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1 Introduction

Statistics makes a difference: Machine learning adsorp-
tion dynamics of functionalized cyclooctyne on Si(001)
at DFT accuracy’

Hendrik Weiske,¢ and Julia

Westermayr*@?

Rhyan Barrett,” Ralf Tonner-Zech, Patrick Melix,*

The interpretation of experiments on reactive semiconductor surfaces requires statistically significant
sampling of molecular dynamics, but conventional ab initio methods are limited due to prohibitive
computational costs. Machine-learning interatomic potentials provide a promising solution, bridg-
ing the gap between the chemical accuracy of short ab initio molecular dynamics (AIMD) and the
extensive sampling required to simulate experiment. Using ethinyl-functionalized cyclooctyne ad-
sorption on Si(001) as a model system, we demonstrate that conventional AIMD undersamples the
configurational space, resulting in discrepancies with scanning tunnelling microscopy and X-ray pho-
toelectron spectroscopy data. To resolve these inconsistencies, we employ pre-trained equivariant
message-passing neural networks, fine-tuned on only a few thousand AIMD snapshots, and integrate
them into a "molecular-gun” workflow. This approach generates 10000 independent trajectories
more than 1000 times faster than AIMD. These simulations recover rare intermediates, clarify the
competition between adsorption motifs, and reproduce the experimentally dominant on-top [2+2]
cycloaddition geometry. Our results show that fine-tuning of pre-trained foundational models enables
statistically converged, chemically accurate simulations of bond-forming and bond-breaking events on
complex surfaces, providing a scalable route to reconcile atomistic theory with experimental ensemble
measurements in semiconductor functionalization.

position and functional group identity, but fail to resolve site-

The functionalization of semiconductor surfaces, particularly sili-
con, offers a versatile means to tailor electronic, chemical, and
mechanical properties. 7™ Cyclooctynes, widely used in strain-
promoted click chemistry® 1 serve as selective and reactive
agents for Si(001) functionalization, enabling mild, covalent
attachment while minimizing side reactions. ZH12H19 gyrface-
sensitive experimental techniques such as scanning tunneling mi-
croscopy (STM) or X-ray photoelectron spectroscopy (XPS) pro-
vide rich detail on adsorption structures, coverage, and side re-
actions,I? yet they lack the temporal and atomistic resolution
needed to observe transient intermediates and adsorption path-
ways required to resolve reaction kinetics. Moreover, ensemble-
averaged spectroscopies yield information on overall surface com-
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specific energetics or orientation distributions. As a result, critical
details, including the relative barriers for adsorption on the two
non-equivalent dangling bonds of the Si(001) row (see Figure ,
the influence of subsurface strain on cyclooctyne ring opening,
and the lifetimes of metastable precursors, remain experimentally
inaccessible.

Computational approaches can complement experiment, but
rely on computationally costly quantum-chemical calculations. As
a consequence, studies are often left with static analyses using
density functional theory (DFT), which is usually the workhorse
of such simulations.2%21 However, for capturing reaction kinet-
ics and dynamical processes, molecular dynamics (MD) simula-
tions are needed. Classical force fields, which offer a compu-
tationally viable solution, lack the ability to describe covalent
bond formation and breaking. For some specific systems, reactive
Force Fields (ReaXFF have been used in surface chemical
studies. However, for statistically relevant sampling, these meth-
ods are also too demanding.2#27 Ab-initio molecular dynamics
(AIMD), in principle, offers both reactivity and accuracy, yet its
computational cost severely limits accessible timescales and sta-
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Fig. 1 Left: Lewis structure of 9-Ethinyl-O9Methylbicyclo[6.1.0]non-4-
in (ECCO). Right: reconstructed Si(001) surface, where Si-dimers are
formed on the surface consisting of Si,, and Sig,,, atoms. The dimer
can be described as a Si,, atom with a lone pair and a partial negative
charge, whereas the Siy,,,, can be described as carrying an empty p-
orbital.

tistical sampling.1228-31l Recent work on ethinyl-functionalized
cyclooctyne (ECCO, see Figure [1) adsorption at Si(001) surfaces
revealed a bottleneck: AIMD trajectories, even tens of picosec-
onds in length, can miss key binding modes observed experimen-
tally, leading to discrepancies in predicted versus measured domi-
nant adsorption geometries.1232 Whether such mismatches stem
from methodological limitations or from simple undersampling
remains an open and critical question.

To address this question, we leverage machine learning (ML)
to vastly accelerate surface MD simulations without compro-
mising ab-initio accuracy. Specifically, we fine-tune the foun-
dational equivariant, message-passing atomic cluster expansion
(MACE) model®334 MACE-MP-0, using our previous AIMD data
for ECCO/Si(001),22 deploying a "molecular gun" strategy that
generates thousands of statistically independent trajectories in
a black-box fashion to simulate ultra-high-vacuum experiments
(UHV) (for details see[2.1)).

Therefore, simulations at near-DFT accuracy become accessi-
ble, while being multiple orders of magnitude faster.> While the
MACE-MP-0 architecture is widely adopted across molecular and
materials applications, 6758 jts suitability for surface fine-tuning
with limited data,52%¢7 as demonstrated here, presents a prac-
tical solution to statistical convergence issues in surface chem-
istry, 6870

By fine-tuning a pre-trained MACE-MP-0 model % with targeted
ECCO/Si(001) AIMD snapshots, 22 we remove the sampling bot-
tleneck, enabling large-scale, chemically accurate simulations at
affordable computational cost. Our machine learning molecular
gun allows for detailed analysis of binding-site populations, des-
orption barriers, and ring-opening dynamics, placing the atom-
istic mechanism of ECCO adsorption in direct, quantitative corre-
spondence with STM and XPS data.1?

2 Computational details

To conduct ML-accelerated AIMD, we use the foundational MACE
model for materials, MACE-MP-0,24 and fine-tune it on data ob-
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tained by some of us in a recent study.*2 We therefore only briefly
summarise the quantum-chemical reference simulations and the
model architecture, referring to the cited publications for full de-
tails.

2.1 AIMD Reference Simulations

The ab-initio data for training were taken from previous
work327Ll ysing DFT-based MD. Trajectories were generated us-
ing VASP 5.4.4,72476 ysing the exchange-correlation functional
by Perdew, Burke, and Ernzerhof (PBE)ZZ78 with the DFT-D3(BJ)
dispersion correction scheme.”280 The simulations were de-
signed to model UHV deposition experiments, in which evapo-
rated molecules impinge on a surface with finite kinetic energy.
We therefore refer to this approach as the “molecular gun”. In
this protocol, the Si(001) slab (Table S3 and Figure S10) and
the ECCO molecule were first equilibrated separately for 40 ps at
300K in the NVT ensemble. From these trajectories, a configura-
tion (coordinates and velocities) was extracted every 1 ps to sam-
ple thermally excited states of both subsystems. Ten such config-
urations served as initial states for subsequent MD runs, in which
the molecule was accelerated towards the surface by adding a
random downward and random +x and +y velocity component,
mimicking the conditions of UHV deposition. The x and y con-
tribution accounts for incoming angles in a randomised fashion.
The velocity is rescaled to match 300K before adding it to the
molecule. We use this same strategy in our work to generate ad-
ditional initial conditions and improve statistical sampling.

In the reference data, dynamics were simulated in the NVT en-
semble using a Nosé-Hoover thermostat®1"63 at 300K with a Nosé
mass of 1.8.52

The complete AIMD dataset comprises approximately 327k
frames: formed from ~199k frames of the ECCO molecule and
~128k frames of molecular gun runs (ECCO+Si(001)).21 All
frames in which unphysical C-H bond fission occurred were re-
moved, which was concluded to be the result of a too large time
step in the underlying DFT data, surpassing the barrier that would
be expected for the C-H fission. This was the case in two of the
10 AIMD trajectories.22 After randomising the remaining frames,
every 25™ configuration was selected to form the production ma-
chine learning dataset (coordinates, velocities, and energies), re-
sulting in ~13 000 data points of ECCO on Si(001). As shown
previously, only a fraction of the entire trajectories is enough to
achieve good training results.84:8>

2.2 Machine Learning MD

All MD simulations in this work were performed using the
MD driver implemented in the atomic simulation environment
(ASE).8% Ag initial configurations, we used the ten starting struc-
tures from the reference AIMD simulations,®% providing pre-
equilibrated systems (see also subsection 2.1). For each run,
the position of the ECCO molecule in the x—y plane (parallel to
the surface) was randomised. The distance between the surface
atom plane and the ECCO centre of mass was fixed at 20 A, cor-
responding to an approximate shortest atom—surface separation
of 13A. To initiate motion towards the slab, a random velocity
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component was added to the initial DFT velocities of the ECCO
molecule along the z-axis. The velocities of the slab atoms were
kept unchanged from the AIMD frames. The simulations were
propagated with a time step of 0.5 fs for 20 000 iterations, corre-
sponding to a total simulation time of 10 ps. An NVE ensemble
was employed, 87 as the systems were pre-equilibrated at the tar-
get temperature in the DFT stage and the experimental surface-
deposition process is intrinsically non-equilibrium.

2.3 Machine learning

For machine learning, we employ the foundational messaging
passing atomic cluster expansion (MACE)"3 model, MACE-MP-
0,24 which was originally trained on the Materials Project Tra-
jectory (MPtrj) dataset.88 This dataset contains approximately
1.5 million configurations, primarily small periodic unit cells rep-
resenting inorganic crystals with some molecular components.%
Notably, the MPtrj dataset contains limited surface-chemistry
data, motivating the fine-tuning of MACE-MP-0 for improved
data efficiency. Our fine-tuning approach assumes that knowl-
edge gained from a large and diverse dataset of materials fa-
cilitates learning for new systems. Accordingly, the parameters
of MACE-MP-0 were used to initialise the training of fine-tuned
models. The model representation comprises of 128 scalar and
128 vectorial components. Fine-tuning was performed with a
learning rate of 0.001 for 100epochs to prevent overfitting,
re-initialising the readout layers.®? Training employed a batch
size of 16 across 8 NVIDIA A100-SXM4 GPUs. A weighting factor
of 1:100 between energies and forces was applied during train-
ing in the loss function, where both contributions were computed
using the mean squared error (MSE). The MSE of the energies
was weighted by 1, and the MSE of the forces was weighted by
100, reflecting the greater importance of forces for MD simula-
tions. Because of this weighting, the energies are considered less
reliable in this work and only the forces are used to represent the
correct dynamic behavior. Five percent of the 13k points are used
for validation and 10k randomly selected structures from the total
data points (excluding the 13k points used for training) are used
for testing. All other architectural parameters were kept at their
default values, matching those of the foundational MACE-MP-0
model.B? A fixed random seed of 24 was used for reproducibility.
For comparison, we also trained MACE models from scratch using
the same setup as the fine-tuned models, except for an increased
training length of 1 000 epochs.

2.4 MD Analysis

Trajectory analysis was performed using ASE modules. 8020 we
further used an automated detection method for adsorption
sites and modes. Structure visualizations were rendered using
Blender?! via our ASE-Blender interface.?? To evaluate the sam-
pling density of the space above the Si(001) surface, a binning
approach was conducted using NumPy v2.3.23 An xy-grid was
created and, for each xy bin in the unit cell, the lowest occurring
z-value of the centre of the cyclooctyne triple bond was stored for
the respective set of trajectories. The spacing of the xy bins was
set to one thousandth of the unit cell, corresponding to an area of
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0.0015A2 per bin.
3 Results and Discussion

Machine learning

To ensure accurate machine learning interatomic potentials, we
analysed the learning and training data distribution using learn-
ing curves and dimensionality reduction techniques, respectively.
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Fig. 2 Learning curve of the fine-tuned models showing the mean abso-
lute error (MAE) of forces (F) plotted against the dataset size in loga-
rithmic scale. The production dataset is marked in red, at 13000 data
points.

The learning curves for our fine-tuned models (Figure [2) plot
the force mean absolute error (MAE) on an independent test set,
with respect to the DFT reference, against the number of training
geometries on a log-log scale. The observed decay of the MAE is
clearly linear, demonstrating that the fine-tuned model continues
to benefit systematically from additional data. The energy and
force errors for varying training set sizes are presented in detail
for all models in Table S1 of the supplementary information (SI).
Fine-tuning generally requires fewer epochs and, consequently,
less training time than training models from scratch on the ECCO
on Si(001) system (see also Table[I). Both models achieve lower
errors than the non-fine-tuned foundational model. This is ex-
pected as the foundational model does not have knowledge on
the data and are also trained on another reference method. Ad-
ditionally, we find that models trained from scratch on our AIMD
data achieve lower errors than the fine-tuned versions from the
foundational model (1.75 x 103 eV and 2.97 x 10~2 eV/A for ener-
gies and forces, respectively, compared to MAEs of 2.73 x 1073 eV
and 4.04 x 102 eV/A for the fine-tuned models). This counter-
intuitive result likely stems from differences between the MPtrj
data and our target domain. The MPtrj dataset spans a much
broader chemical space, containing bonding motifs and structures
not directly relevant to our system. Fine-tuning adapts the model
to our trajectories, but it begins from parameter values optimized
for generalization across the MPtrj dataset. These values turn
out to be less suitable for the narrower Si—-C-H surface chemistry
under study, compared with random initialization when training
from scratch. Using a larger learning rate with a decay schedule
may help the fine-tuned model escape the local minima associ-
ated with the pre-training, potentially achieving errors compara-
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ble to the model trained from scratch. In practice, this involves
starting with a relatively high initial learning rate followed by
exponential decay, where the learning rate is reduced after sev-
eral epochs without improvement. However, this may come at
the cost of losing much of the information gained from the MPtrj
dataset. That said, it is important to note that a direct compar-
ison of error metrics is not a good measure for evaluating per-
formance in MD simulations. Machine learning potentials are, in
essence, interpolators, and because the test set is drawn from the
same underlying DFT trajectories as the training set, it contains
very similar configurations. These metrics therefore do not reflect
how the model behaves on new trajectories that sample regions
of configuration space not well represented in the training data.
For test set error metrics to more accurately reflect MD perfor-
mance, a much more comprehensive set of reference configura-
tions would be required, ideally covering the full space of poten-
tial trajectories. However, obtaining such coverage would require
many expensive DFT trajectories and is therefore not practical.
Nevertheless, the key advantage of fine-tuned models is that they
retain knowledge from their pre-training, enabling broader trans-
ferability across chemical space. In our case, the strength lies
in generalizing to unforeseen configurations not present in the
training set that might be seen in a potential MD trajectory, mak-
ing the model more suitable when generalizability and accurate
observables are preferred over minimizing the error over a selec-
tion of predefined configurations. To support this, we compared
MD simulations of unfunctionalized cyclooctyne at the Si(001)
surface using both models, applying the same protocol. Remark-
ably, the fine-tuned model outperformed the model trained from
scratch, resulting in a negligible number of unphysical cyclooc-
tyne structures (see section S4 of the SI for details). However,
the foundational model used, MACE-MP-0, may not be an ideal
starting point since it contains a large amount of inorganic bulk
crystals not directly related to surface chemistry. Other models,
such as the MACE-OMAT4, which were trained on a vastly larger
and more chemically diverse dataset, are expected to extrapolate
better to surface systems; however, the underlying dataset still
lacks explicit surface configurations. Future work in this area will
likely focus on developing foundational models trained directly
on surface and adsorbate data to improve transferability and re-
duce the need for task-specific fine-tuning

For final models, we use every 25" AIMD frame, resulting in
13000 data points for training. To ensure that these ~13 000
configurations adequately span relevant reaction pathways and
surface environments, we embedded both training and reference
AIMD geometries into a low-dimensional manifold using princi-
pal component analysis (PCA) based on equivariant geometrical
descriptors (Figure [3). As shown, both datasets cover approxi-
mately the same space, demonstrating the completeness of our
training dataset using only every 25" AIMD frame for training.
Energy-scaled PCAs for all relevant parts of the dataset are pre-
sented in Figure S6 (SI), indicating that reducing the production
dataset size does not significantly reduce the chemical space or
energy ranges covered.
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Full datatset
Production dataset

Principal Component 2

Principal Component 1

Fig. 3 PCA analysis of the full (red) and the production AIMD-datasets
(blue). Equivariant features are used for the descriptors as inputs for
PCA.

ML Driven MD Simulations

Table 1 Computational time comparison of DFT and machine learning
MDs. DFT values are extrapolated from one trajectory. One MD run
consists of 20000 time steps. All timings in CPUh/GPUh, respectively.
Training was performed on 8 GPUs and takes 1.1 h for fine-tuned models
and 6.6 h for models trained from scratch.

Method  FullMD? 1 MD Step 1000 MDs
DFTP 7.1 x 10* 3.6 7.1 x 107
ML® 43 22x107* 4.4x103
MmLd 1.0x1071  50x10°° 1.0 x 10?

420.000 steps, extrapolated from 14,933 steps for DFT-MD.
b CPU: 20 Intel Haswell E5-2680v3 = 240 cores total.

¢ CPU: 1 AMD EPYC CPU 9334 = 1 core.

d GPU: NVIDIA H100-SXMS5.

To assess the role of statistics in MD simulations and to enable
meaningful comparison with experiments, we performed 100,
1000, and 10 000 trajectories using machine learning interatomic
potentials, in contrast to the 10 trajectories feasible with full DFT-
based AIMD. Both machine learning models were tested for their
ability to reproduce relevant chemical events in the MD runs. As
shown in Table[T] using machine learning models results in a dra-
matic reduction in computational time over AIMD of several or-
ders of magnitude. At the same time, the training time of the
fine-tuned model training is only 1.1h on eight GPUs. For the
model trained from scratch, increasing the number of epochs by a
factor of 10 in comparison to the fine-tuned model, increases the
training time by a factor of six to 6.6 h.

To analyse whether improved statistics lead to larger sampling
of configuration space during dynamics and new structures not
observed in the 10 DFT-based AIMD, we analyse representative
adsorption structures. These are illustrated in Figure Nine
representative adsorption structures arise in our molecular gun
simulations: 1-on-top cyclooctyne (OT-CY), 2-bridge cyclooctyne
(BR-CY), 3-on-top ethinyl (OT-ET), 4-bridge ethinyl (BR-ET), 5-
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Fig. 4 Binding modes as detected using ML-MD and (partially) AIMD
(1—-9). Si atoms blue, C black and H white. ECCO binds either via
the triple bond of the cyclooctyne (CY) or ethinyl (ET) group. The
Si(001) surface offers two distinct binding sites on-top (OT) and bridge
(BR). As each ECCO can bind via the two functional groups, also doubly
bound ECCO molecules can be observed (DB). During reactions of ECCO
with the surface, ECCO molecules that bind to a single Si atom can
be observed (precursor states, PC). When Si atoms of the second Si
atom layer are involved in bonding, structures are labeled as sublayer
(SL). These binding modes can also occur with doubly bound ECCO
molecules(sublayer-double, SL-DB). For the topview and available DFT
binding energies see Figure S6.

double (DB), 6-precursor (PC), 7-sublayer (SL), 8-sublayer dou-
ble (SL-DB), and 9-other.

Configurations 1-4 involve the molecule spanning two adja-
cent surface atoms, either via the cyclooctyne ring’s triple bond
(CY; 1 and 2) or the ethinyl group (ET; 3 and 4). The two sur-
face atoms can be on the same Si dimer (on-top, OT; 1 and 3)
or on neighboring dimers (bridge, BR; 2 and 4). Configuration
5 comprises states where both triple bonds react with the surface
to form doubly bonded ECCO (DB). The precursor state (PC; 6)
describes ECCO datively bound to a single Si atom. This state
is observed in DFT data, where it is an important reaction inter-
mediate.?2 In sublayer (SL; 7) and sublayer-double (SL-DB; 8)
structures, ECCO binds to a Si atom beneath the top layer, ei-
ther singly or doubly. All other configurations (mainly both triple
bonds in a datively bonded state) are grouped as other (9).

Figure |5/ shows the distribution of final ECCO adsorption sites
on Si(001) for the fine-tuned model and the AIMD reference. The
distributions obtained for the other discussed models are shown
in Figure S1. The main experimental adsorption mode corre-
sponds to the on-top cyclooctyne (1), shown in yellow.1? The
10 DFT-based AIMDs fail to capture the experimentally dominant
motif 1, while instead over-emphasizing the doubly bonded mode
5. The 1000 trajectories obtained using the fine-tuned MACE-MP-
0 model are able to capture the experimental motif much better,
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Fig. 5 Distribution of the binding modes at the end of each MD simula-
tion for the fine-tuned MACE-MP-0 model and the the AIMD reference.
The binding mode distribution of the fine-tuned model is given in red and
the AIMD reference in green. The "single adsorption configuration"1%
observed in STM is highlighted in yellow.12

recovering the statistics of the adsorption. Additionally, several
adsorption configurations are found which correspond to inter-
mediate states in the DFT trajectories. Notably, most of these
structures are not observed experimentally since they are not sta-
ble enough to be observed under experimental conditions.

Not all MD trajectories yield covalent binding — non-productive
outcomes are labelled: intact but floating ECCO (i), H-abstraction
(ii), broken C-C bonds (iii, see Figure S5, SI), and “explosions”,
corresponding to total disintegration of the molecule due to insuf-
ficient training data in this region, (iv). As shown in Figure S1a,
the fine-tuned model best matches experiment. From-scratch
models produce a high fraction (> 30%) of desorbed intact ECCO
(i), while MACE-MP-0 often breaks the C-C bond (~ 20%; iii).
The tendency of the MACE-MP-0 and from-scratch model yield
unphysical or unproductive events, despite low MAEs, under-
scores that the fine-tuned model generalizes better and predicts
realistic dynamics at scale. The increasing fraction of desorbed
molecules in the from-scratch model are considered unrealis-
tic due to the experimental sticking coefficient of approximately
one for the unfunctionalized cyclooctyne meaning that almost all
molecules are expected to adsorb when hitting the surface.12 We
do concede though that the models results may be less reliable
once the dynamics moves too far outside of the training domain.
Uncertainty measurements during key binding events could help
increase the models trustworthiness.

Figure S1b illustrates convergence of binding mode popula-
tions with increasing number of MD trajectories. Moving from
100 to 1000 machine learning based MD trajectories, there is a
marked shift in the observed binding mode distribution and cov-
ered configurational space, as supported by PCA descriptor plots
(see Figure S7). The difference between 1000 and 10000 tra-
jectories, however, is minor, indicating statistical convergence is
reached around 1000 independent simulations. The precise pro-
portions of binding modes for 1 000 and 10 000 runs are summa-
rized in Table S2. In order to show the statistically unconverged
results, four sets of 10 ML-trajectories are run (Figure S12). This
results in a varying distribution for each of the sets, showing the
low number of trajectories to be a main contributor of the previ-
ous disagreement between experiment and theory.32
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Fig. 6 Representation of the sampling (top view). Utilizing a binning
approach on the center of the cyclooctyne triple bond over all simula-
tion runs for (a) 10 DFT, (b) 100, (c) 1000, and (d) 10000 trajectories
obtained using the fine-tuned MACE-MP-0 model. The bins are created
with a size of 0.0015A% and colored corresponding to the lowest occur-
ring z-value (surface normal). The height information is relative to the
topmost surface atoms.

Examining surface sampling, Figure [f] displays the minimum
distance between the cyclooctyne triple bond and the surface for
all trajectories. DFT-based trajectories reach only a limited set
of surface sites, reflecting the small sample. With 100 machine
learning-driven simulations using the fine-tuned model, coverage
expands, but many regions remain unsampled. For both 1000
and 10 000 trajectories, all surface regions are visited, supporting
the conclusion from Figure S1b that 1 000 runs suffice for statisti-
cal convergence. (See Figure S3 for mode-colored sampling, and
Figure S4 for a side view.)

Preferred Binding Mode

The statistical convergence of binding mode distributions demon-
strates that AIMD simulations based on only 10 DFT trajectories
are insufficient to provide a realistic depiction of ECCO adsorption
behavior. Most notably, the most prominent double-adsorption
structure (5) appears primarily because the PBE functional un-
derestimates the ethinyl reaction barrier by approximately 0.1 to
0.2 €V, as previously shown by Pecher and Tonner-Zech.?2 This
underestimation, and the consequent increased likelihood for the
ethinyl group to react with the surface, are therefore also inher-
ited by our ML models.

4 Conclusion

We have demonstrated that large-scale molecular dynamics sam-
pling is essential to accurately reproduce experimental adsorption
statistics for large molecules adsorbing on a surface at the exam-
ple of ethinyl-functionalized cyclooctyne on Si(001). By leverag-
ing equivariant message-passing neural network potentials, com-
paring models trained from scratch and fine-tuned models based
on parameters of foundational models, we achieved over 103-
fold speed-ups compared to conventional DFT-based molecular

6| Journal Name, [year], [vol.], 1@
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DOI: 10.1039/D5DD00420A

dynamics, enabling 103-10* trajectories to be run with moderate
computational resources. Fine-tuning on a few thousand AIMD
snapshots is critical to adapt foundational models for specific sur-
face chemistry: without this step, important adsorption modes
are missing in subsequent machine learning-driven MD. More-
over, fine-tuning requires only a handful of epochs, reducing both
training times and data requirements, while also minimizing the
risk of catastrophic forgetting compared to training from scratch.

Our high-throughput based MDs uncover numerous new final
states, such as mixed on-top/sublayer motifs, which are rare or
completely absent in the few DFT-based runs. This comprehen-
sive sampling shifts theoretical predictions towards the experi-
mentally dominant on-top adsorption mode. Nevertheless, cer-
tain DFT-induced biases persist, in particular the tendency for the
double-adsorption motif to appear due to the PBE underestima-
tion of the ethinyl reaction barrier, which is inherited by the ma-
chine learning models. As the number of trajectories increases,
surface sampling rapidly improves: at 100 runs, significant re-
gions remain unsampled; at 1000, all key binding motifs are vis-
ited; at 10 000, near-complete coverage of the surface is achieved.

The statistical convergence of site populations between 1000
and 10000 trajectories is minor, clearly indicating that poor sta-
tistical sampling — rather than deficiencies in ab-initio theory —
explains discrepancies between previous AIMD and experimental
studies. Future work could further improve accuracy by employ-
ing A-learning, fine-tuning against higher-level quantum data,
or selectively incorporating experimental observables to address
residual DFT errors. Overall, our “machine-learning molecular
gun” workflow provides a robust and scalable means to connect
atomistic mechanisms with ensemble-level experiments, thereby
guiding the rational design of surface-functionalized semiconduc-
tor devices. Due to the small fine-tuning required, this model can
easily be extended to other surfaces and adsorbates with the po-
tential to significantly increase the impact of modelling in com-
putational surface dynamics.

5 OQutlook

This work is a mere first step into the combination of quantum-
chemical surface chemistry with machine learning targeting a sin-
gle molecule on a surface. In the future, this approach can be ex-
tended to include molecule-molecule interactions. However, on a
DFT level, this is not possible at large scales because of the many
possible arrangements of the molecules. Nevertheless, they can
play a fundamental role in coverage dynamics, e.g., via reactivity
reduction?®?7 or a long-range steering effect’®, which has been
investigated in a static fashion.

The ability to obtain statistics in DFT-quality MD will enable
completely new avenues in surface chemistry, functionalization,
catalysis, thin-film growth, and related fields, enabling us to get
the chemistry right and provide statistically relevant answers to
experimental questions.
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Data availability statement

Data availability
The data used to train ML models is freely available under the following link:
https://dx.doi.org/10.17172/NOMAD/2021.09.28-2

Code availability

The code used to conduct molecular dynamics with the MACE model is freely available via the ASE package. Instructions to
train MACE models and foundational models using fine-tuning processes can be found in the corresponding manual. All scripts
and outputs (excluding ML-MD trajectories due to size) produced in this project are available in the published raw data on
Zenodo: https://doi.org/10.5281/zenodo.17523493.
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