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Assessing the performance of quantum-mechanical de-
scriptors in physicochemical and biological property
prediction†

Alejandra Hinostroza Caldas,a Artem Kokorin,b Alexandre Tkatchenko,∗b and Leonardo
Medrano Sandonas∗b‡

Machine learning (ML) approaches have drastically advanced the exploration of structure-property
and property-property relationships in computer-aided drug discovery. A central challenge in this
field is the identification of molecular descriptors that can effectively capture both geometric- and
electronic structure-derived features, enabling the development of reliable and interpretable predictive
models. While numerous descriptors focusing solely on structural characteristics have been recently
proposed, improvements in model accuracy often come at the cost of increased computational de-
mands, thereby restricting their practical applicability. To address this challenge, we introduce the
“QUantum Electronic Descriptor” (QUED) framework, which integrates both structural and elec-
tronic data of molecules to develop ML regression models for property prediction. In doing so, a
quantum-mechanical (QM) descriptor is derived from molecular and atomic properties computed
using the semi-empirical density functional tight-binding (DFTB) method, which allows for efficient
modelling of both small and large drug-like molecules. This descriptor is combined with inexpensive
geometric descriptors–capturing two-body and three-body interatomic interactions–to form compre-
hensive molecular representations used to train Kernel Ridge Regression and XGBoost models. As
a proof of concept, we validate QUED using the QM7-X dataset, which comprises equilibrium and
non-equilibrium conformations of small drug-like molecules, demonstrating that incorporating elec-
tronic structure data notably enhances the accuracy of ML models for predicting physicochemical
properties. For biological endpoints, we find that QM properties provide some predictive value for
toxicity and lipophilicity prediction, as assessed using the TDCommons-LD50 and the MoleculeNet
benchmark datasets. Moreover, a SHapley Additive exPlanations (SHAP) analysis of the toxicity and
lipophilicity predictive models reveals that molecular orbital energies and DFTB energy components
are among the most influential electronic features. Hence, our work underscores the importance of
incorporating QM descriptors to enhance both the accuracy and interpretability of ML models for
predicting multiple properties relevant to pharmaceutical and biological applications.

1 Introduction
Quantum-mechanical (QM) descriptors have emerged as power-
ful tools in molecular property prediction, effectively bridging
theoretical physics and chemistry with practical applications in
drug discovery1–4 and material science5–8. These descriptors
are derived from the electronic structure of molecules, which is
obtained by solving the Schrödinger equation. While this pro-

a Universidad Nacional de Ingeniería, Av. Túpac Amaru 210, Rímac, Lima 15333, Peru.
b Department of Physics and Materials Science, University of Luxembourg, L-
1511 Luxembourg City, Luxembourg. E-mail: alexandre.tkatchenko@uni.lu,
leonardo.medrano@tu-dresden.de
‡ Present address: Institute for Materials Science and Max Bergmann Center of Bio-
materials, TUD Dresden University of Technology, 01062 Dresden, Germany.
† Supplementary Information available: See DOI: 00.0000/00000000.

cess can be computationally demanding–particularly for large
and flexible drug-like molecules–advancements in computational
chemistry have made it more tractable through approximate
methods such as density functional theory (DFT)9,10 and semi-
empirical (SE) methods11,12. A critical input for these QM meth-
ods is the 3D spatial arrangement of atoms forming a molecular
system, which is often overlooked in the development of predic-
tive models within computer-aided drug discovery13,14. Tradi-
tional descriptors used in this context are typically based on easily
computable molecular and atomic features, such as SMILES (Sim-
plified Molecular Input Line Entry System) strings15, molecular
weight16, Morgan fingerprints17, and Fukui functions18. Despite
their practicality, these descriptors lack the mechanistic insight
into short- and long-range molecular interactions that electronic
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Fig. 1 Diagram of the “Quantum Electronic Descriptor” (QUED) framework. The input to QUED consists of a set of molecules represented as SMILES
strings. Three-dimensional molecular structures are then generated using the RDKit package. Conformational ensembles and quantum-mechanical
(QM) properties for each molecule are subsequently computed using the CREST and DFTB+ codes. This resulting dataset forms the basis for
constructing geometric descriptors, which are then used to predict molecular properties or to train machine learning (ML) models via regression
methods such as Kernel Ridge Regression (KRR) and eXtreme Gradient Boosting (XGBoost). The choice of descriptor depends on the specific
regression task.

structure-based descriptors can provide. As a result, QM de-
scriptors are attracting increasing attention for predicting physic-
ochemical properties8,19, environmental-related properties20,21,
and ADMET (Absorption, Distribution, Metabolism, Excretion,
and Toxicity) endpoints22–25.

Among the ADMET endpoints, toxicity stands out as a criti-
cal factor due to its direct implications for drug safety, spanning
from mild adverse effects to severe, life-threatening outcomes.
Indeed, pre-clinical and clinical (animal and human) toxicity is-
sues account for over 30% of drug attrition26, highlighting the ur-
gent need for reliable early-stage prediction methods. Late-stage
failures not only entail significant losses in time and resources
but also often require revisiting earlier development phases, even
when compounds have shown favorable pharmacokinetic prop-
erties27,28. Consequently, computer-aided screening is essential
for identifying potential toxicity risk early in the drug discovery
pipeline, thereby supporting more efficient compound prioritiza-
tion and structural optimization. Recent studies have empha-
sized the predictive value of descriptors that encode electronic
properties, such as molecular orbital energies, polarization, re-
activity, and total energy, in modelling toxicity across various bi-
ological datasets29–34. These features are particularly relevant
for capturing complex covalent interactions, which are central to
many toxicological endpoints. Moreover, the increasing availabil-
ity of large and curated toxicity datasets (e.g., ToxBenchmark35,
MoleculeNet36) has spurred the development of numerous ma-
chine learning (ML) frameworks for toxicity prediction15,37,38.

A critical challenge in developing ML models for property pre-
diction that incorporate conformational sampling lies in the struc-
tural representation of conformers. Specifically, one must de-
fine a multidimensional function that transforms discrete atomic
information–such as Cartesian coordinates and nuclear charges–

into a task-appropriate structural representation, commonly re-
ferred to as a geometric descriptor39,40 These transformations
must satisfy several essential criteria: they should preserve fun-
damental physical symmetries (i.e., be invariant under trans-
lations, rotations, and permutations of identical atoms), en-
sure smoothness (so that small changes in atomic positions
lead to small changes in the descriptor), and be complete (en-
suring that distinct molecular configurations are not mapped
to the same representation)41,42. Early examples of such de-
scriptors include the Coulomb matrix (CM)43 and the Bag-of-
Bonds (BOB)44, which achieve rotational and translational in-
variance by encoding two-body Coulombic interactions. Build-
ing on these foundations, more expressive and permutation-
ally invariant many-body descriptors45—such as the Spectrum of
London and Axilrod–Teller–Muto (SLATM) potentials46 and the
Faber–Christensen–Huang–Lilienfeld (FCHL) representation47—
have demonstrated higher accuracy in predicting both exten-
sive and intensive physicochemical properties of small drug-like
molecules. More sophisticated descriptors have since been intro-
duced39,48, offering even greater predictive performance. How-
ever, these improvements often come at the expense of increased
computational cost, particularly when applied to large and flex-
ible molecules common in pharmaceutical and biological con-
texts. To address this challenge in the development of ML mod-
els for biomedical endpoint prediction, one promising strategy is
to augment inexpensive geometric descriptors with QM-derived
features. This hybrid approach can enhance both accuracy and
generalizability while maintaining computational efficiency. Fur-
thermore, due to their inherent simplicity and informative nature,
such combined descriptors may also facilitate the development of
more interpretable ML models for toxicity prediction49.

In this work, we introduce the “QUantum Electronic Descrip-
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tor” (QUED) framework, which integrates structural features and
electronic structure data of molecules to develop ML regression
models for property prediction (see Fig. 1). Our primary goal
is to evaluate the performance and interpretability of these hy-
brid descriptors in predicting physicochemical properties and bi-
ological responses of drug-like molecules. To this end, we employ
inexpensive structural descriptors such as BOB and SLATM to cap-
ture essential geometrical information. These are complemented
by an electronic descriptor (DQM), composed of molecular and
atomic properties computed using the semi-empirical QM method
density functional tight-binding (DFTB)50. Both types of descrip-
tors are used in combination with kernel ridge regression (KRR)
and XGBoost algorithms to investigate different strategies for en-
hancing predictive reliability. As a proof-of-concept, we first as-
sess QUED ability to predict extensive and intensive physicochem-
ical properties of both equilibrium and non-equilibrium small
molecules from the QM7-X dataset51. The gained insights are
then leveraged to evaluate the effectiveness of hybrid descriptors
for toxicity prediction in large and flexible drug-like molecules
from the LD50 dataset52,53. We further explore QUED potential
to predict lipophilicity using data from the MoleculeNet bench-
mark36. To interpret model predictions and identify key elec-
tronic features relevant to target properties, we employ SHap-
ley Additive exPlanations (SHAP)54. Our results demonstrate
that DFTB-derived electronic descriptors capture subtle molec-
ular interactions that purely geometrical representations often
miss, thereby enhancing the performance of specific ML regres-
sion models. In particular, molecular orbital energies and DFTB
energy components are key contributors to this improvement.
Overall, QUED offers a robust and interpretable framework for
developing predictive models of physicochemical properties and
biological responses.

2 Methods

2.1 The QUED framework

2.1.1 Machine learning regression techniques

Kernel Ridge Regression (KRR). As part of the QUED frame-
work, we have developed the KRR-OPT toolbox that can be used
to train ML models for property prediction using the KRR method
(also known as the ’kernel trick’)55. Various features, including
kernel functions, molecular descriptors, and metrics, have been
implemented to capture the unknown structure-to-property rela-
tionships in complex molecular systems. KRR-OPT toolbox also
considers a quasi-Newton algorithm such as the limited-memory
Broyden–Fletcher–Goldfarb–Shanno (BFGS) for hyperparameter
optimization. Within KRR-OPT, the target property array ŷ is given
as

ŷ(x) =
n

∑
I=1

αI K(xI,x′I), (1)

where x and x′ denote the chosen representation of the molecules,
K is the kernel function, and α = (K+λ I)−1y is the solution to
the minimization problem,

min
α∈Rn

[
1
2
||Kα −y||22 +

λ

2
α

T
α

]
, (2)

with λ as a small and mathematically necessary regularisation
parameter, which secures the invertibility of the kernel matrix. In
this work, we have only considered the Laplacian and Gaussian
kernel functions, which are represented as,

KLaplacian = e−
||xI−xJ ||

σ , KGaussian = e−
||xI−xJ ||

2

σ2 .

(3)
σ is the length-scale hyperparameter, and the second hyperpa-
rameter to be optimized in the KRR-OPT algorithm. The determi-
nation of the optimal set of hyperparameters relies on the simul-
taneous optimisation of the hyperparameters, training set, and
validation set. To carry out this process, KRR-OPT considers a
given number of randomly distributed molecular sets. To train
the KRR models, each benchmark dataset was randomly split into
training, validation, and test sets. The number of samples allo-
cated to the training and validation sets is reported in Table S2
of the Supplementary Information (SI), while the remaining sam-
ples were used for testing. The KRR-OPT toolbox can be accessed
in the QUED Github repository.

eXtreme Gradient Boosting (XGBoost). As a member of the
gradient boosting category, at each boosting iteration, the XG-
Boost algorithm56 augments the model with a new tree ft(x) by
minimizing a regularized objective function given by

L̃(t) =
n

∑
j=1

l
[
yi, ŷi

(t−1)+ ft(xi)
]
+Ω( ft) , (4)

where l represents the loss function measuring discrepancy be-
tween the true label yi and the prediction ŷ(t−1)

i , while Ω( ft) pe-
nalizes model complexity. To simplify Eq. (3)’s optimization prob-
lem, the loss is approximated by a second-order Taylor expansion,

L̃(t) =
n

∑
j=1

l
[

gi ft(xi)+
1
2

hi ft(xi)
2
]
+Ω( ft) , (5)

where gi and hi denote the first and second derivatives (gradient
and Hessian) of the loss with respect to the prediction for the
ith sample. The contributions from samples falling into each leaf
node j are then aggregated, leading to

L̃(t) =
n

∑
j=1

l
[

G jw j +
1
2
(H j +λ )w2

j

]
+ γT , (6)

with G j = Σi∈I j gi and H j = Σi∈I j hi being the sum of gradients and
Hessians of all samples in leaf j, λ and γ acting as regularization
parameters, and T denoting the total number of leaves. Opti-
mizing Eq. 6 with respect to the leaf weight w j by setting its
derivative to zero yields the optimal weight

w∗
j =−

G j

H j +λ
. (7)

Hyperparameter tuning was executed via a Bayesian optimiza-
tion framework implemented in the Optuna57 package. In each
iteration, a five-fold cross-validation was employed, with the ob-
jective of maximizing the negative root mean square error. Fur-
thermore, each predictive model underwent 100 iterations of this
optimization process. For all benchmark datasets, the training
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Fig. 2 Scheme of the QUED framework used to predict physicochemical and biological properties from structural and electronic descriptors. QUED
integrates geometric representations, such as Bag-of-Bonds (BOB) and the Spectrum of London and Axilrod–Teller–Muto potential (SLATM), with a
quantum mechanical (QM) descriptor (DQM) computed at the DFTB3+MBD level. Predictive models are trained using Kernel Ridge Regression (KRR)
and eXtreme Gradient Boosting (XGBoost) methods on two datasets, including QM7-X 51 for physicochemical properties of small organic molecules
and TDCommons-LD50 52 for experimental acute toxicity values of drug-like compounds. Molecular size distributions and elemental compositions are
shown for these datasets. We have also considered the MoleculeNet-Lipophilicity benchmark dataset 36, plots are provided in Fig. S6 of SI.

set sizes matched those used to develop the KRR models. Train-
ing samples were here selected using the farthest point sampling
(FPS) technique58, and the remaining samples constituted the
test set. More details about the hyperparameter optimization can
be found in Table S3 of SI. The module performing XGBoost cal-
culations will be integrated into the KRR-OPT toolbox in a later
version.

2.1.2 Molecular descriptors

A crucial step in developing ML regression models within the
QUED framework includes the measurement of molecular simi-
larity through the comparison of high-dimensional molecular de-
scriptors. We have here evaluated the predictive performance
of geometric and electronic descriptors both independently and
in combination (via concatenation) to predict physicochemical
properties and biological responses of drug-like molecules. An
overview of the molecular descriptors used in this work, and their
integration into QUED, is illustrated in Fig. 2. Details of the com-
putational costs involved in generating the electronic and geo-
metric descriptors are provided in Fig. S5 of the SI.

Geometric representations. The two-body molecular descrip-
tor Bag-of-Bonds (BOB), as well as the two and three-body de-
scriptor SLATM, were used in the present work. BOB, a vector-
ized molecular representation, was introduced as a slightly more
complex and improved version of the Coulomb matrix (CM) rep-
resentation43, inspired by an ML approach in text processing bag-
of-words44. This descriptor is obtained by sorting into ’bags’ (i.e.,
individual vectors) the types of bonds between pairs of atoms,
which comprise a CM element. Each bag contains a single type
of bond, and the bags are concatenated; the end of the vector is

padded with zeros, so as to obtain the same vector length inde-
pendent of the size of the molecules in a given dataset. However,
the BOB representation is solely based on the atomic numbers
and interatomic distances and, therefore, still lacks more precise
spatial information about the molecule.

The SLATM descriptor involves a two-body term, which is a
function of the coordinates and atomic numbers of the constituent
atoms, and a three-body term, which includes a van der Waals po-
tential contribution based on the Axilrod-Teller-Muto three-body
potential46. The presence of a three-body term and thus the in-
clusion of van-der-Waals interactions in the molecular descriptor
indicate a much more elaborate picture of the impact of the sur-
rounding environment on each atom. Accordingly, SLATM has
proven to be a more complex molecular representation that yields
better performance in ML models, albeit with increased compu-
tational costs for its generation and higher running costs due to
larger sizes compared to two-body descriptors like BOB. How-
ever, SLATM still only considers neighboring atoms and is there-
fore not prohibitively expensive, making it suitable for extensive
benchmark studies with multiple components where varying pa-
rameters and running calculations are required. Although this
work primarily focuses on BOB and SLATM as baseline geomet-
ric representations, we additionally benchmark selected perfor-
mance metrics against those obtained using the Smooth Overlap
of Atomic Positions (SOAP) descriptor59.

Electronic representation. The second type of descriptor fo-
cuses on the electronic structure features of a given molecular
system. Here, our main purpose is to define a reliable and ef-
ficient electronic descriptor that does not required large com-
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Table 1 Electronic structure features included in the DQM descrip-
tor. These features were calculated using the semi-empirical third-order
DFTB method (DFTB3) supplemented with a treatment of many-body
dispersion (MBD) for van der Waals interactions. We categorize these
properties into three subsets: global, MO energies, and atomic.

Subset Label Property name Dim

Global
(Dglob)

EFermi Fermi energy 1
Eband Band energy 1
NE Number of electrons 1
EH0 Reference density energy 1
Escc Self-consistent charge energy 1
E3rd Third-order correction energy 1
Erep Repulsion energy 1
Embd Many-body interaction energy 1
||µTB|| Scalar dipole moment 1
ETB

gap HOMO-LUMO energy gap 1
MO energies
(DeMO)

ε
Molecular orbital
energies

8

Atomic
(Datom)

Q
Atomic Mulliken
charges

N

putational overheads rising from highly accurate QM methods
(e.g., DFT, coupled-cluster) for which single-point calculations
of big conformational datasets of large drug-like molecules are
not sustainable for high-throughput studies. Accordingly, the QM
properties of molecular conformations are calculated using the
semi-empirical third-order DFTB method (DFTB3)60,61 supple-
mented with a treatment of many-body dispersion (MBD) for van
der Waals interactions62,63, as it is implemented in the DFTB+
code64. The versatile performance of DFTB method has al-
ready been demonstrated in several works51,65–70. For instance,
DFTB simulations were used to gain a molecular understand-
ing of the temperature-gradient degradation of polyethylene and
polypropylene and to evaluate the subsequent oxidative upcycling
reactions65. DFTB+MBD was also recently used to investigate
the relative stability of native states of several proteins in explicit
solvation66. Similarly, DFTB has been successfully applied to ex-
amine the electrostatic interactions and charge transfer in artifi-
cial molecular devices67,68 This method has also been extended
to investigate excited-state properties, computing electronic tran-
sition dipole moments for organic chromophores69.

Single-point DFTB3+MBD calculations were carried out for all
molecular systems studied in this work by considering hydro-
gen correction and the electronic Hamiltonian described by the
3ob parameters set71. The QM properties extracted from the
DFTB output files are listed in Table 1, and have been divided
into global properties (Dglob), molecular orbital energies (DeMO),
and atomic properties (Datom). To create a standardized rep-
resentation across the dataset, Mulliken charges arrays (whose
dimension depends on the atom number in the molecule) are
zero-padded to match the array size corresponding to the largest
molecular structure in the dataset, so that all properties are in-
cluded in a fixed-size array. This ensures consistency in the de-
scriptor representation, allowing for effective input to ML models.

2.2 Benchmark datasets

To understand the effect of considering both geometric and elec-
tronic descriptors on the performance of ML regression mod-
els, we have first investigated the accuracy in predicting highly
accurate physicochemical properties of equilibrium and non-
equilibrium conformations of small drug-like molecules contained
in QM7-X dataset51. Later, we generated QM structural and prop-
erty data of molecular conformations associated with SMILES rep-
resentation of large drug-like molecules extracted from LD50 tox-
icity52,53 and lipophilicity datasets36.

2.2.1 Physicochemical properties

QM7-X dataset51 provides QM-based physicochemical proper-
ties for approximately 4.2 M equilibrium and non-equilibrium
structures of molecules containing up to seven non-hydrogen
atoms (C, N, O, S, and Cl). For equilibrium structures, SMILES
strings from the GDB13 database were used to enumerate struc-
tural/constitutional isomers and stereoisomers. A diverse set of
(meta-)stable conformers was then generated and optimized us-
ing DFTB3+MBD method. To explore non-equilibrium structures,
100 configurations per molecule were generated by perturbing
the stable structure along linear combinations of normal mode co-
ordinates. These perturbations were designed to yield energy dif-
ferences calculated with DFTB3+MBD that followed a Boltzmann
distribution. This approach ensured efficient sampling of criti-
cal regions of the potential energy surface near the (meta-)stable
structures, while including a limited number of high-energy non-
equilibrium structures. For each molecular structure, over 40
molecular (global) and atomic (local) properties were calculated
at the higher-fidelity DFT-PBE0 hybrid functional supplemented
with MBD correction, which has been shown to provide accurate
and reliable descriptions of intramolecular and intermolecular de-
grees of freedom. Accordingly, to better elucidate the predictive
capabilities of the descriptors, we have studied the equilibrium
and the most distorted structure per molecular conformer, i.e.,
we have two QM7-X subsets and each of them contains circa 42k
structures. The target properties include atomization energy EAT

and scalar dipole moment µ, both ground state properties, as well
as the HOMO-LUMO (Highest Occupied Molecular Orbital - Low-
est Unoccupied Molecular Orbital) gap Egap, an intensive prop-
erty, and the scalar isotropic polarizability α, a response quantity
derived using the self-consistent screening approach.

2.2.2 Biological responses

The median lethal dose (LD50) for oral acute toxicity repre-
sents the dose of a substance required to lethally affect 50% of
a test population (typically rodents) within a specified exposure
period52. This metric serves as an initial assessment of chem-
ical toxicity, aiding in the classification of substances based on
their potential acute hazard to human health72. The Therapeutic
Data Commons73 (TDCommons) platform provides an acute in
vivo toxicity dataset, originally compiled by Zhu et al.53 in 2009,
which includes the SMILES representations of 7,385 compounds
and their experimentally determined oral rat LD50 values. These
values are expressed as the chemical dose per kilogram of body
weight, converted to log(1/(mol/kg)) values following standard
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QSAR conventions. The dataset considers chemical compounds
containing 2 to 90 non-hydrogen atoms (C, N, O, F, Si, P, S, Cl,
Br, and I), and with LD50 values ranging from -0.34 to 10.20, pro-
viding a broad representation of acute oral toxicity profiles suit-
able for training predictive models. In an initial screening step,
we excluded molecules containing Si atoms from further analy-
sis, as this element is not included in the 3ob SK parameters (see
summary of discarded molecules in Table S1 of the SI).

Additionally, we investigated the prediction of lipophilicity in
drug-like molecules. This property describes the tendency of a
compound to partition into a non-polar lipid matrix rather than
an aqueous matrix74. Lipophilicity is strongly correlated with
key physicochemical and biochemical properties such as perme-
ability and solubility, which in turn influence drug potency, dis-
tribution, and elimination. Consequently, it is frequently mea-
sured in QSAR studies to better characterize the pharmacologi-
cal profiles of drug-like compounds75. The lipophilicity dataset
from the MoleculeNet benchmark36 contains experimental mea-
surements of the octanol/water distribution coefficient (logD at
pH 7.4) for 4,200 compounds. These compounds contain heavy
atom counts (B, C, N, O, F, Cl, P, S, Se, Si, Br, and I) ranging
from 7 to 100 and logD values spanning -1.5 to 4.5. Eleven com-
pounds were discarded because they contained Si (similar to TD-
Commons dataset) or B, P, or Se, which were underrepresented
in the dataset (see summary of discarded molecules in Table S1
of the SI).

To achieve a more precise modelling and representation of
these drug-like molecules for predicting toxicity and lipophilic-
ity, we generated their 3D molecular structures. The initial 3D
structures were created using the RDKit package, which con-
structs the graph of heavy atoms based on the connectivity in-
formation encoded in SMILES strings, adds hydrogen atoms,
and optimizes the resulting geometry using the Merck Molecu-
lar Force Field (MMFF). For the next step, we considered only
the molecules that were successfully generated and optimized us-
ing MMFF. While calculating ground-state energies and geome-
tries via ab initio methods would offer greater accuracy, the com-
putational demands are prohibitive. As a practical alternative,
we employed the Conformer–Rotamer Ensemble Sampling Tool
(CREST)76,77, which performs a comprehensive conformational
search. CREST plays a crucial role in QUED by efficiently sam-
pling both low- and high-energy conformers with a level of com-
plexity beyond that of well-known conformational search meth-
ods based on classical force fields78. This advantage arises from
its more accurate treatment of long-range interactions (electro-
statics and dispersion) and its ability to incorporate solvent ef-
fects. Indeed, CREST integrates the semi-empirical extended
tight-binding method GFN2-xTB79 with a metadynamics-based
search algorithm. We have applied energy (12.0 kcal/mol) and
root-mean-square deviation (RMSD) (0.1 Å) thresholds relative
to the input structure to determine which geometries are included
in the final Conformer–Rotamer Ensemble (CRE). All geometry
optimization and conformational search calculations were per-
formed using the GBSA implicit solvent model for water. As a
result, 98.5% (7,273 unique molecules) of the toxicity dataset
and 97.0% (4,073 unique molecules) of the lipophilicity dataset

were successfully retrieved, yielding approximately 3.6 M and 1.8
M conformers, respectively. We then applied an RMSD-based hi-
erarchical clustering method to refine these extensive sets, select-
ing ≈1.8 M and 618k representative conformers. This cluster-
ing approach ensures that the chosen conformers effectively rep-
resent the diversity of the explored conformational space. For
each target property, the ML regression models were trained us-
ing only the conformer with the lowest DFTB3+MBD energy for
each unique molecule. The computational costs associated with
dataset generation are summarized in Fig. S5 of the SI.

3 Results and Discussion

3.1 Assessing QM descriptors for small molecules

We first explore the impact of combining geometric and elec-
tronic representations on the performance of ML regression mod-
els in predicting both extensive (atomization energy, EAT, and
molecular polarizability, α) and intensive (dipole moment, µ,
and HOMO-LUMO gap, Egap) physicochemical properties of small
drug-like molecules from the QM7-X dataset (see Fig. 3 and Fig.
S1 of SI). Two molecular subsets were analysed: one consist-
ing of equilibrium conformations (EQ) and the other of highly
distorted non-equilibrium conformations (NEQ), each containing
approximately 42k structures. Figs. 3(A,D) and S1(A,D) show
the distributions of the target properties across both subsets. Our
results indicate that combining baseline representations (BOB or
SLATM) with electronic descriptors (DQM), i.e., BOB⊕DQM and
SLATM⊕DQM, consistently improves prediction accuracy across
all regression tasks when using KRR method. Among all models,
SLATM⊕DQM yields the highest accuracy. The benefit of includ-
ing electronic descriptors is particularly significant for the NEQ
subset, where the mean absolute error (MAE) is reduced by ap-
proximately 60% on average for all properties except α. This
underscores the difficulty of capturing the relationship between
strongly distorted molecular geometries and their properties us-
ing geometric features alone. In these cases, electronic descrip-
tors derived from DFTB calculations enhance the connectivity be-
tween data points, leading to a more meaningful mapping be-
tween the high-dimensional feature space and the target prop-
erties. In contrast, for the EQ subset, incorporating electronic
descriptors yields a more pronounced improvement for intensive
properties than for extensive ones. Overall, the results obtained
using the XGBoost method follow similar trends to those from
KRR. However, while KRR slightly outperforms XGBoost in pre-
dicting extensive properties, XGBoost performs better for inten-
sive properties (see dotted and dashed horizontal lines in Fig. 3
and Fig. S1 of SI). Table 2 presents the top results for predicting
dipole moments and polarizabilities.

We now turn to the prediction of µ, which serves as a clear
example of how QM-derived features can enhance molecular rep-
resentations for predicting intensive properties (results for Egap

can be found in Tables S4-S5 and Fig. S1 of SI). As shown in
Figs. 3(B,C), DQM significantly outperforms the purely geometric
descriptors BOB and SLATM, achieving MAE values of 0.024 and
0.064 eÅ for EQ and NEQ subsets, respectively, when using KRR
models trained on 25k samples. Combining geometric and elec-
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Fig. 3 Performance of regression models trained on the QM7-X dataset for predicting DFT-PBE0 dipole moment (DIP) and polarizability (POL).
Panels A and D show property distributions for equilibrium (filled histograms) and non-equilibrium (empty histograms) geometries. Panels B and C
show the learning curves for the prediction of dipole moment of equilibrium (EQ) and non-equilibrium (NEQ) molecular subsets. While panels E and
F show the learning curves for polarizability. We present the mean absolute errors (MAEs) obtained by KRR method using DQM, BOB⊕DQM, and
SLATM⊕DQM as solid lines; shaded areas highlight improvements from adding DQM to geometric descriptors. Dashed lines indicate performance of
XGBoost models trained with 25k samples. Across tasks, combined descriptors consistently outperform their purely geometric counterparts.

tronic descriptors further improves the prediction accuracy, yield-
ing MAE values of 0.018 and 0.059 eÅ with the SLATM⊕DQM.
Similarly, XGBoost models confirm the advantage of incorporat-
ing QM-derived information: while DQM alone achieves an MAE
of 0.023 eÅ, adding two-body interactions reduces this to 0.018
eÅ, and including three-body features further improves it to 0.017
eÅ, demonstrating consistently improved performance for µ pre-
diction of EQ subset (similar trend is also found for NEQ subset).
In contrast, for extensive properties, purely geometric descrip-
tors generally outperform DQM across learning curves. When
combining both types of descriptors, MAE values either remain
unchanged or improve only marginally relative to the geomet-
ric descriptor alone. Notable improvements are mainly observed
at larger training set sizes (16k and 25k), particularly for the
SLATM representation. For instance, in predicting α for EQ sub-
set (see Fig. 3E), SLATM shows a consistent improvement of ap-
proximately 15% when combined with DQM, achieving an MAE

value of 0.18 a3
0. For NEQ subset (see Fig. 3F), both BOB

and SLATM representations show enhanced performance when
combined with DQM, with MAEs decreasing from 1.08 to 0.99
a3

0 and from 0.92 to 0.81 a3
0, respectively. Unlike µ prediction,

XGBoost models generally yield higher errors than KRR models
for extensive properties. Interestingly, for EQ subset, the best
performance is achieved by the combination BOB⊕DQM (MAE
= 0.377 a3

0), diverging from the trend observed in other tasks,
where SLATM⊕DQM typically performs better. A similar behavior
is seen in the prediction of EAT (see Tables S4-S5 and Fig. S1 of
SI). Although the addition of DQM does not consistently outper-
form geometric descriptors for EQ subset, its value becomes more
evident for NEQ subset. These findings are further supported by
KRR models employing delta learning (see Table S6 of SI) and
the XGBoost models using SOAP descriptor (see Table S10 of SI),
which show consistent improvements in predictive accuracy when
incorporating DQM.
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Table 2 Summary of the best-performing regression models for predicting molecular physicochemical properties in the QM7-X dataset. Performance
is evaluated using mean absolute error (MAE) and the coefficient of determination (R2) for dipole moment (µ) and polarizability (α). Results are
reported for Kernel Ridge Regression (KRR) and XGBoost models employing different molecular descriptors on both QM7-X subsets (EQ and NEQ).

Target Dataset Regression method Descriptor MAE R2

Dipole moment

EQ
KRR

SLATM⊕DQM 0.018 0.987
DQM 0.024 0.979

XGBoost
SLATM⊕DQM 0.017 0.988
DQM 0.023 0.982

NEQ
KRR

SLATM⊕DQM 0.059 0.924
DQM 0.065 0.911

XGBoost
SLATM⊕DQM 0.056 0.933
DQM 0.062 0.919

Polarizability

EQ
KRR

SLATM⊕DQM 0.178 0.999
DQM 0.426 0.994

XGBoost
BOB⊕DQM 0.377 0.995
DQM 0.552 0.988

NEQ
KRR

SLATM⊕DQM 0.814 0.988
DQM 1.657 0.958

XGBoost
SLATM⊕DQM 1.030 0.984
DQM 1.620 0.957

Fig. 4 Evaluation of regression models to predict DFT-PBE0 dipole moment when combining SLATM with subsets of the DQM descriptor. Panels A
and B show the distribution of residuals (prediction – true) for KRR models on equilibrium (EQ) and non-equilibrium (NEQ) subsets, respectively, using
global (Dglob), MO energy (DeMO), and atomic (Datom) components. Panels C and D display SHAP (which stands for ‘SHapley Additive exPlanations”)
value distributions, ranking features by relevance in the predictions made by XGBoost models using only DQM descriptor. Key contributors include the
norm of the tight-binding dipole moment (||µTB||), DFTB energy terms, MO energies (εi), and Mulliken charges (Q j).

3.1.1 Interpreting descriptor performance

Descriptor components. To determine which components of the
DQM descriptor most significantly enhance model performance,

we partitioned it into three subsets: global (Dglob), MO ener-
gies (DeMO), and atomic (Datom) properties. A detailed list of
these properties is provided in Table 1. We assessed the per-
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Fig. 5 Evaluation of regression models to predict DFT-PBE0 molecular polarizability when combining SLATM with subsets of the DQM descriptor.
Panels A and B show the distribution of residuals (prediction – true) for KRR models on equilibrium (EQ) and non-equilibrium (NEQ) subsets,
respectively, using global (Dglob), MO energy (DeMO), and atomic (Datom) components. Panels C and D display SHAP (which stands for ‘SHapley
Additive exPlanations”) value distributions, ranking features by relevance in the predictions made by XGBoost models using only DQM descriptor. Key
contributors include many-body dispersion (MBD) energy and Mulliken charges (Q j).

formance of the geometric descriptor SLATM both “pure” and
in combination with each property subset, i.e., SLATM⊕Dglob,
SLATM⊕DeMO, and SLATM⊕Datom, as well as with the full QM
descriptor (SLATM ⊕ DQM). The results from the KRR models
trained on 16k samples are shown in Figs. 4 and 5 for the predic-
tion of µ and α, respectively.

Optimal performance in physicochemical property prediction
was generally achieved by combining the SLATM representa-
tion with the full electronic descriptor. However, for EQ sub-
set, more accurate estimates of µ and α–20.5×10−3 eÅ and 0.18
a3

0, respectively–were obtained using SLATM⊕Dglob, compared
to 20.9×10−3 eÅ and 0.21 a3

0 for SLATM⊕DQM. As shown in the
boxplots of Figs. 4A and 5A, both models produce comparable
error ranges, with SLATM⊕Dglob exhibiting a slightly narrower
error distribution. For NEQ subset, the global feature set also
leads to substantial performance improvements when combined
with SLATM, ranking second only to SLATM⊕DQM. We attribute
this improvement to the inclusion of the TB dipole moment and
many-body dispersion energy in Dglob, which show strong cor-
relations with the reference DFT-PBE0 µ (ρ(µ,µTB) = 0.94) and
α (ρ(α,Embd) = −0.61), respectively (see other ρ values in Fig.
S3 of SI). Interestingly, even though Dglob includes the HOMO-
LUMO energy gap at the DFTB3 level (ETB

gap)–a property that

shows only moderate correlation with the DFT-PBE0 energy gap–
SLATM⊕DeMO outperforms all other models for predicting Egap.
On the other hand, incorporating Mulliken charges (Q) gener-
ally degrades performance and appears to introduce noise, even
though the target properties are related to the spatial distribu-
tion of charge. In most tasks, the SLATM⊕Datom model performs
worse than SLATM alone, likely due to the weak correlation be-
tween Q values and the target properties (see Fig. S3 of SI).
A similar trend is observed for DeMO in the prediction of µ and
α, which may also be correlated to the overall weak correlation
of these properties with MO energies. However, SLATM⊕DeMO

model does outperform SLATM for predicting EAT and Egap, being
the effect more remarkable for NEQ subset (see Fig. S2 of SI).
These findings suggest that, while strong physical correlations
with the target properties are important, model performance also
depends critically on how electronic structure information is rep-
resented and integrated with geometric descriptors.

SHapley Additive exPlanations (SHAP). Tree-based predic-
tive ML models, such as XGBoost, greatly benefit from being cou-
pled with interpretability tools like the SHAP method54. Rooted
in cooperative game theory, SHAP leverages Shapley values to
quantify the contribution of each input feature to an individual
prediction. In the context of our feature-based ML model, SHAP
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values estimate how each feature influences the deviation of a
specific prediction from the expected output of the model. This
enables a transparent interpretation of the learned relationships,
revealing both the relative importance of features and how they
interact to shape predicted outcomes. Figs. 4 and 5 present
beeswarm plots that summarize the distribution of SHAP values
for the most influential features in each property prediction task,
based solely on DQM. In these plots, features are ordered by im-
portance (top to bottom), and their SHAP values are shown along
the x-axis. A positive SHAP value indicates that the feature pushes
the prediction higher, while a negative value suggests it drives the
prediction lower. The color gradient encodes the feature values:
red denotes high values, and blue denotes low values.

Figs. 4C and 4D show that µTB is the most influential fea-
ture in predicting the DFT-PBE0 dipole moment (µ). This result
is expected, as both quantities represent the same physical ob-
servable, albeit computed using different QM methods. In the
EQ subset, we observe that higher values of the DFTB repulsion
energy (Erep) and the third-order correction energy (E3rd) are as-
sociated with larger dipole moments. In contrast, higher values
of the self-consistent charge energy (Escc) and many-body disper-
sion energy (Embd) tend to reduce the predicted µ. Notably, the
TB-derived MO energies also rank among the top ten relevant
features. A similar pattern is observed for the NEQ subset, where
Mulliken charges (Q) also emerge as important contributors to
the predictive performance. SHAP analysis for α predictions re-
veals a slightly different hierarchy of feature importance between
EQ and NEQ subsets (see Figs. 5C and 5D). Overall, low val-
ues of Mulliken charges tend to negatively impact the predicted
polarizability, with the notable exception of Q7, which deviates
from this trend. We identify Embd as a key feature in this regres-
sion task: low values are linked to smaller polarizabilities, while
higher values correlate with increased polarizability. This is con-
sistent with the moderate negative correlation between Embd and
α (ρ(Embd,α) =−0.61). Interestingly, the reference DFTB energy
(EH0) also plays a significant role, likely due to its influence on the
electron density distribution and its response to perturbations. In
NEQ subset, the number of electrons contributes positively to the
prediction, whereas it does not rank among the top 11 features
for the EQ subset. Surprisingly, for EQ subset, the sixth MO en-
ergy ε6 gains more relevance, indicating that different structural
regimes may be governed by distinct sets of driving QM features.

3.2 Predicting biological responses of large molecules

We now examine QUED performance to predict biological end-
points: toxicity and lipophilicity. To this end, we develop
ML regression models using chemically diverse sets of large
drug-like molecules from the TDCommons-LD50 dataset and the
MoleculeNet-Lipophilicity dataset. These models were trained on
the lowest-energy geometries (as determined by DFTB3+MBD)
for each unique molecule.

The distribution of LD50 values in this subset is shown in Fig.
6A. Fig. 6B and 6C present the learning curves for DQM and
BOB⊕DQM and SLATM⊕DQM, using the KRR and XGBoost meth-
ods, respectively. In this task, XGBoost models consistently out-

performed their KRR counterparts. This performance difference
between XGBoost and KRR models is further illustrated in Figs.
6D and 6E, which display box plots of residuals (predicted minus
true toxicity values) for different descriptor combinations. The
KRR residuals show a broader spread, indicating higher predic-
tion variance and reduced precision, whereas the XGBoost resid-
uals are more tightly clustered around zero. Under KRR, the
inclusion of geometric information improves the performance of
the electronic descriptor. For instance, DQM alone yields a MAE
of 0.539, which decreases to 0.469 and 0.445 when combined
with BOB and SLATM, respectively. Interestingly, the combina-
tion SLATM ⊕ DQM slightly underperforms pure SLATM, which
achieves an MAE of 0.433–suggesting that in this case, the ad-
dition of DQM may not be beneficial. In contrast, under XGBoost,
DQM achieves a MAE of 0.473. BOB shows improved performance
when combined with DQM, achieving the best overall result with
a MAE of 0.400–an improvement over the 0.451 obtained with
pure BOB. In contrast, SLATM does not benefit from this addi-
tion: pure SLATM reaches a MAE of 0.403, slightly better than
SLATM⊕DQM, which yields 0.413.

On the other side, geometric descriptors show no relevant im-
provement when combined with DQM for lipophilicity prediction
(see Fig. S4 of SI). Alike toxicity results, XGBoost consistently
outperforms KRR, e.g., pure DQM yields MAEs of 0.784 and 0.617
with KRR and XGBoost, respectively. For KRR, the best perfor-
mance is achieved with SLATM⊕DQM (MAE = 0.476), followed
closely by pure SLATM (MAE = 0.480). For XGBoost, the best
model overall is pure SLATM (MAE = 0.418), with performance
slightly reduced upon inclusion of DQM (MAE = 0.432).

Table 3 summarizes the best results for predicting toxicity and
lipophilicity. Our XGBoost model using BOB⊕DQM achieves a
MAE of 0.400 on the TDCommons-LD50 dataset, surpassing pre-
vious state-of-the-art approaches. These include 2D graph neu-
ral networks80, which achieved a MAE of 0.45 when consid-
ering only the top 5% most confident predictions; equivariant
transformers38 with a MAE of 0.653; and fingerprint-based sur-
rogate models81,82, reporting MAEs of 0.497 and an RMSE of
0.697, respectively. Furthermore, combining pure SLATM with
XGBoost yields the best predictive accuracy for lipophilicity, with
an RMSE of 0.567. This result surpasses the benchmark set by
MoleculeNet using Extended-Connectivity Fingerprints with XG-
Boost (0.799) and is comparable to their results using graph-
convolutional methods (0.655)36. While more complex state-
of-the-art architectures reach comparable errors, such as convo-
lutional neural networks trained on augmented SMILES repre-
sentations83 (RMSE = 0.593), graph neural networks and mul-
titask learning84 (RMSE = 0.537), 3D molecular representation
learning framework Uni-Mol85 (RMSE = 0.603), and nested con-
nected hierarchical GNN DenseNGN86 (MAE = 0.351), our ap-
proach remains competitive due to its simplicity and computa-
tional efficiency. Notice that regression models trained with the
SOAP descriptor using XGBoost (see Table S10 in the SI) and with
the state-of-the-art equivariant neural network MACE87 (see Ta-
ble S11 in the SI) exhibited lower performance compared to the
top-performing models summarized in Table 3.

Descriptor components. Following the approach used in the
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Fig. 6 Prediction of acute toxicity (LD50) of large drug-like molecules from TDCommons-LD50 dataset 73. Panel A shows the LD50 distribution,
colored by the number of non-hydrogen atoms. Panels B and C present learning curves for KRR and XGBoost models, respectively, using DQM,
BOB⊕DQM, and SLATM⊕DQM. Shaded areas highlight improvements from adding DQM to geometric descriptors. Panels D and E display the
corresponding residual distributions (prediction - true). In this task, adding DQM improves the performance of BOB but not SLATM, highlighting that
the benefit of electronic information is not only task-specific but also descriptor-dependent. For these calculations, we used only the lowest-energy
conformation of each unique molecule in the TDCommons-LD50 dataset.

previous section, we combined BOB and SLATM with subsets of
DQM to assess which electronic properties most strongly influence
toxicity and lipophilicity prediction using KRR models (see Tables
S7-S8 of SI). Although the features in DQM show only weak corre-
lation with LD50 values (see Fig. S3 of SI) and the complete de-
scriptor does not improve SLATM performance, we find that the
combinations SLATM⊕Dglob and SLATM⊕DeMO slightly reduce
the MAE to 0.426 and 0.429, respectively (see Table S7 of SI).
In contrast, SLATM⊕Datom leads to a higher error of 0.452. This
trend is not observed for BOB: while BOB⊕Dglob and BOB⊕DeMO

only marginally increase the MAE from 0.476 to 0.479 and 0.480,
respectively, BOB⊕Datom achieves the same MAE as the pure ge-
ometric descriptor.

The correlation between lipophilicity and the properties in
the electronic descriptor is even weaker compared to toxicity
(see ρ values in Fig. S3 of SI). Consequently, adding DeMO or
Datom to the pure BOB descriptor results in larger MAEs, i.e.,
0.585 and 0.593, respectively (see Table S8 of SI). In contrast,
SLATM⊕DeMO and SLATM⊕Datom achieve slightly better perfor-
mances (0.478 and 0.479) than pure SLATM. For both geomet-
ric descriptors, the inclusion of Dglob has no significant impact

on performance. These results indicate that the benefit of incor-
porating QM features depends on the base geometric descriptor
and target biological response; hence, the integration should be
adapted to their specific characteristics.

SHapley Additive exPlanations (SHAP). We perform a SHAP
analysis on the DQM and BOB⊕DQM XGBoost models to evaluate
the relevance of QM and BOB features in learning acute toxic-
ity and lipophilicity (see Fig. 7). Figs 7A and 7B show that all
subsets of DQM (i.e., global, electronic, and atomic) contribute
meaningfully to both prediction tasks. Specifically, high Mulliken
charge values appear to positively influence predicted toxicity,
whereas tight-binding eigenvalues (εi) show an inverse relation-
ship. Based on previous studies29,33 and our own work, we find
that molecular orbital energies (or εi energies) are key descriptors
for toxicity prediction, as they quantify molecular interactions be-
tween a chemical and its site of toxic action88. In particular, the
LUMO has been reported to show a direct correlation with in-
travenous LD50 values89 and has been identified as the frontier
orbital involved in drug–target interactions. DFTB energy con-
tributions also rank among the most relevant features, although
their influence on toxicity prediction varies in direction. Simi-
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Table 3 Summary of the best-performing regression models for predicting biological responses. Reported metrics include mean absolute error (MAE),
root mean squared error (RMSE), and coefficient of determination (R2) for toxicity (LD50) and lipophilicity (logD) prediction using Kernel Ridge
Regression (KRR) and XGBoost methods with different molecular descriptors.

Target Regression method Descriptor MAE RMSE R2

Toxicity
KRR

SLATM 0.433 0.606 0.595
DQM 0.539 0.719 0.430

XGBoost
BOB⊕DQM 0.400 0.571 0.661
DQM 0.473 0.637 0.572

Lipophilicity
KRR

SLATM⊕DQM 0.476 0.661 0.643
DQM 0.784 0.991 0.339

XGBoost
SLATM 0.418 0.567 0.752
DQM 0.617 0.813 0.519

Fig. 7 Feature importance analysis for acute toxicity (LD50) and lipophilicity prediction. Panels A and B show SHAP value distributions for XGBoost
models trained with DQM, while panels C and D show the corresponding distributions for BOB⊕DQM. Geometric features strongly shape model
predictions, providing fine-grained distinctions that enhance clustering and predictive performance, and generally dominate over electronic descriptors
in the combined representations.

larly, for lipophilicity, energetic components contribute strongly
to its prediction, whereas low Mulliken charge (Qi) values of the
third atomic component reduce predictive accuracy. Moreover,
lipophilicity (and permeability) can be related not only to the

molecular charge distribution (represented as Qi) but also to the
delocalization and distortion of the electronic cloud within the
molecule32,90,91. These electronic effects are captured by the E3rd
DFTB energy component, which depends on atomic charge fluc-
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tuations64. When analyzing the results for BOB⊕DQM in Figs. 7C
and 7D, we find that geometry-based features (BOBk) strongly in-
fluence the model output. In general, higher-order geometric fea-
ture values exert a greater impact on predicting both biological
responses, which shifts some QM features to lower ranks in the
SHAP analysis. This effect is especially pronounced for lipophilic-
ity. Still, tight-binding eigenvalues remain among the top con-
tributors to toxicity prediction, underscoring their consistent rel-
evance. Compared to the broad spread of SHAP values in DQM,
where the model relies heavily on a few dominant quantum fea-
tures, BOB⊕DQM shows a more uniform small contribution across
features. This indicates that the geometrical information provided
by BOB adds fine-grained distinctions for individual data points
that help the model form more precise clusters and improve pre-
dictive performance.

4 Conclusions
In this work, we introduced the “QUantum Electronic Descrip-
tor” (QUED) framework, which integrates both structural and
electronic molecular information to develop ML regression mod-
els for physicochemical and biological property prediction. Cen-
tral to QUED was the definition of a QM descriptor derived
from molecular and atomic properties computed using the semi-
empirical DFTB3 method supplemented with a many-body dis-
persion (MBD) treatment for van der Waals interactions. Indeed,
to form comprehensive molecular representations, we combined
this QM descriptor with computationally inexpensive geometric
descriptors that capture two-body and three-body interatomic in-
teractions, such as BOB and SLATM. As a proof of concept, we
validated QUED performance by using two molecular subsets of
the QM7-X dataset, which includes both equilibrium and non-
equilibrium conformations of small drug-like molecules. The re-
sults demonstrated that incorporating electronic structure infor-
mation significantly improves the accuracy of ML models in pre-
dicting physicochemical properties compared to only considering
geometric features. In particular, combining SLATM with DQM led
to a notable accuracy improvement, especially for highly distorted
molecular structures. For QM7-X molecules, XGBoost models fol-
lowed similar trends to those obtained by KRR models trained us-
ing KRR-OPT toolbox. However, while KRR slightly outperforms
XGBoost in predicting extensive properties, XGBoost performs
better for intensive properties. Moreover, a detailed analysis com-
bining property subsets with SHAP method revealed that certain
electronic features are more relevant for specific target physic-
ochemical properties, e.g., global properties play a more crucial
role than MO energies or atomic charges in predicting µ, whereas
atomic charges and DFTB energy components are more important
for predicting α.

QUED framework was also evaluated on the TDCommons-
LD50 and MoleculeNet-Lipophilicity datasets to predict the tox-
icity levels and lipophilicity of larger and more chemically diverse
drug-like molecules, respectively. Here, the benefits and insights
of using QM descriptors for biological property prediction were
more nuanced. SHAP analysis also confirmed that DFTB prop-
erties, such as MO energies and energy components, play a cen-
tral role in these performance gains, with BOB⊕DQM combined

with XGBoost yielding the best performance for toxicity predic-
tion. Overall, our findings highlight the importance of incorpo-
rating electronic structure data into ML workflows to enhance the
reliability and interpretability of the predictive models. While ge-
ometric descriptors capture spatial patterns effectively, they may
miss subtle electronic effects that are critical for accurately mod-
elling complex molecular properties. That said, the computa-
tional demands associated with QM descriptor generation–even
when using semi-empirical methods–can be a bottleneck for high-
throughput workflows. To address this trade-off between de-
scriptor complexity and computational efficiency, future research
should explore strategies to optimize both aspects. One promising
direction is the integration of ML-accelerated electronic structure
methods92–94, which can significantly reduce the time required
to compute QM descriptors. Additionally, ML-enhanced DFTB ap-
proaches offer a way to improve the accuracy of QM properties
without significantly increasing computational cost95,96. Within
the QUED framework, an analysis of computational time for each
step revealed that conformational sampling with CREST repre-
sents the most time-consuming component (see Fig. S5 in the SI).
In this context, generative AI models could aid conformational
exploration, thereby increasing both the diversity and quality of
biological datasets97–99. Hence, we expect that the QUED frame-
work can be extended to predict a wide range of biological end-
points, such as ADMET properties (beyond toxicity and lipophilic-
ity), and protein–ligand interactions, further demonstrating the
versatility and impact of integrating electronic structure informa-
tion into molecular ML approaches.
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