2) of 17.1± 8.2. This
EF2 value, indicating that the top 2% of compounds were iden-
tified at over 17 times the rate of random selection, stands in
stark contrast to the near-random performance of the non-linear
kernels on the same dataset (EF2 ≈ 1.1), while Tanimoto ker-
nel yielded 0.30± 0.12 and 0.26± 0.12 on the same datasets, re-
spectively. These kernels maintained stable performance regard-
less of dataset difficulty or molecular representation. The Ratio-
nal Quadratic (RQ) kernel consistently underperformed across all
conditions, achieving Rk as low as 0.12± 0.07, and EF2 of only
7.6± 4.0, on TYK2 and reaching only 0.26± 0.13 on MPRO. This
demonstrates a trade-off wherein the non-linear kernels can offer
high rewards but with high variability, while linear kernels offer
reliable, moderate performance suitable for risk-averse applica-
tions.

3.4.1 Impact of Active Learning Protocol

The active learning protocol had a considerable impact on both
the trajectory and final outcome of the compound acquisition
process, with distinct behavioural patterns observed across var-
ious dataset characteristics and kernel-representation combina-
tions. While random selection consistently yielded the lowest
performance (overall mean 2% Recall of Top Compounds (Rk)
of 0.11± 0.05 and mean EF2 of 6.4± 5.7), UCB-based strategies
demonstrated clear advantages. Acquisition trajectories typically
exhibited three distinct phases: an early exploration phase viz.
0–100 compounds, a middle transition phase with 100–250 com-
pounds, and a late convergence phase with 250+ compounds.

Exploit-heavy strategies such as UCB-exploit-heavy, often de-
signed for rapid prioritization, demonstrated effectiveness on
USP7 and MPRO datasets, leading to rapid initial gains. Tem-
poral SHAP analysis, which demonstrated top features for USP7
exploit-heavy strategies consistently peaking early in Cycles 2 or
3, indicates rapid initial SAR identification. In contrast,exploit-
heavy strategies exhibited a noticeable ’late spike’ in feature im-
portance on dataset such as TYK2, suggesting that important SAR
features are not immediately apparent rather are revealed after
focused, persistent sampling in specific, high-reward regions of
the chemical space. This ’late spike’ reflects the model’s attempt
to progressively prioritize subtle features within a highly con-
strained or challenging SAR landscape.

On the other hand, explore-heavy strategies such as
UCB-explore-heavy typical showed slower initial progress but
could achieve higher long-term Rk on complex datasets like D2R,
showing more consistent improvement patterns. This reflects a
broader sampling approach and a more distributed learning of
features across the chemical space, as evident by less pronounced
temporal shifts in SHAP feature importance. This approach is ad-
vantageous where targets have more diffused SAR or where novel
active regions need to be discovered beyond narrow, pre-defined

areas. Balanced and adaptive protocols (e.g.,UCB-balanced,
UCB-gradual) frequently achieved competitive performance and
demonstrated robustness across varied complexities, providing
reliable options when optimal configurations are not immediately
apparent.

The importance of protocol choice varied significantly depend-
ing on dataset selected. High-performing combinations such as
Matérn + ChemBERTa achieved high Rk across most protocols with
rapid convergence on datasets such as MPRO and USP7. On
the other hand, protocol selection was more crucial for difficult
dataset such as TYK2 and D2R which had significant Rk variation
and demonstrated slow improvement beyond 300 compounds.
This emphasizes how AL strategy effectiveness is highly depen-
dent on dataset characteristics and the chosen kernel-fingerprint
combinations, influencing initial trajectory and overall perfor-
mance outcome.

3.5 Mechanistic Insights from Feature Importance Analysis

To obtain deeper mechanistic insights into how Gaussian Process
models predict compound activity and how Active Learning influ-
ences the understanding of SAR we perform explainability studies
. The application of SHAP analysis on ECFP fingerprint models
is a well-established method38 for understanding explainability
. This analysis, focusing on TYK2 and USP7 targets uses exploit-
heavy and explore-heavy AL protocols, to uncover distinct aspects
of the model’s learning and the underlying chemical determinants
of activity.

SHAP analysis consistently identified specific, chemically in-
terpretable molecular fragments that were highly predictive of
binding affinity, validating the model’s ability to learn genuine
SARs42,43. Importantly, compounds containing these top-ranked
features consistently exhibited high binding affinities (Figure 5).

Our analysis demonstrates that the model learns stable and
genuine SAR drivers. For the USP7 target, the set of the
top 5, most important features was identical between the
ucb-exploit-heavy and ucb-explore-heavy protocols, yielding
a Jaccard Index of 1.00. This perfect stability indicates that the
model rapidly and consistently identified the core SAR. For the
more challenging, low-diversity TYK2 dataset, the analysis still
showed good stability with a Jaccard Index of 0.43. While differ-
ent protocols explored different nuances of the constrained chem-
ical space, a core set of features (e.g., bits corresponding to cF and
cNc fragments) were consistently ranked as most important. This
provides strong evidence that our model is learning genuine SARs
rather than stochastic noise.

3.5.0.1 Key Predictive Fragments and Chemical Relevance
For TYK2, key features consistently identified included across
both exploit heavy and explore heavy methods included halo-
genated motifs — such as Feature ID 699, cF; Feature ID 561,
cCl — and nitrogen-containing aromatic systems such as Fea-
ture ID 491, cNc; Feature ID 2425, ccc(nc)Nc. These features
were repeatedly highlighted as significant determinants for TYK2
activity. These fragments with mean affinity of TYK2 6.76-
7.78 pKi align with common interaction modes for kinase in-
hibitors, such as halogen bonding and π-stacking3,44. According
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Fig. 4 Mean 2% Recall of Top Compounds (Rk) Across Protocols, Kernels, and Representations. Heatmap illustrating the average final Rk for each
combination of active learning protocol (rows), Gaussian Process kernel (main columns), and molecular representation (sub-columns) at Cycle 10. Each
cell represents the mean Rk across 3 replicate runs. The colour scale indicates performance, from low (dark purple/blue) to high (yellow). (A) TYK2
Dataset: Performance landscape for the challenging TYK2 dataset. Highlights the relatively lower overall Rk and the best-performing combinations.
(B) USP7 Dataset: Performance landscape for the receptive USP7 dataset. Illustrates the generally higher Rk values and identifies highly effective
combinations.

Journal Name, [year], [vol.],1–12 | 9

Page 9 of 14 Digital Discovery

D
ig

ita
lD

is
co

ve
ry

A
cc

ep
te

d
M

an
us

cr
ip

t

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

3 
D

ec
em

be
r 

20
25

. D
ow

nl
oa

de
d 

on
 1

/1
4/

20
26

 7
:1

7:
01

 A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
DOI: 10.1039/D5DD00436E

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5dd00436e


to the chemical pattern analysis, TYK2’s primary characteristics
included 100% aromatic, 54.8% halogen-containing, and 30.1%
nitrogen-containing fragments.

For USP7, prominent features were consistently associated with
carbonyl groups such as Feature ID 2362, C=O and nitrogen-
rich heterocycles such as Feature ID 3500, cnc for both protocols.
These features with mean affinity for USP7 9.33-9.66 pIC50 are
chemically relevant for deubiquitinase active sites, often involved
in hydrogen bonding and electrostatic interactions45,46. Further
suggested by the identification of a complex fragment ID 875,
i.e, nc1cncn(CC2(O)CCNCC2)c1=O suggests the model’s capability
to prioritize intricate patterns. USP7’s top fragments were 100%
aromatic, 24% nitrogen-containing, and 0% halogen-containing,
aligning with DUB modulator characteristics.

3.5.0.2 Robustness of Insights Across Active Learning Pro-
tocols The identified key features and their associated mean
affinities remained remarkably consistent between exploit-heavy
and explore-heavy AL protocols for both TYK2 and USP7. For
instance, in TYK2, Feature ID 699 (cF) consistently ranked high-
est across both protocols, with identical affinity statistics. Simi-
larly, for USP7, Feature ID 3500 (cnc) and Feature ID 2362 (C=O)
maintained high ranks and consistent affinities across protocols.
This robustness suggests that the identification of core binding
motifs is stable, even if the sampling strategy influences the di-
versity of compounds explored around them44. This consistency
provides further confidence in the model’s generalizability and its
robust mechanistic understanding of binding, even when the un-
derlying sampling strategies might aim for different balances of
exploration and exploitation within the chemical space.

4 Conclusion and Outlook
In this work, we evaluated active learning (AL) strategies for
ligand binding affinity prediction, investigating the interplay be-
tween molecular representations, kernel functions, and acquisi-
tion protocols across various chemical datasets. Our main con-
clusion is that AL’s effectiveness varies significantly based on the
dataset’s chemical properties. Statistical analysis demonstrated
that the dataset, and its interaction with techniques like kernel
functions, is the primary factor influencing performance, estab-
lishing the limits for AL success.

Our analysis revealed important trade-offs between different
methodological choices. We discovered that simpler, explicit rep-
resentations like ECFP fingerprints, paired with robust linear ker-
nels, offer consistent and reliable performance across a wide
range of dataset complexities. On the other hand , advance,
pre-trained embeddings like ChemBERTa, when combined with
flexible non-linear kernels such as Matérna and RBF, can achieve
state-of-the-art peak performance; however, they are prone to
catastrophic failures on difficult or mismatched chemical land-
scapes. Similar to this it was demonstrated the the AL protocol
selection is context-dependent. Exploit-heavy methods are bet-
ter suited for rapid lead optimization within well-defined SARs,
whereas explore-heavy strategies are beneficial for novel chemo-
type discovery in more diverse chemical spaces. Mechanistic in-
sights from our SHAP analysis offers a framework for understand-

ing why these choices matter, linking them to the model’s dy-
namic learning of SARs throughout the AL cycles.

According to these results, there is no "one-size-fits-all" AL strat-
egy that works in all circumstances. We proposed a context-aware
framework for AL in drug discovery demonstrating promising re-
sults in terms of ease of their analysis. Practitioners should first
analyze their dataset’s chemical space, i.e., scaffold diversity and
similarity to set reasonable expectations and select AL compo-
nents accordingly. Challenging or unknown spaces may bene-
fit from stable combinations such as ECFP with a Linear kernel,
while well-behaved SARs might justify using risky, high-reward
methods like ChemBERTa with non-linear kernels.

While this study provides a robust framework, it has limita-
tions, including its retrospective nature and the focus of SHAP
analysis on ECFP models. Future work can focus on the prospec-
tive validation of these findings in real-world drug discovery cam-
paigns. The most promising future direction, however, lies in
the development of adaptive Active Learning frameworks. These
systems could learn the characteristics of the chemical space in
real-time and automatically select or adjust the molecular repre-
sentation, kernel, and acquisition strategy during the campaign,
moving beyond the static protocol choices. We can fully utilize
active learning to speed up the development of novel medicine by
balancing the performance improvement in ligand binding affin-
ity prediction with explainability built in the model from the start.
Further improvements could also be achieved by exploring more
advanced surrogate models, such as Warped Gaussian Processes,
which could allow the model to explicitly learn the non-Gaussian
distribution of affinity data.
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to exploitation phases (cycles 4–10). (B) Binding affinity distributions for compounds containing key features. Dashed lines show mean pKi values:
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abstract feature importance scores. (D) Protein-ligand binding showing interaction modes for selected compounds in the TYK2 active site, with key
residues Val100 and Asp107 labeled.
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