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Accelerating image annotations with a Python-

Uriel Garcilazo-Cruz,*? ", Joseph O. Okeme®?, and Rodrigo A. Vargas-Herndndez®/<f

The lack of flexible annotation tools has hindered the deployment
Most existing image an-
notation software requires users to upload a precollected dataset,
which limits support for on-demand pipelines and introduces un-

of Al models in some scientific areas.

necessary steps to acquire images. This constraint is particularly
problematic in laboratory environments, where on-site data acquisi-
tion from instruments such as microscopes is increasingly common.
In this work, we introduce LivePixel, a Python-based graphical
user interface that integrates with imaging systems, such as web-
cams, microscopes, and others, to enable on-site image annotation.
LivePyxel is designed to be easy to use through a simple interface
that allows users to precisely delimit areas for annotation using
tools commonly found in commercial graphics editing software. Of
particular interest is the availability of Bézier splines and binary
masks, and the software’s capacity to work with non-destructive
layers that enable high-performance editing. LivePyxel also inte-
grates a wide compatibility across video devices, and it's optimized
for object detection operations via the use of OpenCV in combi-
nation with high-performance libraries designed to handle matrix
and linear algebra operations via Numpy effectively. LivePyxel fa-
cilitates seamless data collection and labeling, accelerating the de-
velopment of Al models in experimental workflows. LivePyxel is
freely available at https://github.com/UGarCil/LivePyxel

1 Introduction

The capabilities of vision models (ViM) depend critically on the
quality and availability of images1"€l7. However, collecting
high-quality annotated images is time consuming and this
annotation bottleneck® negatively impacts the integration of ViM
in highly specialized scientific domains, such as cellular imag-
ing210 civil infrastructure™ crop profile characterization?,
environmental microscopy?® and marine conservationd® to
name a few. To address these data limitations, researchers have
developed alternative approaches, including data augmentation
schemes'l> and more powerful models capable of segmenting and
classifying diverse object types with minimal training (e.g., the
Segment Anything Model (SAM)1€. However, these techniques
still rely on the precision and accuracy of the initial annotations
of domain experts. Ensuring high-quality specialized datasets
requires the input of these expertsiZ, which can be both a lim-
iting factor and financially costlyl®. The increasing availability
of affordable, high-resolution imaging hardware highlights the
importance of easy-to-use open-source software. Such tools can
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lower technical barriers and facilitate broader participation from
individuals who possess domain knowledge but lack the expertise
to collect and preprocess large datasets systematically.

In the fields of object detection and image segmentation, ac-
cessible annotation tools must be compatible with a wide range of
imaging devices. We argue that many scientific workflows, partic-
ularly those involving microscopes or specimen curation, would
benefit greatly from the ability to capture and annotate images
in real time. For instance, navigating a microscope slide or pro-
cessing large biological collections often involves domain experts
who serve simultaneously as annotators. Separating the capture
and annotation steps can interrupt this workflow and reduce ef-
ficiency. In these contexts, the ability to annotate during image
acquisition improves both efficiency and accuracy.

An image annotation tool focused on usability should also pri-
oritize simple graphical user interface (GUI) components with a
shallow learning curve, minimizing the need for technical sup-
port or costly training for specialized personnel. Although ex-
isting tools like LabelMel?, VGG Image Annotator (VIA)2?, and
COCO Annotator?l' offer pixel-level annotations for segmenta-
tion tasks, they lack live camera integration, a critical gap for
workflows requiring immediate feedback or iterative labeling.
These tools, though flexible in formatting (e.g., COCO JSON,
Pascal VOC), often require users to navigate feature-heavy in-
terfaces or offline workflows (e.g., biologists, field technicians).
Moreover, most annotation software supports pixel-level annota-
tion only through polygons or rectangular boxes. While effec-
tive for rigid geometries, these primitives are poorly suited for
organic or curved structures. Approximating a smooth contour
with polygons requires a high number of vertices, introducing an-
notation inefficiency and potential geometric bias that can prop-
agate into downstream vision models. By contrast, graphic de-
sign software routinely uses Bézier splines to capture curves with
minimal control points and high precision. This approach offers
a more natural representation for biological or irregular shapes,
making splines a compelling alternative to conventional polygon-
based labeling. Commercial platforms such as Labelbox and Su-
pervisely emphasize collaboration features but omit both live an-
notation and spline support. RectLabel (macOS-only) supports
Bézier curves but does not allow on-site input. Web-based tools
like CVAT22 and Label Studio®? provide scalability yet remain re-
stricted to pre-recorded media. Together, these limitations high-
light the absence of an integrated solution that combines live an-
notation, spline-based precision, and lightweight usability.

We present LivePyxel, developed here, an open-source Python
GUI that integrates on-site video device input with Bézier spline-
based segmentation, enabling precise pixel-level annotation of
curved structures. LivePyxel was initially developed for on-
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demand annotation of microscopy images, but it also supports
any video device accessible via OpenCV and Python. LivePyxel
combines a lightweight, accessible interface with flexible anno-
tation tools, including Bézier splines, polygons, and threshold-
based masks, making it suitable for segmentation workflows
across diverse research domains. The software is freely avail-
able at https://github.com/UGarCil/LivePyxel and can be in-
stalled through PyPI, with installation details found in the latest
version of the repository along with tutorials, examples, and ad-
ditional code.

The paper is structured as follows: Section[2]describes the spec-
ification and deployment details of LivePyxel, developed in this
work. Section [3| demonstrates its application through an image
segmentation task, where annotated images are used to train a
ViM24 in two scenarios: 1) segmenting eight different microor-
ganisms and 2) performing data engineering with binary masks.
LivePyxel is designed to streamline data collection and labeling,
accelerating the development of Al models in experimental work-
flows that require on-site data manipulation or large-scale batch
processing.

2 LivePyxel

LivePyxel is composed of an ecosystem of Python scripts that
work cohesively to provide users with a graphical interface. This
architecture provides a tool with a higher level of abstraction
compared to most data science workflows, typically executed via
Jupyter Notebooks. The abstraction level is higher because the
code that makes the software does not directly encode the an-
notation process, but rather builds interoperability across objects
that make up the graphical user interface (GUI). This architec-
ture was chosen because the domain of the task addressed by
the program naturally belongs to a graphics editor, and because
graphical interfaces make the tool available to a wider audience
of users with very little experience in programming and code.

The broad compatibility of LivePyxel with imaging devices is
achieved through the use of the OpenCV2? library, which en-
ables on-site video input from virtually any camera and streams
it directly to the annotation canvas. We chose OpenCV for its
efficient handling of images as numerical matrices, leveraging a
compiled back-end for performance while maintaining flexibility
through seamless integration with NumPy2® for fast manipula-
tion in Python. The GUI itself is built using the Qt framework,
which allows NumPy arrays to be rendered directly as images, re-
sulting in a responsive and user-friendly interface. Fig. [1|is an
overview of the LivePyxel architecture.

The LivePyxel GUI integrates several interactive components
to streamline the annotation workflow. Mask display properties,
such as opacity and binary threshold, can be adjusted using the
sliders in the control section (Fig. A). Annotation categories are
managed in the labels panel (Fig.[2}B), where users can add, edit,
or delete classes. The annotation panel (Fig.[2}C) provides high-
level controls for switching input sources, capturing frames, and
toggling annotation mode. Drawing and editing actions are per-
formed using the toolbar (Fig. D), which offers tools for creat-
ing, modifying, or erasing masks. The canvas (Fig. [2}E) displays
either live microscope or uploaded images, over which masks are
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Fig. 1 Overview of the LivePyxel architecture, illustrating the integration
of webcam and image inputs with OpenCV for on-site image annotation.
The system supports input from live microscopy or camera feeds as well
as pre-existing datasets, processes them through the LivePyxel interface,
and outputs both annotated images and segmentation masks for storage
or further analysis by a vision model.

layered non-destructively in real time. Navigation buttons (Fig.
F) allow users to cycle through frames or dataset entries. Once
annotations are complete, LivePyxel saves both the annotated im-
ages and corresponding masks into automatically generated sub-
folders within a user-specified directory. In addition to on-site we-
bcam annotation, LivePyxel also supports traditional workflows
by allowing users to upload pre-existing image datasets that fol-
low the required folder structure.

2.1 Bézier splines for non-tradictional curvatures

A central feature of LivePyxel is its support for Bézier splines2Z;
a mathematical representation of curves that originated in com-
puter graphics and has become an industry standard for preci-
sion editing. Unlike traditional polygon tools, which approxi-
mate shapes using straight-line segments and are better suited
for rigid structures like crystals, buildings, or mechanical parts,
Bézier splines allow for smooth, continuous contours; see Fig.
This makes them ideal for segmenting organic, curved shapes typ-
ically encountered in biological datasets, such as cells, tissues, or
protozoa.

Each Bézier unit is defined by three control points: two end
points and a central handle that determines curvature; see Fig.
B. By connecting multiple units, users can construct complex out-
lines with high fidelity to natural forms. This modular struc-
ture offers fine control over both curvature and sharp transitions.
The advantage of splines for delimiting contours is illustrated by
SplineDist2®, which extends over the popular StarDist framework
by modeling objects as planar parametric spline curves, allowing
more flexible and smooth segmentation boundaries and solving
issues with non-convex geometries. Moreover, the use of splines
in the preparation of annotated data for segmentation tasks has
been documented in clinical applications??3Y In biomedical
imaging, the use of splines enables users to trace smooth cell
membranes with highly organic contours and tightly coiled or an-
gular biological features, something that would require excessive
effort and precision with polygon tools. The ability to produce
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Fig. 2 Preview of the LivePyxel graphical user interface (GUI) with its main components labeled: (A) sliders for adjusting mask opacity and binary
mask threshold, (B) labels panel for managing annotation categories, (C) annotation panel with main control buttons, (D) toolbar for selecting drawing
and editing tools, (E) central canvas where objects are annotated on microscopy images in real time, and (F) navigation controls for browsing through

image frames or dataset entries.

accurate, pixel-level masks with fewer interactions not only im-
proves annotation speed but also reduces user fatigue and an-
notation bias. As a result, Bézier splines in LivePyxel improve
both the efficiency and the quality of segmentation in tasks where
precision is critical, such as microscopy, radiography, and digital
morphology.

Fig. 3 Comparison between polygon (panels A and C) and Bézier-splines
(panels B and D) in the delimitation of boundaries of a tardigrade’s body.
One Bézier unit is defined by three points. ptA and ptB constitute the
start and end of the unit, whereas ptG serves as a point of gravity to pull
the line away from the user’s cursor, forcing it to become a curve.

2.2 Binary Masks and Multi-Layered Structure

Another important feature provided by LivePyxel is the gener-
ation and manipulation of binary masks, which enable semi-
automated annotation in highly controlled imaging environ-

ments. LivePyxel generates binary masks by applying pixel-level
operations using OpenCV throughout the frame, then assigning a
value of 0 or 1 to every pixel before creating an annotation mask.
Using this technique, the user can isolate regions of high contrast
against a uniform background, such as a white or black field. This
proves to be especially useful in biomedical applications involving
solid and organic objects®132 and potentially significant in many
other fields of biological science, where annotation targets are or-
ganic and contour-heavy. We showcase this feature in Section[3.2]

Binary masks significantly reduce annotation time by providing
an initial segmentation that can be manually refined, in contrast
to beginning an annotation from scratch. Particularly useful in
situations where there are many structures to annotate in a con-
trolled environment with a static background (see Sectiontar-
geting an example using snail shells), LivePyxel provides a way to
critically boost the gathering of image/mask pair data. The gener-
ated dataset can further be augmented or ‘engineered’ to generate
a much larger dataset (Fig.[7).

Finally, binary masks can also be used in combination with
vector-based tools such as Bézier splines. Once a region is roughly
defined using thresholding, the user can trace or refine its bound-
aries using spline functions to achieve pixel-level precision. This
hybrid workflow enhances segmentation quality while minimiz-
ing manual effort, offering a powerful solution for datasets where
both speed and anatomical accuracy are crucial.

LivePyxel employs a stack-based compositing system, in which
each annotation exists on an independent layer logically stacked
from bottom to top. This layered architecture facilitates non-
destructive editing: individual segments or anatomical regions

11§||3
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Fig. 4 lllustration of the multi-layer annotation process. Each annotation
is stored as a separate layer within a stack, which is subsequently merged
into a single raster image from bottom to top upon saving.

can be added, modified, or removed without affecting neighbor-
ing annotations; see Fig. Each layer retains its own shape,
color, and mask information, granting users fine-grained con-
trol over the annotation workflow. When the Annotate button is
pressed, these layers are rasterized and composited in order, from
bottom to top, into a single merged mask, encoding the labels in
the form of RGB colors and overwriting every pixel with the top
color (ignoring black). This final image can be saved or exported
in formats compatible with most deep learning frameworks.

Importantly, this integrated pipeline also facilitates instance
segmentation tasks, where models must not only classify each
pixel but also associate it with a specific object instance. By stor-
ing each layer separately, LivePyxel can export instance-specific
masks, with each layer representing a distinct object. This ca-
pability enables seamless integration with training workflows for
models such as Mask R-CNN and SAM.

2.3 Webcam integration

LivePyxel, through the OpenCV library, integrates the webcam
feed into the GUI. The program begins by searching for up to four
camera devices connected to the computer, displaying the first de-
vice found. This multicamera feature is useful in situations where
the user has multiple video-device stations connected to the appli-
cation and may require flexibility in accessing different cameras
in controlled environments. Once loaded, webcam images are
rendered onto the canvas, allowing users to perform annotations
either in on-site during live streaming or on captured frames. The
user concludes an annotation by clicking on the Annotate button.
The annotation will be stored in the folder specified by the user, in
the form of an RGB image in the native webcam’s resolution, and
a matching mask with the pixel annotations encoded by the colors
chosen by the user. LivePyxel is capable of reading most formats
supported by OpenCV, including . jpg, .png, .tiff, and .bmp,
and the annotated images are saved in .png format. The identity
and color of each labeled class are stored in a .json file for its
readability and its common use in a wide range of programming
and app development applications.
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2.4 Tablet integration

The use of drawing tablets in combination with graphics editors
is a desirable practice as it provides notable advantages over the
use of a computer mouse. Tablet integration improves annota-
tions by reducing the time required to delimit the contour of ob-
jects without compromising precision. The libraries that integrate
the core functionality of the program, OpenCV and pyQt, contain
highly optimized compatibility with computer mouse-like devices,
resulting in a smooth “plug-and-play” integration with LivePyxel.
The “Free Hand" is a specific tool designed to improve the user ex-
perience with drawing tablets. It allows the user to automatically
generate new vertices in a polygon by calculating the distance be-
tween the last vertex and the position of the tablet’s stylus, adding
a new vertex when the distance is greater than a reference thresh-
old. This behavior allows the user to focus entirely on the hand
movement, tracking the contour. This functionality was essential
for creating the dataset used to train a vision model to segment
eight different microorganisms in Section 3.1} using an Artist Dis-
play 15.6 Pro tablet.

3 Examples

Here, we present two distinct examples demonstrating the use
of LivePyxel for labeling training data in pixel-level vision tasks.
In Section [3.1, we showcase its application in a segmentation
task involving eight different microorganisms, highlighting man-
ual data annotation using Bézier splines and other built-in tools.
In Section we describe the development of a large dataset
through semi-automated labeling with binary masks, followed by
data augmentation techniques to evaluate LivePyxel’s scalability
in dataset creation for training vision models. A video introduc-
tion to the use of binary masks for the semi-automation of dataset
annotations is presented at: |tutorial link. For both examples,
the training pipelines and models were implemented using Py-
Torch®3. Finally, in Section [3.3] we compared the labeling accu-
racy of LivePixel with four other annotation tools.

3.1 Water Tank: Image Segmentation Task

The presence of certain microorganisms in the environment of-
ten serves as an indirect indicator of ecosystem health®4. These
organisms, commonly referred to as indicator species (IS), are
highly sensitive to chemical and physical changes in their envi-
ronment, and their use has become widespread in environmen-
tal assessment studies®>. Some datasets and data management
digital infrastructures have been published in recent years=638,
highlighting the growing importance of automation in the identi-
fication and monitoring of these species communities. However,
the ephemeral nature of these communities poses significant chal-
lenges in collecting and processing annotations for vision-model
tasks at a rate comparable to the speed at which such commu-
nities change. To demonstrate the capabilities of LivePyxel, we
curated a high-quality dataset capturing the biodiversity of wa-
ter samples collected from an urban park in Toronto, Canada, in
April 2025. We acquired 1,250 image-mask pairs from a water
tank, belonging to eight categories of microorganisms (see Sup-
plementary Material for more information).
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We trained a U-Net model?# for image segmentation across
eight categories, initializing it with VGG-19 pretrained weights32.
Each image in the dataset had an original resolution of 720x480
pixels. Due to the dataset’s limited size, certain categories were
underrepresented (see Fig. S.2 in the Supplementary Material).
To mitigate this imbalance, we applied categorical weighting to
the cross-entropy loss function and employed data augmentation
techniques. Additional architectural and training details are pro-
vided in the Supplementary Material. Training was carried out
over 131 epochs using two NVIDIA V100 16 GB GPUs, with a to-
tal training time of approximately 8 hours. For evaluation, we re-
served an independent test set of 200 images that were excluded
from both training and validation.

Fig. |5| presents the final F1 scores of the trained U-Net model,
which performed well in identifying the most abundant classes
despite the limited dataset size. These scores reflect consistent
accuracy for dominant taxa, but also highlight the challenges of
detecting rare or visually ambiguous classes such as tardigrades,
diatoms, and rotifers, an issue aligned with the class imbalance
of the dataset, where these taxa collectively account for only
about 10% of samples (see Fig. S.2 in the Supplementary Ma-
terial). As shown in Fig. [6} the model also struggled to detect
specimens that exhibit transparent bodies, highly variable mor-
phologies, and poor representation in training data, such as Vor-
ticella sp., resulting in incorrect contour recognition.

= Train
== \/alidation

 frdigradd

\

\

[diatom square_algae\

Fig. 5 The F1 scores achieved by a U-Net model, highlighting the per-
formance across the eight different microorganisms and the background.
The U-Net was initialized with the VGG-19 weights. For more details
regarding the training, see the main text.

The Environmental Microorganisms dataset served as an exam-
ple of the capacity of LivePyxel to rapidly produce quality anno-
tations of a rapidly changing community of species. The U-Net
attained reliable F1 scores for the most abundant classes, but per-
formance degraded for rare, transparent, or morphologically vari-
able organisms (e.g., Vorticella sp., diatoms, rotifers), reflecting
the dataset’s class imbalance. These outcomes underscore two
complementary needs for ecological vision models deployed in
dynamic microbial communities: (i) the importance of capturing
morphological variability; and (ii) the use of training strategies
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Fig. 6 Example predictions from the trained U-Net model on the Water
Tank (EM) dataset. Each row shows the original microscopy image (left),
the corresponding ground truth mask (middle), and the model’s predicted
segmentation (right). The legend on the right indicates the color coding
for each class.

that are robust to scarcity and ambiguous boundaries, including
categorical weighting in the cross-entropy loss to account for rare
classes, data augmentation and the potential in using data engi-
neering techniques to boost the capacity of the network to recog-
nize rare classes.

3.2 Snail Shells: Data engineering with binary masks
Creating training datasets for semantic segmentation is noto-
riously labor-intensive. Precise pixel-level annotations are re-
quired, and this process becomes especially difficult for images
containing many small and round objects, where annotators must
painstakingly outline each instance. For example, producing
1,000 segmentation masks for a benchmark like MS COCO took
about 2249 hours, highlighting the high cost of manual labeling.
The performance of most vision models improves significantly
with the size of the training dataset. This creates a strong incen-
tive to explore automated and semi-automated annotation meth-
ods and advanced data augmentation to expand datasets without
proportional human effort49,

In certain scenarios, a dataset can be constructed under highly
controlled lighting and background conditions to semi-automate
the annotation process. For example, using a uniform background
(e.g., a solid white or green backdrop) and exploiting simple
threshold-based image operations to obtain binary masks for the
foreground objects. In a controlled setup where the background is
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a known uniform color (such as white), images can be converted
to grayscale (or other color space) and apply a threshold that
classifies each pixel as background (0) or object (1) based on its
intensity or huel. This effectively binarizes the image, separat-
ing the objects from the backdrop. For example, researchers have
captured objects on a plain white background under consistent
lighting, which reduces the complexity of background removal
and allows easy discrimination of the object by simple intensity
thresholding when dealing with organic shapes2. In fields like
medical imaging, placing surgical instruments in front of a green
screen has been used to automatically extract tool masks — the
monochromatic green background makes it easy to isolate the in-
strument by hue thresholding®. In such controlled conditions,
the threshold can be tuned so that any pixel brighter (or darker)
than a set value is labeled as background, while the rest are la-
beled as foreground (object). This semi-automated mask gener-
ation dramatically speeds up dataset creation, since the bulk of
the annotation is handled by an algorithm (with minimal human
correction for any errors).

We used LivePyxel to test its capabilities in the automation and
generation of image/mask pairs in a highly controlled environ-
ment using an assortment of snail shells purchased at a dollar
store in Toronto, Canada. The dataset is composed of 4 different
classes, believed to correspond to different species of mollusks
(see Fig. S.3 in the Supplementary Material).

engineered
dataset (10K)

engineered
image

engineered
mask

Fig. 7 Pipeline for Engineered Semantic Segmentation Dataset Creation.
(Panel A) The binary mask tool from LivePyxel captures an image/mask
annotation of shells belonging to the same class. (Panel B) Masks are
overlapped on top of images to retrieve transparencies. (Panel C) Trans-
parencies are randomly stacked together, forming a new composite image
on top of a background. (Panel D) We quickly engineered a dataset con-
sisting of 10,000 image/mask pairs.

The original training data set was collected by placing a large
number of shells from the same category at the same time, us-
ing the binary mask tool to discriminate the background from the
shells, and assigning a color to the final annotation (Fig. [7} A).
This resulted in 1,400 individual annotations, each containing
only a single class per image. To prepare these data, we used
each binary mask to isolate the pixels of the object class within
the original image. This yielded a trimmed version of the object
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with transparency, where all background pixels were removed
and only the object pixels remained (Fig. [/} B). These trimmed
images were then stored along with their masks.

We implemented a randomized compositing strategy. For each
of the 10,000 engineered samples, a base background image was
selected, and the class folders were shuffled to introduce varia-
tion. A random number of classes were sampled, and for each
selected class, a transparent image was randomly chosen and
placed on the background (Fig. |7} C). The same transformation,
such as flipping or rotation, was applied to both the image cutout
and its corresponding mask. This ensured that pixel-level align-
ment was preserved within an image/mask pair. Multiple in-
stances from different classes were overlaid in succession, result-
ing in composite scenes that mimic realistic configurations with
precise pixel-accurate masks for each object (Fig. [7}D).

This pipeline produced a total of 10,000 synthetic image/mask
pairs, significantly enriching the dataset and introducing diverse
combinations of object instances, orientations, and overlaps.
These engineered samples were subsequently used to train the
same U-Net segmentation model used for Section keeping
the image size at 512. The model was trained for 24 hours on 4
NVIDIA A100 GPUs. In contrast with the water tank dataset (Sec-
tion [3.1)), the F1 scores for the snail shells dataset demonstrated
consistently high performance across all classes, with minimal
variation between training and validation sets and a very high
F1 score across all categories (Fig. [§). The model also exhibited
a rapid decline in the loss function, accompanied by a steep rise
in F1 scores within the first three epochs (Fig. S.5 and Fig. S.6 in
Supplemental Material). Fig.[9]showcases the predicted masks by
the trained U-Net for some of the images in the dataset.

background ] 172N
10 ] Validation

Smooth-Tiger

Sierpinsky

Fig. 8 F1 scores achieved by a U-Net model with VGG-19 backbone
during training and validation. The plot highlights performance across 5
different classes.

The snail-shells study demonstrates LivePyxel’s capacity to au-
tomate the creation of masks under highly controlled setups,
yielding fast, stable optimization and uniformly high F1 across
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Fig. 9 Example predictions from the trained U-Net model on the snail
shells dataset. Each set of three columns shows the original image (left),
the corresponding ground truth mask (middle), and the model’s predicted
segmentation (right). The legend below indicates the color coding for
each class.

classes. Compared to the environmental microscopy setting, the
engineered dataset reduces annotation costs in time and user ef-
fort. The U-Net architecture, initialized with VGG-19 and trained
on 10,000 composite image/mask pairs, converged within a few
epochs and exhibited a minimal train—validation gap. These re-
sults underscore that with accurate binary masks and controlled
backgrounds, segmenting small, round objects becomes straight-
forward under laboratory conditions and with the use LivePyxel.

3.3 Comparison between polygon and Bézier-splines

We evaluated the performance of LivePyxel against several widely
used annotation tools. To ensure a fair comparison, a reference
image composed of well-defined polygons with varying degrees
of curvature complexity was generated (panel labeled "Original"
in Fig. [10).

Our results show that the accuracy achieved with LivePyxel is
comparable to, or slightly higher than, other annotation software
packages, while maintaining similar annotation times; see Sec-
tion 5 in the SM. As highlighted in Section[3.2] a key advantage of
LivePyxel is its capability to perform Boolean operations directly
within the mask. This feature, uncommon among existing tools,
enables rapid and flexible labeling of complex regions, including
those with internal holes like the central object in Fig.

In terms of performance, LivePyxel exhibited a balanced trade-
off between false positives (5.7%) and false negatives (0.5%),
comparable to other tools (Fig. [I0). CVAT achieved the lowest
overall error (2.5% false positives, 1.3% false negatives) through
Al-assisted segmentation, but at the cost of a more complex setup,
internet dependency, and non-local data handling. VIA offered
the simplest installation (a standalone HTML file), whereas La-
belMe required manual dependency management on some Sys-
tems. COCO Annotator had the most challenging setup, in-
volving Docker and SQL-based database configuration. Among
these, only LivePyxel integrates Bézier-spline support, providing
smoother boundary representation than polygon-based tools such
as VIA, LabelMe, and COCO Annotator.
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@ ralse positives
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LivePyxel LabelMe

VIA CVAT Original

Fig. 10 Comparison of annotation accuracy across different annotation
tools using a reference image (Original) with various levels of curva-
ture complexity. Blue regions represent false positives (areas incorrectly
included), while red regions denote false negatives (areas missed). Per-
centages in each panel indicate the total proportion of false positives
(blue) and false negatives (red) for each tool relative to the total number
of pixels in the image.

4 Summary

We present LivePyxel, an open-source pixel-level annotation li-
brary designed for both on-site image labeling and pre-saved im-
age datasets. Built on OpenCV, LivePyxel efficiently handles im-
age processing tasks and introduces Bézier splines as a key fea-
ture, enabling smoother and more precise mask boundaries. To
demonstrate LivePyxel’s utility, we provide examples where the
labeled images, generated with LivePyxel, are used for training a
vision model, completing the annotation-to-inference loop. The
datasets for both presented examples were captured using a Go-
Pro camera mounted on a microscope, highlighting LivePyxel’s
compatibility with diverse imaging setups. Finally, LivePyxel sup-
ports the use of tablet-type devices, making the annotation pro-
cess more ergonomic. In the near future, we aim to implement
two additional features, i) zoom integration, allowing users to
work on finer details within LivePyxel’s central canvas (Fig.
E), and ii) inspired by CVAT’s Al integration tools, adding a tool
capable of loading Al vision models like SAM to help accelerate
the annotation process. Even in its present form, LivePyxel repre-
sents a significant innovation for labeling images, addressing an
unmet need for smoother editing tools that could accelerate data
generation.

Author Contributions

UG wrote the code for LivePyxel, annotated the datasets, and per-
formed all experiments. JOO and RAVH guided the project. All
authors wrote and approved the final version of the manuscript.

Conflicts of interest

The authors have no conflicts to disclose.

1~E]|7


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5dd00421g

Open Access Article. Published on 13 January 2026. Downloaded on 1/15/2026 7:17:02 AM.

This articleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Digital Discovery

Data availability

LivePyxel and all trained vision models and data presented in
this paper are freely available at https://github.com/UGarCil/
LivePyxel|and can be installed through PyPI. All datasets used in
this study are available at https://doi.org/10.5281/zenodo.
17858610.
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