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MOFReasoner: Think Like a Scientist-A Reasoning Large Language 
Model via Knowledge Distillation
Xuefeng Baia, b, Zhiling Zhengc, Xin Zhanga, b, *, Hao-Tian Wanga, b, Rui Yanga, b and Jian-Rong Lia, b, *

Large Language Models (LLMs) have potential in transforming chemical research. Nevertheless, their general-purpose design 
constrains scientific understanding and reasoning within specialized fields like chemistry. In this study, we introduce 
MOFReasoner, a domain model designed to enhance scientific reasoning, using Metal-Organic Frameworks (MOFs) 
adsorption as a case study. By employing knowledge distillation from teacher models and Chain-of-Thought (CoT) reasoning 
extracted from a corpus of over 8242 research articles and 500 reviews, we developed a domain chemical reasoning dataset. 
Using domain chemical reasoning datasets, general chemistry datasets, and general reasoning datasets, the LLMs were fine-
tuned. The model's performance was evaluated across four tasks: experimental studies, chemical mechanisms, application 
scenarios, and industrialization challenges. MOFReasoner outperformed existing general-purpose models, such as GPT-4.5 
and DeepSeek-R1. Furthermore, the model achieves prediction accuracy comparable to DFT, enabling material 
recommendation. This work underscores the potential of integrating domain-specific knowledge, CoT reasoning, and 
knowledge distillation in creating LLMs that support scientific inquiry and decision-making within the discipline of chemistry.

Introduction
AI has revolutionized chemistry research by driving 
advancements in molecular design, reaction prediction, and 
material discovery. 1-3 In recent years, large language models 
(LLMs) have shown remarkable potential in knowledge 
extraction, complex reasoning, and automated data analysis, 
positioning them as powerful tools for accelerating scientific 
innovation. 4-9 Due to their strong natural language 
understanding capabilities, LLMs are used for processing vast 
amounts of literature, generating insightful hypotheses, and 
assisting in experiment planning, among other tasks. 10-13 To 
enhance their application in chemistry, various optimization 
strategies have been explored by researchers. Prompt 
engineering has proven effective in extracting scientific data, 14, 

15 while multi-agent collaboration frameworks distribute tasks 
and improve decision-making for complex chemical problems. 

16-18 In addition, LLMs can further enhance their mastery of 
chemical knowledge through techniques like fine-tuning and 
RAG, enabling them to perform more advanced tasks such as 
reaction prediction and Q&A. 19-22 
Despite the enhancement of LLMs' expertise through fine-
tuning and RAG, their ability to tackle complex problems, 
especially multi-step chemical reasoning, remains insufficient. 

This limitation constrains their applications in areas such as 
materials design and chemistry reasoning Q&A. 23, 24 Therefore, 
LLMs need to possess scientific reasoning abilities akin to those 
of scientists. Once they acquire such thinking skills, they can 
derive accurate conclusions through more rigorous logical 
deduction. These accurate conclusions will further enhance 
LLMs' performance in areas such as materials design, 
performance prediction, and multi-objective optimization, 
enabling them to achieve the experimental paradigm of 
autonomous AI research in the future. 
Chain-of-Thought (CoT) reasoning enhances LLMs by enabling 
structured, step-by-step logical inference, allowing them to 
tackle answer chemical question with improved accuracy and 
interpretability. 25, 26 This is particularly beneficial for tasks 
requiring multi-step reasoning, such as reaction prediction and 
experimental design, where breaking down intricate processes 
leads to more reliable and scientifically sound conclusions. 
However, the reasoning patterns of LLMs trained on general 
knowledge still differ significantly from those used in scientific 
research, as scientific reasoning often involves a process of 
making numerous hypotheses followed by verification. 
Therefore, it is crucial to further train LLMs in specialized 
domain knowledge and scientific reasoning. Building such a 
domain-specific reasoning model requires fine-tuning based on 
domain CoT data. Knowledge distillation provides an efficient 
way to transfer domain expertise from larger parameters model 
or structured knowledge sources into small parameters model. 

27-29 By integrating CoT reasoning with knowledge distillation, 
LLMs can acquire not only more domain-specific knowledge but 
also domain-specific thinking. This approach enables them to 
achieve structured, step-by-step reasoning, leading to more 
reliable inference and more efficient knowledge utilization. 
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Recently, ChemMatch and the ScholarChemQA dataset30 have 
highlighted the potential of lightweight, domain-specific models 
for chemical QA; in contrast, our work emphasizes equipping 
LLMs with multi-step scientific reasoning through literature-
derived CoT data and knowledge distillation. It should be noted 
that while CoT reasoning improves interpretability and task 
performance, recent studies suggest that such outputs may 
reflect structured pattern generation rather than genuine 
scientific understanding. As a highly designable class of three-
dimensional materials, MOFs, which are widely used in 
adsorption separation, 31 catalysis, 32 and other fields, 33, 34 
greatly benefit from AI assistance due to their vast potential for 
synthesizing a diverse range of materials. Herein, taking the 
field of MOFs adsorption as an example, we extracted domain-
specific reasoning pathways from scientific papers and refined 
them with the aid of large-parameter language models to 
construct a domain-specific CoT database and trained 
MOFReasoner (as shown in Figure 1). The model can be found 
at https://huggingface.co/baixuefeng/ChemReasoner-7B. 

Specifically, through a hard-label knowledge distillation 
approach inspired by recent large-model compression studies35, 
we conducted high-throughput analysis with large-parameter 
long-text teacher LLMs, guiding them to extract and structure 
chain-of-thought reasoning from literature, and organized the 
results into a domain reasoning dataset. Additionally, we used 
these teacher models to transform existing chemical datasets 
into chemical reasoning datasets. By integrating these datasets 
with general CoT datasets, we constructed a reasoning model 
for chemistry named MOFReasoner. MOFReasoner, with its 
enhanced structured reasoning capabilities and effective 
integration of chemical knowledge, significantly outperforms 
ChatGPT and DeepSeek on a dataset consisting of four types of 
tasks in Q&A testing. Moreover, MOFReasoner can be further 
coupled with existing knowledge bases and knowledge 
graphs36-38, and through its robust reasoning capability, it 
recommends materials that are consistent with DFT calculation 
results.

Figure 1. Workflow for constructing the domain reasoning dataset from domain-specific papers, which is then combined with chemical reasoning datasets and general 
CoT datasets to train the domain reasoning LLM.

Results and Discussion
In the initial phase of our study, we amassed a collection of over 
8,200 research papers and more than 500 review articles, which 
were organized into text format using Python code. To 
characterize the dataset, we further summarized the 
distribution of journals, publishers, and dominant scientific 
keywords, as shown in Figures S1-S7 and Tables S1-S3. These 
analyses confirm that the corpus covers diverse publication 

sources and broadly representative MOF-related topics, 
without exhibiting overconcentration in any single journal, 
publisher, or material family. This balanced distribution 
indicates that the data collection process did not introduce 
systematic bias and provides a reliable foundation for 
downstream model training and evaluation. We note that such 
literature-based extraction may introduce bias, since prompts 
can influence the reasoning obtained and scientific papers 
typically emphasize successful cases while underreporting 
failures. For research articles, we employed prompt engineering 
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to leverage the DeepSeek-V3(671B) model (as shown in Table 
S4 for model versions and access dates), allowing us to extract 
scientific challenges, proposed solutions, design idea thoughts, 
and validation thoughts from the texts. As illustrated in Figure 
2a, this LLM effectively translates the ideas and validation logic 
from the papers into a CoT, resembling the problem-solving 
approach of a scientist. To enhance transparency, Section S2 
(Figures S8-S11) now provides representative examples of the 
mined CoT data and their transformation process. Although 
these CoT sequences inevitably deviate from the full complexity 
of real scientific thinking, they nonetheless provide a 
reasonable and practical representation of how reasoning is 
articulated in the published literature. 
In the case of review articles, which consist of experts' 
summaries of existing research and contain profound scientific 

insights, we employed the long-text model Qwen-Turbo to 
distill and summarize the scientific perspectives. We then 
transformed these insights into question-answer pairs (as 
shown in Figures S12-S16). Subsequently, each question-and-
answer pair is matched with the original comment content as 
context, and then presented to the LLM. The LLMs provide a 
detailed CoT process from multiple dimensions (as shown in 
Figures 2b and S17-S21). The current pipeline processes only 
textual information, and visual data such as adsorption 
isotherms, PXRD patterns, and microscopy images were not 
directly included, which may lead to partial 
underrepresentation of information conveyed exclusively 
through figures.

Figure 2. Knowledge distillation from teacher models on the article: (a) Distillation of research article knowledge using DeepSeek-V3; (b) Distillation of review article 
knowledge using Qwen-Turbo.

In addition to constructing a domain-specific dataset, we also 
utilized a general chemistry dataset and a general reasoning 
dataset to enhance the model's chemical knowledge and 
reasoning capabilities. The camel-ai chemistry dataset 39, which 
includes 20,000 chemistry questions across 25 topics, serves as 
an excellent foundation dataset for general chemistry 
knowledge. However, since this dataset includes only questions 
and answers without detailed problem-solving procedures, we 
applied the DeepSeek-R1(671B), an inference LLM, to better 
equip the LLMs with comprehensive chemistry knowledge and 

CoT. As shown in Figure S22, the LLMs delivered exhaustive 
reasoning processes through logical inference. The CoT dataset 
utilized STILL 40, a slow-thinking reasoning dataset, which did 
not require additional processing as it is originally presented in 
the CoT format within the SFT structure (Figures S23-S25).
Subsequently, we conducted a systematic validation of the 
dataset to ensure the quality and reliability of the training data. 
For datasets with clearly defined standard answers, we 
employed DeepSeek-V3 for answer verification to assess the 
reasoning accuracy and response quality of LLMs (Figure S26). 
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Specifically, we compared the standard answers provided in the 
dataset with the responses generated by the LLMs, evaluating 
their consistency. If the generated answers matched the 
standard ones, we considered the reasoning process to be 
reliable. For literature-extracted datasets without predefined 
standard answers, we adopted a hybrid approach combining 
LLM-based filtering with human verification. Initially, LLMs were 
used to screen the data, after which the original text from the 
research papers and the LLMs' reasoning process were 
simultaneously provided to a validation model. This new model 
then assessed the logical soundness of the reasoning. In cases 
where the responses were ambiguous or controversial, domain 
experts were consulted for further judgment. As shown in 
Figure 3, the validation model, guided by prompts and review 
content, effectively identified errors in long-text model 
responses and provided original text excerpts as supporting 
evidence. 

Finally, as shown in Figure S27, we performed knowledge 
distillation by training the student model to emulate the 
reasoning behaviors of the teacher model (DeepSeek-R1) on 
general chemistry datasets. This procedure achieved only a 
~50% success rate, reflecting the difficulty of answering 
challenging out-of-domain chemistry questions where relevant 
knowledge is often absent from the pretraining corpus. In 
contrast, when distillation was conducted using research papers 
and reviews, the model could rely on contextual information 
provided in the documents, leading to an accuracy exceeding 
90%. This demonstrates the importance of context-augmented 
reasoning: rather than recalling memorized facts, the model 
synthesizes information from scientific literature into 
structured reasoning traces. The final data distribution is shown 
in Figure S28, with a total of 35.8 K data points utilized for LLM 
training.

Figure 3. Construction of domain-specific datasets via validation models and manual evaluation of large model responses.

In this work, we fine-tuned a small-parameter reasoning LLM, 
DeepSeek-R1-Distill-Qwen-7B using the LLaMA-Factory 
framework. Specifically, we employed Supervised Fine-Tuning 
to adapt the model to domain-specific tasks and utilized Low-
Rank Adaptation to enhance efficiency by reducing trainable 

parameters while maintaining model performance. This 
approach enabled efficient adaptation of the LLM with reduced 
computational cost and memory footprint. As shown in Figure 
S29, after a single epoch of training comprising 717 steps, the 
training loss was reduced to 0.8036.
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When presented with scientific questions, the trained 
MOFReasoner is capable of reasoning logically like a scientist 
and providing well-founded answers. As shown in Figure 4a, 
several typical reasoning pathways utilized by MOFReasoner 
are demonstrated, including Understanding the Background, 
Application of Knowledge, Analysis Integration, Reasoning 
Expansion, Solution Evaluation, Conclusion Formation, and 
Open Exploration. In addition to knowledge-based Q&A tasks, 
MOFReasoner can also generate ideas when prompted. In such 
cases, it follows a scientific reasoning chain that involves steps 
like extracting key points, reviewing historical studies, 
identifying core problems, proposing central ideas, and 
providing verification strategies and hypothesis-testing 
procedures. While these reasoning processes are somewhat 
similar to the CoT patterns found in the training dataset, 
MOFReasoner adapts its reasoning pathways depending on the 

nature of the question, indicating that the MOFReasoner has 
effectively learned scientific reasoning through Supervised Fine-
Tuning. It is important to note that these reasoning pathways 
are not manually predefined templates, but rather patterns 
learned from diverse chain-of-thought examples distilled from 
research articles, review papers and general CoT datasets. 
Different question types naturally elicit different combinations 
of these learned patterns, so the pathways shown in Figure 4a 
represent a post hoc summary of recurrent reasoning behaviors 
rather than fixed decision routes. As illustrated in the expected 
reasoning path shown in Figure S30 and further demonstrated 
in Figures S31 and S32, compared with DeepSeek R1, 
MOFReasoner exhibits a more disciplined scientific reasoning 
style, characterized by systematic contextualization, theory-
grounded analysis, and coherent integration of evidence.

Figure 4. (a) Examples of MOFReasoner's reasoning process; (b) Four types of tasks for large language model evaluation.

To further validate that MOFReasoner has not only learned to 
reason but also acquired domain knowledge for answering 
specialized questions, we designed a benchmark consisting of 
four task categories: experimental studies of MOFs, chemical 
mechanisms of adsorption, applications of MOF-based 
adsorbents, and industrialization-related issues (as shown in 
Figure 4b and Tables S5-S7). Each question in these tasks was 
broken down into multiple scoring points. The complete text of 
all evaluation questions and the detailed scoring points 
associated with each question are provided in the SI Section S3 
to ensure full transparency and reproducibility. Domain experts 
evaluated the responses based on four criteria: a correct 
answer (+1), a correct but imprecise answer (+0.5), a wrong or 
controversial answer (-0.5), and a serious error answer (-1). Key 
missing information in the model’s response was marked as 
"missing." Since the correct content was already rewarded, no 
additional penalty was applied for missing points. All models 

were assessed using exactly the same expert-curated questions 
and scoring scheme.
As shown in Section S3 and Figures S33-S104, when comparing 
different LLMs, we found that the fine-tuned MOFReasoner 
consistently provided precise answers addressing the core of 
each question, without producing severe errors or misleading 
information. For instance, when asked “How are the dynamic 
and static adsorption performances of MOFs usually 
evaluated?”, the model correctly distinguished that dynamic 
adsorption tests employ breakthrough experiments, while 
static adsorption involves measuring adsorption isotherms. 
However, possibly due to the imbalance between reasoning 
chains and final answers in the training dataset (with reasoning 
tokens significantly outnumbering answer tokens), and the fact 
that research papers often focus narrowly on single points, 
MOFReasoner’s responses tend to be concise. After thorough 
reasoning, it retains only the most credible conclusions. For 
example, in the question “How to determine the adsorption 

Page 5 of 9 Digital Discovery

D
ig

ita
lD

is
co

ve
ry

A
cc

ep
te

d
M

an
us

cr
ip

t

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

9 
Ja

nu
ar

y 
20

26
. D

ow
nl

oa
de

d 
on

 1
/1

0/
20

26
 1

0:
03

:1
6 

A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
DOI: 10.1039/D5DD00429B

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5dd00429b


ARTICLE Journal Name

6 | J. Name., 2012, 00, 1-3 This journal is © The Royal Society of Chemistry 20xx

Please do not adjust margins

Please do not adjust margins

sites in MOFs adsorbents?”, MOFReasoner conservatively 
reported DFT calculations and GCMC simulations as methods, 
while omitting single-crystal X-ray diffraction considered during 
reasoning. As summarized in Table 1, MOFReasoner achieved 
the highest score of 25.5, significantly outperforming its base 
model DeepSeek-R1-Distill-Qwen-7B, the reasoning model 
DeepSeek-R1-671B, and even the widely recognized GPT-4.5 
and o1 models. Notably, in our benchmark we observed that 
GPT-4.5 and o1 occasionally generated literature-style 
references that were inconsistent with the underlying scientific 
content or could not be verified (Figures S74, S83 and S101). 
Additional control experiments indicate that this performance 

improvement is not solely due to increased exposure to 
domain-specific terminology. When trained using only final 
answers, the resulting model showed limited ability to integrate 
multiple physicochemical factors and often failed to articulate 
coherent structure–property relationships relevant to MOF 
adsorption. Furthermore, comparisons between different 
model initializations suggest that starting from a reasoning-
aligned model facilitates the learning of chemically meaningful 
reasoning patterns, which is more critical for adsorption-related 
analysis than increasing model size alone (Table S8 and Figures 
S105-S120).

Table 1. The evaluation results of the MOFReasoner, Qwen series, DeepSeek series, and GPT series models.

Model Correct Inaccurate
Wrong or 

controversial
Serious 

error
Missing

Total 
score

MOFReasoner 25 2 1 0 10 25.5
DeepSeek-R1-Distill-Qwen-7B 15 13 13 23 20 -8
DeepSeek-R1-Distill-Llama-8B 13 8 8 18 22 -5

Qwen-Max 26 16 10 12 9 17
Qwen-Plus 20 11 7 8 15 14
QwQ-32B 24 11 9 13 11 12

DeepSeek-R1-671B 25 14 9 9 10 18.5
o1-preview 26 17 9 16 9 14

GPT-4.5-preview 26 9 11 9 8 16

Figure 5. (a) The reasoning process of MOFReasoner for selecting different SBUs in the adsorption of benzothiophene; (b) The selection results of different models; 
Interaction configurations of benzothiophene with Co Paddle-Wheel (c), Zn Paddle-Wheel (d), and Cu Paddle-Wheel (e).

The capability of reasoning large models should not be limited 
to Q&A tasks but extend to providing meaningful scientific 
assistance. To further illustrate this potential, we tested 
MOFReasoner with a rarely mentioned guest molecule in the 
dataset (benzothiophene) and tasked the model with 
identifying metal clusters that may exhibit strong binding 

affinity. As shown in Figure 5a, MOFReasoner reasoned through 
factors such as coordination strength and charge density and 
paid particular attention to the sulfur atom in benzothiophene. 
During the reasoning process, MOFReasoner comprehensively 
considered factors such as the Lewis acidity of the metal 
centers, the size and charge density of the metal ions, electronic 
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structure, coordination environment, geometric configuration, 
and adsorption enthalpy. We observed that MOFReasoner 
struggled significantly between Zn and Co (Section S4, Table S9) 
before ultimately ranking the metal ions as Zn2+ > Co2+ > Cu2+. In 
contrast, both GPT-4.5 and o1 produced the ranking Cu2+ > Co2+ 
> Zn2+ (Figure 5b). This case also reveals limitations in current 
reasoning behaviors. As shown in the benzothiophene 
adsorption example and its expected reasoning path (Figure 
S121), MOFReasoner shows difficulty in consistently weighting 
multiple competing physicochemical factors, while the 
reasoning trace of DeepSeek R1 (Figure S122) does not explicitly 
incorporate coordination geometry or framework-level 
constraints. Through subsequent DFT calculations (Figures 5c–
5e), we found that although none of the models initially 
selected the optimal Co paddle-wheel structure, the Zn and Co 
paddle-wheel configurations recommended by MOFReasoner 
exhibited substantially stronger binding affinities than the Cu 
paddle-wheel suggested by GPT-4.5 and o1. Specifically, the Co 
paddle-wheel outperformed Zn by 14.21 kJ/mol and Cu by 25.96 
kJ/mol, indicating that the Co metal node forms a stronger 
interaction with benzothiophene and therefore provides a 
more favorable adsorption configuration. These results indicate 
that, while MOFReasoner’s reasoning still deviates from the 
actual optimal choice, its inference process can provide useful 
qualitative guidance and serve as a proof-of-concept example 
for assisting scientific reasoning tasks.

Conclusion
In this study, we developed MOFReasoner, a domain-specific 
large language model fine-tuned for scientific reasoning in 
chemical research, with a particular focus on MOFs adsorption. 
By combining knowledge distillation, CoT reasoning extraction, 
and systematic dataset validation, MOFReasoner achieves 
substantial improvements in accuracy, reliability, and scientific 
depth compared to general-purpose LLMs. Our results show 
that MOFReasoner not only performs well in knowledge-based 
Q&A tasks but also suggests the potential of domain-specific 
language models for scientific reasoning tasks, including 
hypothesis generation and qualitative material screening that is 
consistent with DFT trends. This work provides a promising 
framework for future development of domain-specific scientific 
LLMs and highlights the importance of integrating structured 
knowledge, reasoning mechanisms, and expert validation. We 
note that the current framework is text-based and does not 
directly process graphical data such as adsorption isotherms, 
diffraction patterns, or microscopy images; extending 
MOFReasoner toward multimodal figure understanding 
represents an important direction for future improvement. 
MOFReasoner sets a foundation for advancing AI-assisted 
scientific research, paving the way for more intelligent, reliable, 
and application-oriented models in the field of chemistry.
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