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Large Language Models (LLMs) have potential in transforming chemical research. Nevertheless, their general-purpose design
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constrains scientific understanding and reasoning within specialized fields like chemistry. In this study, we introduce

MOFReasoner, a domain model designed to enhance scientific reasoning, using Metal-Organic Frameworks (MOFs)

adsorption as a case study. By employing knowledge distillation from teacher models and Chain-of-Thought (CoT) reasoning

extracted from a corpus of over 8242 research articles and 500 reviews, we developed a domain chemical reasoning dataset.

Using domain chemical reasoning datasets, general chemistry datasets, and general reasoning datasets, the LLMs were fine-

tuned. The model's performance was evaluated across four tasks: experimental studies, chemical mechanisms, application

scenarios, and industrialization challenges. MOFReasoner outperformed existing general-purpose models, such as GPT-4.5

and DeepSeek-R1. Furthermore, the model achieves prediction accuracy comparable to DFT, enabling material

recommendation. This work underscores the potential of integrating domain-specific knowledge, CoT reasoning, and

knowledge distillation in creating LLMs that support scientific inquiry and decision-making within the discipline of chemistry.

Introduction

Al has revolutionized chemistry research by driving
advancements in molecular design, reaction prediction, and
material discovery. 13 In recent years, large language models
(LLMs) have shown remarkable potential in knowledge
extraction, complex reasoning, and automated data analysis,
positioning them as powerful tools for accelerating scientific
innovation. %° Due to their strong natural language
understanding capabilities, LLMs are used for processing vast
amounts of literature, generating insightful hypotheses, and
assisting in experiment planning, among other tasks. 1013 To
enhance their application in chemistry, various optimization
strategies have been explored by researchers. Prompt
engineering has proven effective in extracting scientific data, !4
15> while multi-agent collaboration frameworks distribute tasks
and improve decision-making for complex chemical problems.
16-18 |n addition, LLMs can further enhance their mastery of
chemical knowledge through techniques like fine-tuning and
RAG, enabling them to perform more advanced tasks such as
reaction prediction and Q&A. 1°-22

Despite the enhancement of LLMs' expertise through fine-
tuning and RAG, their ability to tackle complex problems,
especially multi-step chemical reasoning, remains insufficient.
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This limitation constrains their applications in areas such as
materials design and chemistry reasoning Q&A. 23 24 Therefore,
LLMs need to possess scientific reasoning abilities akin to those
of scientists. Once they acquire such thinking skills, they can
derive accurate conclusions through more rigorous logical
deduction. These accurate conclusions will further enhance
LLMs' performance in areas such as materials design,
performance prediction, and multi-objective optimization,
enabling them to achieve the experimental paradigm of
autonomous Al research in the future.

Chain-of-Thought (CoT) reasoning enhances LLMs by enabling
structured, step-by-step logical inference, allowing them to
tackle answer chemical question with improved accuracy and
interpretability. 25 26 This is particularly beneficial for tasks
requiring multi-step reasoning, such as reaction prediction and
experimental design, where breaking down intricate processes
leads to more reliable and scientifically sound conclusions.
However, the reasoning patterns of LLMs trained on general
knowledge still differ significantly from those used in scientific
research, as scientific reasoning often involves a process of
making numerous hypotheses followed by verification.
Therefore, it is crucial to further train LLMs in specialized
domain knowledge and scientific reasoning. Building such a
domain-specific reasoning model requires fine-tuning based on
domain CoT data. Knowledge distillation provides an efficient
way to transfer domain expertise from larger parameters model
or structured knowledge sources into small parameters model.
27-29 By integrating CoT reasoning with knowledge distillation,
LLMs can acquire not only more domain-specific knowledge but
also domain-specific thinking. This approach enables them to
achieve structured, step-by-step reasoning, leading to more
reliable inference and more efficient knowledge utilization.
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Recently, ChemMatch and the ScholarChemQA dataset3° have
highlighted the potential of lightweight, domain-specific models
for chemical QA; in contrast, our work emphasizes equipping
LLMs with multi-step scientific reasoning through literature-
derived CoT data and knowledge distillation. It should be noted
that while CoT reasoning improves interpretability and task
performance, recent studies suggest that such outputs may
reflect structured pattern generation rather than genuine
scientific understanding. As a highly designable class of three-
dimensional materials, MOFs, which are widely used in
adsorption separation, 3! catalysis, 3> and other fields, 33 34
greatly benefit from Al assistance due to their vast potential for
synthesizing a diverse range of materials. Herein, taking the
field of MOFs adsorption as an example, we extracted domain-
specific reasoning pathways from scientific papers and refined
them with the aid of large-parameter language models to
construct a domain-specific CoT database and trained
MOFReasoner (as shown in Figure 1). The model can be found
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Specifically, through a hard-label knowledge,. distilla%ign
approach inspired by recent large-model e8MiprE3510O st 163%8
we conducted high-throughput analysis with large-parameter
long-text teacher LLMs, guiding them to extract and structure
chain-of-thought reasoning from literature, and organized the
results into a domain reasoning dataset. Additionally, we used
these teacher models to transform existing chemical datasets
into chemical reasoning datasets. By integrating these datasets
with general CoT datasets, we constructed a reasoning model
for chemistry named MOFReasoner. MOFReasoner, with its
enhanced structured reasoning capabilities and effective
integration of chemical knowledge, significantly outperforms
ChatGPT and DeepSeek on a dataset consisting of four types of
tasks in Q&A testing. Moreover, MOFReasoner can be further
coupled with existing knowledge bases and knowledge
graphs3638 and through its robust reasoning capability, it
recommends materials that are consistent with DFT calculation
results.

at https://huggingface.co/baixuefeng/ChemReasoner-7B.
Scientific
P t ™ tnput -
e Challenges ops
—
Research Design idea
Article Thoughts
Artical Text Reasoning o
D Validation e
= omain
. — Thoughts Chmistry
¥y Dataset
Output Proposed Correct atase
Teacher Model Solutions Output
Chain of Thought Reasoning Manual and Al Verification
EE The Chain of tnput 3
Se— Thought from
?!\Er;;filgg Teacher Model Ques_tl_on fa = Fine-Tuning
(Long Context) Cpinion = . ——
eascning . ==
Eu Prompt . :ﬂz‘f"
s Question Chom_altn
9 Review text i
\ )4 Author’s Correct Dataset Fine-Tunig
Teacher Model Output Spinan
(Long Context) P Output
Fine-Tunin
g Knowledge _ Verification 'w 9\4_—- g
- et ~ Fine-Tunin,
Distillati Answer i® —
4 Istilation , 3
General

Chemical

Dataset Teacher Model

Verification Model

Student Model

Chain-of -Thought
ain-of-Thoug (MOFReasoner)

Dataset

Figure 1. Workflow for constructing the domain reasoning dataset from domain-specific papers, which is then combined with chemical reasoning datasets and general

CoT datasets to train the domain reasoning LLM.

Results and Discussion

In the initial phase of our study, we amassed a collection of over
8,200 research papers and more than 500 review articles, which
were organized into text format using Python code. To
characterize the dataset, we further summarized the
distribution of journals, publishers, and dominant scientific
keywords, as shown in Figures S1-S7 and Tables S1-S3. These
analyses confirm that the corpus covers diverse publication

2| J. Name., 2012, 00, 1-3

sources and broadly representative MOF-related topics,
without exhibiting overconcentration in any single journal,
publisher, or material family. This balanced distribution
indicates that the data collection process did not introduce
systematic bias and provides a reliable foundation for
downstream model training and evaluation. We note that such
literature-based extraction may introduce bias, since prompts
can influence the reasoning obtained and scientific papers
typically emphasize successful cases while underreporting
failures. For research articles, we employed prompt engineering

This journal is © The Royal Society of Chemistry 20xx
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to leverage the DeepSeek-V3(671B) model (as shown in Table
S4 for model versions and access dates), allowing us to extract
scientific challenges, proposed solutions, design idea thoughts,
and validation thoughts from the texts. As illustrated in Figure
23, this LLM effectively translates the ideas and validation logic
from the papers into a CoT, resembling the problem-solving
approach of a scientist. To enhance transparency, Section S2
(Figures S8-S11) now provides representative examples of the
mined CoT data and their transformation process. Although
these CoT sequences inevitably deviate from the full complexity
of real scientific thinking, they nonetheless provide a
reasonable and practical representation of how reasoning is
articulated in the published literature.

In the case of review articles, which consist of experts'
summaries of existing research and contain profound scientific

(a)

Digital Discovery:

insights, we employed the long-text model Qwen-Turbe,te
distill and summarize the scientific pBrIpECERAESDIARDORER
transformed these insights into question-answer pairs (as
shown in Figures S12-S16). Subsequently, each question-and-
answer pair is matched with the original comment content as
context, and then presented to the LLM. The LLMs provide a
detailed CoT process from multiple dimensions (as shown in
Figures 2b and S17-S21). The current pipeline processes only
textual information, and visual data such as adsorption
isotherms, PXRD patterns, and microscopy images were not
directly included, which lead to partial
underrepresentation of information conveyed exclusively
through figures.

may

Scientific Challenges: What is the nature of iodine (I,) adsorption in the

metal-organic framework MFM-3€@(Sc), and how does it affect the structural

integrity of the material?

Proposed Solutions: The

adsorption

of I, in the MOFs MFM-3@@(Sc) is

inhomogeneous, with significant variations in iodine content across......

Design Idea Thought:

The research idea emerged from the broader context of

understanding host-guest interactions in MOFs......

Validation Thought: The problem of understanding the nature of I, adsorption in
MFM-3@e(Sc) was motivated by the need to characterize the spatial distribution
of adsorbed molecules and their impact on the host material’s structure......

(b)

Author’s Opinion:

For MOFs with mixed pore sizes,

Question: How can the BET method be adapted for MOFs with mixed pore sizes?

BET calculations must be

carefully adapted to account for both micropore and mesopore contributions,
ensuring accurate surface area estimations.

The Chain of Thought:

1. Preliminary Analysis: Understanding the BET Method and Mixed Pore Sizes......

22 Theoretical Application:
Contributions......

Principles of

Adsorption and Pore

3. Logical Step-by-Step Reasoning: Developing an Adaptation Strategy......

4. Possibility Discussion: Potential Solutions and Challenges......

5. Result Summary: Formulating Clear Scientific Conclusions......

6. Exploration Directions: Future Research and Applications......

Figure 2. Knowledge distillation from teacher models on the article: (a) Distillation of research article knowledge using DeepSeek-V3; (b) Distillation of review article

knowledge using Qwen-Turbo.

In addition to constructing a domain-specific dataset, we also
utilized a general chemistry dataset and a general reasoning
dataset to enhance the model's chemical knowledge and
reasoning capabilities. The camel-ai chemistry dataset 3°, which
includes 20,000 chemistry questions across 25 topics, serves as
an excellent foundation dataset for general chemistry
knowledge. However, since this dataset includes only questions
and answers without detailed problem-solving procedures, we
applied the DeepSeek-R1(671B), an inference LLM, to better
equip the LLMs with comprehensive chemistry knowledge and

This journal is © The Royal Society of Chemistry 20xx

CoT. As shown in Figure S22, the LLMs delivered exhaustive
reasoning processes through logical inference. The CoT dataset
utilized STILL 49, a slow-thinking reasoning dataset, which did
not require additional processing as it is originally presented in
the CoT format within the SFT structure (Figures $S23-S25).

Subsequently, we conducted a systematic validation of the
dataset to ensure the quality and reliability of the training data.
For datasets with clearly defined standard answers, we
employed DeepSeek-V3 for answer verification to assess the
reasoning accuracy and response quality of LLMs (Figure S26).

J. Name., 2013, 00, 1-3 | 3
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Specifically, we compared the standard answers provided in the
dataset with the responses generated by the LLMs, evaluating
their consistency. If the generated answers matched the
standard ones, we considered the reasoning process to be
reliable. For literature-extracted datasets without predefined
standard answers, we adopted a hybrid approach combining
LLM-based filtering with human verification. Initially, LLMs were
used to screen the data, after which the original text from the
research papers and the LLMs' reasoning process were
simultaneously provided to a validation model. This new model
then assessed the logical soundness of the reasoning. In cases
where the responses were ambiguous or controversial, domain
experts were consulted for further judgment. As shown in
Figure 3, the validation model, guided by prompts and review
content, effectively identified errors in long-text model
responses and provided original text excerpts as supporting
evidence.

7= aarsins

Journal Name

Finally, as shown in Figure S27, we performed.knewledge
distillation by training the student mddelOt@3¥MUIPED4EAR
reasoning behaviors of the teacher model (DeepSeek-R1) on
general chemistry datasets. This procedure achieved only a
~50% success rate, reflecting the difficulty of answering
challenging out-of-domain chemistry questions where relevant
knowledge is often absent from the pretraining corpus. In
contrast, when distillation was conducted using research papers
and reviews, the model could rely on contextual information
provided in the documents, leading to an accuracy exceeding
90%. This demonstrates the importance of context-augmented
reasoning: rather than recalling memorized facts, the model
synthesizes information from scientific literature into
structured reasoning traces. The final data distribution is shown
in Figure S28, with a total of 35.8 K data points utilized for LLM
training.
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Question: How can a robust layered ultramicroporous material (ZUL-10@) achieve ultra-

high selectivity and productivity for the separation of CO, and CH, from CH,?

-

Idea Thought: ......

The inspiration was drawn from observing that the synergy of ligand and anion binding
could enhance the affinity for CO, and C;H,, whereas excluding CH, facilitates rapid mass
transfer......

The final design of ZUL-100 incorporated 3D interpenetrated channels, functional sulfone
groups, and anions......

This articleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

n =

Verification Model:

Error 1: The 3D interpenetrated structure of ZUL-1@@ is intrinsic, not intentionally
designed

ZUL-10@ naturally possesses a 3D interpenetrated structure, which arises from the
stacking of single-layer networks through supramolecular interactions, rather than being
deliberately designed. The original description, "The core idea was......", incorrectly
suggests that this feature was intentionally engineered. A more accurate statement would
be: "ZUL-10@ is an intrinsically interpenetrated ultramicroporous material, with 3D mass
transfer channels formed naturally through supramolecular interactions."”

Open Access Article. Published on 09 January 2026. Downloaded on 1/10/2026 10:03:16 AM.

Error 2: Misleading cause-and-effect relationship in kinetics description

The original statement, "The synergy of ligand and anion binding could...... o
misleadingly implies that high adsorption affinity directly leads to faster mass
transfer...... A more precise statement would be: "The rapid mass transfer in ZUL-100 1is
primarily due to its rigid framework and Low diffusion energy barriers, rather than
solely adsorption affinity."”

Figure 3. Construction of domain-specific datasets via validation models and manual evaluation of large model responses.

parameters while maintaining model performance. This
approach enabled efficient adaptation of the LLM with reduced

In this work, we fine-tuned a small-parameter reasoning LLM,
DeepSeek-R1-Distill-Qwen-7B  using the LLaMA-Factory

framework. Specifically, we employed Supervised Fine-Tuning
to adapt the model to domain-specific tasks and utilized Low-
Rank Adaptation to enhance efficiency by reducing trainable

4| J. Name., 2012, 00, 1-3

computational cost and memory footprint. As shown in Figure
S29, after a single epoch of training comprising 717 steps, the
training loss was reduced to 0.8036.

This journal is © The Royal Society of Chemistry 20xx
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When presented with scientific questions, the trained
MOFReasoner is capable of reasoning logically like a scientist
and providing well-founded answers. As shown in Figure 4a,
several typical reasoning pathways utilized by MOFReasoner
are demonstrated, including Understanding the Background,
Application of Knowledge, Analysis Integration, Reasoning
Expansion, Solution Evaluation, Conclusion Formation, and
Open Exploration. In addition to knowledge-based Q&A tasks,
MOFReasoner can also generate ideas when prompted. In such
cases, it follows a scientific reasoning chain that involves steps
like extracting key points, reviewing historical studies,
identifying core problems, proposing central ideas, and
providing verification strategies and hypothesis-testing
procedures. While these reasoning processes are somewhat
similar to the CoT patterns found in the training dataset,
MOFReasoner adapts its reasoning pathways depending on the

(@)

Understanding

Preliminary Analysis Background

Application of Knowledge

Theoretical Application

Analysis Integration

Logical Step-by-Step
Reasoning

Reasoning Expansion

Possibility Discussion

Solution Evaluation

Result Summary

Conclusion Formation

Exploration Directions
(b)

Chemical
Mechanism

Laboratory
Experiment

Open Exploration

SCOVErY - | =il

ARTICLE

nature of the question, indicating that the MOFReasengemnhas
effectively learned scientific reasoning thPSUigh $UpéPvisea Findk
Tuning. It is important to note that these reasoning pathways
are not manually predefined templates, but rather patterns
learned from diverse chain-of-thought examples distilled from
research articles, review papers and general CoT datasets.
Different question types naturally elicit different combinations
of these learned patterns, so the pathways shown in Figure 4a
represent a post hoc summary of recurrent reasoning behaviors
rather than fixed decision routes. As illustrated in the expected
reasoning path shown in Figure S30 and further demonstrated
in Figures S31 and S32, compared with DeepSeek R1,
MOFReasoner exhibits a more disciplined scientific reasoning
style, characterized by systematic contextualization, theory-
grounded analysis, and coherent integration of evidence.

e The research idea

A review
The specific problem
The core idea

To validate this idea

To test this
hypothesis.

Industrialization
Challenges

Application
Advantages

Figure 4. (a) Examples of MOFReasoner's reasoning process; (b) Four types of tasks for large language model evaluation.

To further validate that MOFReasoner has not only learned to
reason but also acquired domain knowledge for answering
specialized questions, we designed a benchmark consisting of
four task categories: experimental studies of MOFs, chemical
mechanisms of adsorption, applications of MOF-based
adsorbents, and industrialization-related issues (as shown in
Figure 4b and Tables S5-S7). Each question in these tasks was
broken down into multiple scoring points. The complete text of
all evaluation questions and the detailed scoring points
associated with each question are provided in the Sl Section S3
to ensure full transparency and reproducibility. Domain experts
evaluated the responses based on four criteria: a correct
answer (+1), a correct but imprecise answer (+0.5), a wrong or
controversial answer (-0.5), and a serious error answer (-1). Key
missing information in the model’s response was marked as
"missing." Since the correct content was already rewarded, no
additional penalty was applied for missing points. All models

This journal is © The Royal Society of Chemistry 20xx

were assessed using exactly the same expert-curated questions
and scoring scheme.

As shown in Section S3 and Figures $33-S104, when comparing
different LLMs, we found that the fine-tuned MOFReasoner
consistently provided precise answers addressing the core of
each question, without producing severe errors or misleading
information. For instance, when asked “How are the dynamic
and static adsorption performances of MOFs usually
evaluated?”, the model correctly distinguished that dynamic
adsorption tests employ breakthrough experiments, while
static adsorption involves measuring adsorption isotherms.
However, possibly due to the imbalance between reasoning
chains and final answers in the training dataset (with reasoning
tokens significantly outnumbering answer tokens), and the fact
that research papers often focus narrowly on single points,
MOFReasoner’s responses tend to be concise. After thorough
reasoning, it retains only the most credible conclusions. For
example, in the question “How to determine the adsorption

J. Name., 2013, 00, 1-3 | 5
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sites in MOFs adsorbents?”, MOFReasoner conservatively
reported DFT calculations and GCMC simulations as methods,
while omitting single-crystal X-ray diffraction considered during
reasoning. As summarized in Table 1, MOFReasoner achieved
the highest score of 25.5, significantly outperforming its base
model DeepSeek-R1-Distill-Qwen-7B, the reasoning model
DeepSeek-R1-671B, and even the widely recognized GPT-4.5
and ol models. Notably, in our benchmark we observed that
GPT-4.5 and 01 occasionally generated literature-style
references that were inconsistent with the underlying scientific

7= aarsins

Journal Name

improvement is not solely due to increased \exposure,te
domain-specific terminology. When traiRedO 48ig> By Ofithal
answers, the resulting model showed limited ability to integrate
multiple physicochemical factors and often failed to articulate
coherent structure—property relationships relevant to MOF
adsorption. Furthermore, comparisons between different
model initializations suggest that starting from a reasoning-
aligned model facilitates the learning of chemically meaningful
reasoning patterns, which is more critical for adsorption-related
analysis than increasing model size alone (Table S8 and Figures

content or could not be verified (Figures S74, S83 and S101).
Additional control experiments indicate that this performance

$105-5120).

Table 1. The evaluation results of the MOFReasoner, Qwen series, DeepSeek series, and GPT series models.

Open Access Article. Published on 09 January 2026. Downloaded on 1/10/2026 10:03:16 AM.
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Wrong or Serious L Total
Model Correct Inaccurate . Missing
controversial error score
MOFReasoner 25 2 1 0 10 25.5
DeepSeek-R1-Distill-Qwen-7B 15 13 13 23 20 -8
DeepSeek-R1-Distill-Llama-8B 13 8 8 18 22 -5
Qwen-Max 26 16 10 12 9 17
Qwen-Plus 20 11 7 8 15 14
QwQ-32B 24 11 9 13 11 12
DeepSeek-R1-671B 25 14 9 9 10 18.5
ol-preview 26 17 9 16 9 14
GPT-4.5-preview 26 9 11 9 8 16
(a) Question: Based on the adsorption strength, please rank the following metal (b) Cu Co Zn
SBUs in order of their suitability for adsorbing benzothiophene: paddle- | Paddle | Paddle
Paddle-Wheel SBU (Cu?*) Paddle-Wheel SBU (Zn3*) Paddle-Wheel SBU (Co**) Wheel -Wheel | -Wheel

<|begin_of thought|> Okay, so I need to figure out how to rank ......

First, paddle-wheel SBUs are ......

I remember that the adsorption strength can be influenced by the Lewis acidity

of the metal center......

Alternatively, maybe the size of the metal ion affects the adsorption......

Alternatively, the d-orbital participation......

Wait, benzothiophene is a planar molecule with a conjugated system.....

So, ranking the metals by their Lewis acidity......

But I should verify this. Let me think of specific examples

Alternatively, the charge-to-size ratio......

Wait, another angle: the isosteric heat of adsorption. If Co(II) has a higher
isosteric heat, that would indicate stronger adsorption. But I don't have exact

values here.

Alternatively, considering the size of the pore. If the Co(II) SBU......

In summary, considering the primary factors of Lewis acidity and d-orbital
interactions, the ranking would likely be Zn > Co > Cu. However, if steric ;f}
effects and pore size are significant, Co might be better than Zn. Since the %
question is about...... <|end_of_thought |> MOFReASoner

(c) (d)

®

GPT-4.5

©
&

DeepSeek R1

NIPNPNN
= W W W

O | = | b | md

Figure 5. (a) The reasoning Process of MOFReasoner for selecting different SBUs in the adsorption of benzothiophene; (b) The selection results of different models;

Interaction configurations o

benzothiophene with Co Paddle-Wheel (c), Zn Paddle-Wheel (d), and Cu Paddle-Wheel (e).

The capability of reasoning large models should not be limited
to Q&A tasks but extend to providing meaningful scientific
assistance. To further illustrate this potential, we tested
MOFReasoner with a rarely mentioned guest molecule in the
dataset (benzothiophene) and tasked the model with
identifying metal clusters that may exhibit strong binding

6 | J. Name., 2012, 00, 1-3

affinity. As shown in Figure 5a, MOFReasoner reasoned through
factors such as coordination strength and charge density and
paid particular attention to the sulfur atom in benzothiophene.
During the reasoning process, MOFReasoner comprehensively
considered factors such as the Lewis acidity of the metal
centers, the size and charge density of the metal ions, electronic

This journal is © The Royal Society of Chemistry 20xx
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structure, coordination environment, geometric configuration,
and adsorption enthalpy. We observed that MOFReasoner
struggled significantly between Zn and Co (Section S4, Table S9)
before ultimately ranking the metal ions as Zn?* > Co?* > Cu?*. In
contrast, both GPT-4.5 and o1 produced the ranking Cu?* > Co?*
> Zn?* (Figure 5b). This case also reveals limitations in current
reasoning behaviors. As shown in the benzothiophene
adsorption example and its expected reasoning path (Figure
$121), MOFReasoner shows difficulty in consistently weighting
multiple competing physicochemical factors, while the
reasoning trace of DeepSeek R1 (Figure S122) does not explicitly
incorporate coordination geometry or framework-level
constraints. Through subsequent DFT calculations (Figures 5c —
5e), we found that although none of the models initially
selected the optimal Co paddle-wheel structure, the Zn and Co
paddle-wheel configurations recommended by MOFReasoner
exhibited substantially stronger binding affinities than the Cu
paddle-wheel suggested by GPT-4.5 and o1. Specifically, the Co
paddle-wheel outperformed Zn by 14.21 kJ/mol and Cu by 25.96
kJ/mol, indicating that the Co metal node forms a stronger
interaction with benzothiophene and therefore provides a
more favorable adsorption configuration. These results indicate
that, while MOFReasoner’s reasoning still deviates from the
actual optimal choice, its inference process can provide useful
qualitative guidance and serve as a proof-of-concept example
for assisting scientific reasoning tasks.

Conclusion

In this study, we developed MOFReasoner, a domain-specific
large language model fine-tuned for scientific reasoning in
chemical research, with a particular focus on MOFs adsorption.
By combining knowledge distillation, CoT reasoning extraction,
and systematic dataset validation, MOFReasoner achieves
substantial improvements in accuracy, reliability, and scientific
depth compared to general-purpose LLMs. Our results show
that MOFReasoner not only performs well in knowledge-based
Q&A tasks but also suggests the potential of domain-specific
language models for scientific reasoning tasks, including
hypothesis generation and qualitative material screening that is
consistent with DFT trends. This work provides a promising
framework for future development of domain-specific scientific
LLMs and highlights the importance of integrating structured
knowledge, reasoning mechanisms, and expert validation. We
note that the current framework is text-based and does not
directly process graphical data such as adsorption isotherms,
diffraction patterns, or microscopy images; extending
MOFReasoner toward multimodal figure understanding
represents an important direction for future improvement.
MOFReasoner sets a foundation for advancing Al-assisted
scientific research, paving the way for more intelligent, reliable,
and application-oriented models in the field of chemistry.
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