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Discovering novel high-entropy alloys (HEAs) with desirable properties is challenged by the vast compositional
space and the complexity of phase formation mechanisms. Several inductive screening methods that excel
at interpolation have been developed; however, they struggle with extrapolating to novel alloy systems.
This study introduces a framework that addresses the extrapolation limitation by systematically integrating
knowledge extracted from material datasets with expert knowledge derived from scientific literature using large
language models (LLMs). Central to our framework is the elemental substitution principle, which identifies
chemically similar elements that can be interchanged while preserving desired properties. To model and
combine evidence from these multiple sources of knowledge, we employ the Dempster—Shafer theory, which
provides a mathematical foundation for reasoning under uncertainty. Our framework consistently outperforms
conventional phase selection models that rely on single-source knowledge across all experiments, showing
notable advantages in predicting phase stability for compositions containing elements absent from training
data. Importantly, the framework effectively complements the strengths of the existing methods. Moreover,
it provides interpretable reasoning that elucidates element substitutability patterns critical to alloy stability
in HEA formation. These results highlight the framework’s potential for knowledge integration, offering an
efficient approach to exploring the vast compositional space of HEAs with enhanced generalizability and

interpretability.

I. INTRODUCTION

High-entropy alloys (HEAs), also known as multi-
principal element alloys (MPEAs), have garnered sig-
nificant attention owing to their exceptional mechan-
ical properties, thermal stability, and corrosion resis-
tancel™. Typically consisting of five or more princi-
pal elements in near-equiatomic ratios, these alloys uti-
lize high-configurational entropy to stabilize single-phase
solid solutions®*®., However, identifying stable composi-
tions remains a significant challenge due to the vast com-
positional space and the complex interplay of factors such
as mixing entropy, enthalpy, atomic size differences, and
electronic structure. These challenges, including explor-
ing expansive design spaces, handling sparse data, and
managing uncertainty, represent broader issues in com-
binatorial materials research, where efficient navigation
strategies of compositional possibilities are essential.

A useful framework for understanding this challenge is
a decision-making model in which researchers must bal-
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ance exploitation and exploration™, as illustrated in Fig-
ure[l] Exploitation focuses on well-characterized regions
of the design space, having sufficient data for reliable
property predictions. This approach supports steady,
incremental improvements to existing alloys. In these
data-rich regions, uncertainty is primarily aleatoric, aris-
ing from irreducible variability within the system. Con-
versely, exploration targets novel regions where data is
insufficient for reliable property predictions. These re-
gions introduce higher epistemic uncertainty that can be
decreased as we collect more data through systematic ex-
perimentation. Although exploration bears greater risk,
it offers the exciting potential to uncover groundbreak-
ing and fundamentally new alloys with exceptional prop-
erties. Achieving an optimal balance between these two
strategies is crucial for advancing HEA development.

Data-driven methods have emerged as transformative
tools for guiding these exploitation-exploration decisions,
enabling the processing of large datasets and streamlin-
ing the search for promising HEAs?13| High-throughput
approaches, such as CALPHADS1415 AR OWHIGHS,
and Hamiltonian modelst?2% alongside machine learning
(ML)4Y, have significantly reduced the time and cost as-
sociated with evaluating candidate compositions. While
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FIG. 1. Illustration of decision-making scenarios in
high-entropy alloy (HEA) discovery. Colored regions
represent well-established areas of the HEA compositional
space, characterized by sufficient data suitable for effective
exploitation. In contrast, white regions depict unexplored ar-
eas with sparse or no existing data, highlighting opportunities
for risky yet potentially transformative exploration that could
lead to discovering groundbreaking alloys with fundamentally
new and exceptional properties. HEAs and Non-HEAs de-
note alloys that respectively form or do not form a stable
high-entropy phase.

conventional ML models excel at interpolation, accu-
rately predicting outcomes for compositions similar to
those in the training sets (supporting exploitation), they
struggle with extrapolation to novel systems, limiting ex-
ploration capability?2. Although careful feature engi-
neering can partially address extrapolation challenges?,
designing features that generalize across vast composi-
tional spaces remains practically difficult?22%, This in-
terpolation—extrapolation dichotomy needs to be over-
come as HEA discovery obviously requires venturing into
uncharted territory.

A critical aspect of managing exploration—exploitation
balance is uncertainty quantification, which falls into two
categories. Epistemic uncertainty arises from incomplete
or sparse data and is reducible through targeted informa-
tion gathering, while aleatoric uncertainty corresponds to
intrinsic variability within the system and is irreducible
regardless of data volume?®. Traditional methods, such
as Bayesian neural networks, Gaussian processes, and
Monte Carlo dropout, are commonly employed to quan-
tify these uncertainties?®*2”. However, they often falter
in early-stage materials discovery, where data is sparse
or conflicting?8 80,

An alternative framework, the Dempster—Shafer the-
ory3183 - also known as evidence theory, offers a more
flexible means of representing uncertainty. Unlike
Bayesian methods, which assign probabilities to indi-
vidual elements within a set of possibilities (denoted as
Q), evidence theory assigns non-negative weights (sum-
ming to one) to subsets of . This enables the ex-
plicit representation of ignorance rather than requiring
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an assumption about a prior probability distribution??,
allowing for nuanced characterization of both epistemic
and aleatoric uncertainties. Thus, this framework can
guide researchers to specific regions of the compositional
space for either efficient exploitation or effective explo-
ration22h34k3ol

However, collecting additional data to reduce epis-
temic uncertainty is often impractical due to high costs
and experimental constraints. Expert knowledge offers a
valuable alternative for mitigating this uncertainty. Do-
main specialists bring insights accumulated across multi-
ple studies and contexts, providing heuristics that extend
beyond any single dataset26'38, Physics-informed neural
networks (PINNs) exemplify one approach to incorpo-
rating domain knowledge by embedding a priori physical
laws, enabling inference of governing equations from lim-
ited observations when those laws are explicit and well-
defined®?. Yet their performance degrades when the un-
derlying physics is only partially understood or key con-
straints remain unknown. More broadly, expert knowl-
edge often resides in unstructured forms, such as labora-
tory notebooks, informal rules of thumb, or tacit experi-
ence, making its integration with structured, data-driven
models a significant challenge.

To bridge this gap, this study introduces a framework
that integrates knowledge from material datasets with
expert domain knowledge accessed through Al systems—
in this implementation, large language models (LLMs)
extracting insights from scientific literature—while ac-
counting for inherent uncertainties in each source. This
uncertainty-aware integration enables systematic predic-
tions beyond the interpolative boundaries of conventional
data-driven methods. Central to our methodology is the
elemental substitution principle??l a well-established
concept in alloy design wherein chemically similar ele-
ments can be interchanged while preserving target prop-
erties. We treat observed alloy pairs as evidence for
substitutability patterns, then consolidate this empirical
data with Al-derived insights obtained through state-of-
the-art LLMs, including GPT-40, GPT-4.5, Claude Opus
4, and Grok3. These LLMs leverage documented knowl-
edge from related scientific domains through knowledge
integration to assess elemental substitutability beyond
the training dataset, not by generating information be-
yond their training corpus. Through Dempster—Shafer
theory, the framework systematically models and com-
bines these diverse evidence sources while quantifying
both epistemic and aleatoric uncertainties. By providing
accurate predictions in well-characterized regions along-
side uncertainty-aware guidance for data-sparse spaces,
this framework demonstrates—using HEAs as a proof
of concept—the viability of materials discovery through
uncertainty-aware Al integration.
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Collecting evidence from material dataset (DS)

Material datasets compositional elements HEA
| {0/ 00 O

1 substitutable

(RE/mmh-.

Source of evidence Evidence about substitution

Collecting evidence from large language models (LLMs)

User: Can copper and manganese be substituted

Large language models for each other?

Al-Agent: No. Mn induces antiferromagnetic
ordering (T, = 100 K for a-Mn), while Cu is
non-magnetic. Thus, their substitution may cause
magnetic frustration or spinodal decomposition,
affecting stability at extreme temperatures.

Source of evidence Evidence about substitution

Evaluating the hypothetical candidates

Degree of belief that Degree of belief that
FeCoAlCu forms multi phase \ FeCoAlCu form single phase

E Epistemic E

Non-HEAs 4 4 HEAs
support
é é
Evidence 1 Evidence q

HERE T - BEne T
) T ) T
FIEEE ) . G

Pieces of evidence about HEA formation

FIG. 2. Hybrid framework integrating Data and Al-extracted Knowledge for high-entropy alloy (HEA) dis-
covery. (a-b) Schematic depicting the collection of substitutability evidence from a single material dataset (DS) and large
language models (LLMs). (c) Schematic illustrating the assessment of hypothetical candidate properties using aggregated

evidence derived from substitution-based methods.

Il. METHODOLOGY 33

34

Each alloy A in the dataset D is represented by its con-
stituent elements. The property of interest y4, for any
alloy A, can be either HEA or HEA. Here, HEA denotes *°
alloys that form a stable high-entropy phase (single-phase
solid solution), while HEA (or Non-HEA) denotes al- 3¢
loys that do not form a stable high-entropy phase (multi- 37
phase structures). To determine elemental substitutabil- 38
ity, we assess the similarity between different element 3°
combinations by adapting evidence theory, which models
and aggregates diverse pieces of evidence obtained from
D. Similarities between objects can manifest in various 4o
forms??; e.g., pairwise ratings, object sorting, commu- s
nal associations, substitutability, and correlation. In this ..
study, we specifically focus on the solid-solution forma- .s
bility of element combinations and quantify their similar- 4,
ities based on elemental substitutability. 5

Our approach is intuitively illustrated using the exam- e
ple of element substitutability between Mn and Cu in a7
Figure 2] Suppose we observe from materials datasets as
that two alloys, FeCoNiCu and FeCoNiMn, both form e
HEAs. This provides evidence that Cu can substitute so
for Mn in this context. Meanwhile, consulting domain s
knowledge through LLMs might reveal that metallurgists s
consider Cu-Mn pairs as non-substitutable, contribut- ss
ing additional conflicting evidence. Our proposed frame- sa
work models and combines these independent pieces of ss
evidence using evidence theory, potentially resulting in se
stronger belief in their substitutability than either source sz
alone would provide. When predicting whether a new al- ss
loy, such as FeCoAlCu, forms an HEA, the framework se
can leverage existing data about FeCoAlMn and the es- oo

by

M

tablished Cu-Mn substitutability to make informed pre-
dictions.

A. Transforming Materials Data to Substitutability Evidence

Consider two alloys, A; and A; in D, that share at least
one common element. This non-disjoint pair of alloys
provides evidence regarding the substitutability between
the element combinations:

Ct :AZ\(AZQA]) and Cv :AJ\(AZOAJ)

The intersection A;NA; serves as the context for measur-
ing similarity. If y4, and y4, agree (i.e., both are classi-
fied as HE A or both as HEA), we infer that C; and C,
are substitutable; otherwise, they are non-substitutable,
as shown in Figure Zh.

The symmetric substitutability assumption (C; — C,
and C, — C; are the same) used in this work represents a
context-averaged approximation. While empirically val-
idated for near-equiatomic HEAs, this assumption may
limit accuracy for systems with strong directional substi-
tution preferences. However, this symmetric treatment
is justified in this study by two factors: first, the limited
training data in our data-sparse scenarios makes learning
separate directional patterns statistically infeasible; sec-
ond, for near-equiatomic multi-principal element HEAs
characterized by disordered random solid solutions, el-
ements occupy statistically similar local environments,
rendering symmetric substitution a physically reasonable
first-order approximation.

Evidence for similarity is captured by defining a frame
of discernment®? Q;,, = {similar, dissimilar}, encom-



http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5dd00400d

Open Access Article. Published on 19 December 2025. Downloaded on 1/14/2026 8:34:16 PM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Digital Discovery

View Article Online

Beyond Interpolation: Integration of Data and Al-Extracted Knowledge for High-Entropy Alley: Discewerppoo4ood 4

1 passing all possible outcomes. The evidence from A; and
2 A; is then represented by a mass function (or basic prob-

s ability assignment) C"g_. This mass function assigns
4 non-zero probability to the non-empty subsets of Qg;p,,

5 aS:

(1)

C,,Co a, ifya, =ya,,
mAt A ({similar}) = {O otherwise '

if ya, .
i"A“({dismmilar} {a, ifya; 7 ya;, (2)

0, otherwise,

3)

s Here, the parameter 0 < o < 1 is determined through
7 an exhaustive search for optimal cross-validation per-
s formance, as shown in Supplementary Section 1. Intu-
o itively, mgt’ 4, ({similar}) and mCt’ * ({dissimilar}) rep-
o resent the extent to which alloys A and A; support sub-
1 stitutability or non-substitutability of C; and C,. Fur-

12 ther, mif’i’f (Qsim) encodes epistemic uncertainty (i.e.,
19415

mgi:g”; (Qsi’m) =1- Q.

"

-

13 lack of definitive information). The probabilities assigned

1a to these three subsets of {g;,, must sum to 1.

15 Assuming that we collect ¢ pieces of evidence from D

16 to compare Cy and C,, each piece of evidence corresponds
C,Cy

17 to a pair of alloys that generates a mass function m; .

1s These g mass functions are combined via Dempster’ s rule

. . . . . Cy,C
10 Of combination®! to obtain a joint mass function mp"":

mG % (w) = (m{"C emS S . omd) (W), (4)

20 where w C Qgim, w # 0 and @ denotes the Dempster’s
1 rule of combinations, as described in Supplementary Sec-
> tion 2. When no relevant evidence is available, mgt’c'”
s is initialized with a mass of 1 on {similar,dissimilar},

«+ indicating total uncertainty.

N

N

N

N

2s B. Transforming Domain Knowledge to Substitutability
¢ Evidence

N

2z In addition to evidence collected from material
s datasets (DS), we focus on evidence derived from do-
20 main knowledge, utilizing LLMs to extract insights from
30 a vast corpus of scientific literature. Specifically, we use
31 a set of state-of-the-art LLMs including GPT-40, GPT-
s2 4.5, Claude Opus 4, and Grok3 to assess element sub-
3 stitutability based on expert perspectives within a given
sa domain, as illustrated in Figure[2b. The proposed model
3s evaluates the substitutability of element pairs from the
3 perspective of a domain expert, ensuring that the anal-
37 ysis aligns with established scientific reasoning. To en-
3s hance result reliability, we implement a two-step prompt-
30 ing procedure:

N

w
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e Question 1: Do you possess sufficient knowledge
or data to evaluate the substitutability of elements
C; and C, within the context of [domain know!l-
edge/?

e Question 2: If the answer to the first question is
Yes, the LLM further rates element substitutability
as High, Medium, or Low, based on insights distilled
from relevant scientific literature in the given do-
main.

Detailed prompts used for each LLM are provided in
Supplementary File 1. This approach is based on the as-
sumption that, when given clear and structured prompts,
these LLMs can simulate expert reasoning across multi-
ple scientific domains. This capability stems from their
extensive training on scientific literature, which enables
them to provide contextually relevant, domain-specific
feedback tailored to the challenges of HEA discovery.

Elemental substitutability is not universal and is
property-specific, strongly associated with functionality
and applications. For example, substitution for struc-
tural stability differs from substitution targeting the
magnetic, optical, or mechanical properties. Recogniz-
ing this property-specific nature, our framework requires
careful domain selection tailored to the target property
to ensure accurate predictions. To facilitate the extrac-
tion of domain knowledge, we focus on five key scientific
domains, including corrosion science, materials mechan-
ics, metallurgy, solid-state physics, and materials science.
These domains are selected due to their critical roles in
understanding and optimizing HEAsS, specifically tailored
for phase stability prediction®. Each domain contributes
essential insights into different aspects of alloy design.

e Corrosion science: This domain examines chem-
ical degradation mechanisms and protective strate-
gies, essential for ensuring long-term durability.

e Materials mechanics: This domain investigates
mechanical properties such as strength, ductility,
and toughness, crucial for structural performance.

e Metallurgy: This domain analyzes phase forma-
tion, phase diagrams, and microstructure control,
offering insights into alloy stability and processing
methods.

e Solid-state physics: This domain explores
atomic-scale interactions, electronic structure, and
thermal behavior, all of which influence phase sta-
bility and material performance.

e Materials science: This domain serves as an inte-
grative field that synthesizes perspectives from the
other domains, emphasizing the relationships be-
tween composition, structure, properties, and per-
formance to optimize alloy design strategies.

The evidence collected from the LLM for each do-
main is categorized into one of four outcomes: High,

Page 4 of 21
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TABLE 1. Possible outcomes generated by an LLM for each

functions m {1$Y ({similar}), m{£G? ({dissimilar}), and mg£G

domain-specific criterion, along with the corresponding mass
({similar, dissimilar}). Here, 0 < § < 1 indicates our confidence

in LLM’s response, with determination details provided in Supplementary Section 1.

Q1 Q2 m{ySy ({similar}) m&HS ({dissimilar}) m&HG (Qsim) Interpretation

No - 0 0 1 LLM does not provide sufficient domain knowledge
Yes High 8 0 1-p C: and C, are considered highly substitutable
Yes Medium B/2 B/2 1-p C} and C, are considered moderately substitutable
Yes Low 0 B 1-p C and C, are considered poorly substitutable

1 Medium, Low, or No Knowledge. Further, these outcomes
are mapped to a corresponding mass function denoted
3 as mfﬁﬁs, as shown in Table If the LLM indicates No
Knowledge, then the entire mass is assigned to the set
{similar, dissimilar}, reflecting complete epistemic uncer-
s tainty. Conversely, if the LLM provides a specific substi-
tutability rating (High, Medium, and Low), then a portion
of the mass is allocated to either {similar} or {dissimilar},
while the remaining mass is assigned to €;,, to account
10 for residual uncertainty in the prediction.

11 Notably, all LLMs (GPT-40, GPT-4.5, Claude Opus
12 4, and Grok3) are used as pre-trained models out-of-
13 the-bor without any fine-tuning, retraining, or in-context
1s literature provision. These models are queried directly
15 through their respective API interfaces using the two-
16 step prompting procedure described above and detailed
17 in Supplementary File 1. The LLMs leverage knowledge
18 from scientific literature encountered during their origi-
10 nal pre-training by the respective model developers; we
20 do not modify these models in any way. Each LLM pro-
21 vides independent assessments that are later combined
22 using Dempster-Shafer theory (Section II.C).

V)

>

L]

~

[

©

23 C.  Combining Evidence from Multiple Sources

2« In this study, a source S refers to an independent
2s knowledge provider that generates evidence about ele-
26 mental substitutability. Our multi-source framework in-
27 tegrates two kinds of independent sources:

28 e DS-source: A material dataset D provides em-
20 pirical evidence by analyzing alloy pairs that differ
30 by element substitution (Section. This dataset
31 contains factual observations about the target do-
32 main (e.g., which alloy compositions form HEAS).
33 e LLM sources: We query 4 state-of-the-art LLMs

38 (GPT-40, GPT-4.5, Claude Opus 4, Grok3) across
35 5 scientific domains (corrosion science, materials
36 mechanics, metallurgy, solid-state physics, materi-
37 als science), creating 4 x5 = 20 independent knowl-
38 edge sources (Section. Each combination of an
30 LLM and a domain provides documented scientific
40 knowledge from related or similar domains to the
a1 target domain.

a2 To integrate substitutability evidence collected from
43 multiple sources, Dempster’s rule of combination with a

4

1y

reliability-aware discounting step is used®#43. Recogniz-
s ing that substitutability is property-specific and differ-
46 ent sources capture different aspects of elemental substi-
«7 tutability, our framework implements an adaptive mech-
+s anism that evaluates each source’s relevance to the target
a0 property. This reliability-aware discounting automati-
so cally assigns higher weights to sources that align well with
s1 the specific property being predicted while suppressing
s2 sources that capture irrelevant substitutability criteria,
s3 thereby preventing inappropriate knowledge integration.
sa  For each source S, we compute a dataset-specific dis-
ss count factor as:

s = disc (m$"", D) € [0,1], (5)
ss where disc(.) quantifies how well the substitutability ev-
s7 idence collected from source S generalizes to the alloy
ss properties in D. The reliability of each source is assessed
so using the macro-averaged F1 score with 10-fold cross-
o validation. For instance, if a source S has historically
e1 demonstrated accurate predictions on alloys similar to
ez those in D, we assign g a value closer to 1. Conversely,
e3 if S performs poorly or unpredictably for alloys in D, ~vg
ea is reduced accordingly.

The original mass function mg“c“ for source S is then
modified by incorporating the discount factor g, leading

to an adjusted function 7S mg"c'”:

Py

c,,C

s C,C
mg

=75 X Mg

" ({similar}),

v ({similar})
e gt’ *({dissimilar}) = yg x mgt’ * ({dissimilar}),
C¢,Cy (Qsim) .

Wsmgt,CVU(Qsim) =1—7s+7s xmg"
(6)

es  This redistribution shifts mass from definitive conclu-
es sions {similar} and {dissimilar} to the ambiguous set
or {similar, dissimilar}, thereby encoding epistemic uncer-
es tainty for less reliable sources. Therefore, when all mass
eo functions are subsequently merged using Dempster’s rule,
70 less credible sources exert a weaker influence on the final
71 decision.

72 Assuming p sources {51, 52, ..., Sp}, the substitutabil-
73 ity evidence gathered from them is aggregated using
za Dempster’s rule of combination:

mCt’C”(w) — (’Yslmgm v ’Yszmct» v . - @"Yspmcr,c )(w)7

(7)
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1 where w denotes non-empty subsets of 24;,,,. The rule it-
2 eratively integrates evidence while normalizing conflicts
s (such as empty-set intersections arising from contradic-
« tory sources). This approach preserves diverse insights,
s from data-driven correlations to LLM-derived domain
s knowledge, while mitigating the influence of unreliable
7 sources. Critically, when evidence about substitutability
s is insufficient or conflicting, Dempster’s rule of combina-
o tion assigns high mass to m©*“ (Q, ), explicitly signal-
o ing uncertainty rather than forcing confident predictions.
1 This naturally prevents overfitting in data-sparse scenar-
> i0s common in materials discovery.

s Similar analyses are conducted for all pairs of element
« combinations, resulting in a symmetric matrix M, where
s (M[t,v] = M[v,t] = m©C ({similar})).

e D. Evaluating Hypothetical Candidates by Analogy-Based
7 Inference

s To predict whether a new alloy A, is likely to form
o an HEA, we employ a substitution-based inference ap-
o proach utilizing the similarity matrix M. The process
1 begins with a known alloy Ay, labeled y4,, and iden-
> tifies the subset Cy C A, that, when replaced by C,,
s generates Apq, (Figure [2 ¢). If C; and C, are deemed
« substitutable, then y4,,, is more likely to match ya,;
s conversely, if they are dissimilar, y4,,, may differ.

s  We formalize this inference using a frame of discern-
» ment*? Qypa = {HEA, HEA} and define a mass function

s My . o, to model the evidence collected from Ay and
s the substitution of Cy, for C,, denoted as C; < C,,. This
o mass function distributes belief among {HEA}, {HEA},
1 or {HEA,HEA} according to the similarity M[t,v] and

> the label of Aj as:

M[t,v], ifya, =HEA
A s Vs k ’
new HEA}) = 8
M4, CeC, ({ }) {07 otherwise, ®)
- M[t,v], ifya, = HEA
A 9 ) k ?
nesw HEA}) = 9
M A, CoeC, ({ }) {07 otherwise, ©)

Anew
mard, e, (Quepa) =1— Mlt,v].

(10)
s Here, the probability mass assigned to {HEA} and
« {HE A} reflects the confidence levels with which A and
s the substitution of C, for C; support the probabilities
s that Ayeq is or is not an HEA, respectively. The mass
- assigned to subset {HEA, HEA} represents epistemic
s uncertainty, signifying cases where the available evidence
s does not provide definitive information regarding the
o properties of A,¢,. The total probability mass assigned
1 to all three non-empty subsets of Qg g4 is constrained to
> sum to 1, ensuring a consistent probabilistic framework.
3 An illustrative example employing the Dempster-Shafer
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theory for the evaluation of hypothetical candidates is
provided in Supplementary Section 3.

We assume that multiple pieces of evidence can be
collected, each derived from a distinct pair of host al-
loy Apost and substitution pair C; + C,, for a new
alloy candidate A,e,. These individual pieces of evi-
dence are systematically combined using Dempster’s rule
of combination to generate a final mass function mA»ew.
This function integrates all available analogies, resolving
potential inconsistencies and contradictions among the
sources. The resulting combined evidence offers a coher-
ent assessment, aiding in informed decision-making re-
garding whether further resource-intensive experiments
are necessary to validate the HEA formation ability of

Anew .

I1l. EXPERIMENTAL SETTING

In this section, we present the design of experiments,
which assess both the predictive capability and inter-
pretability of our proposed method. Additionally, we
provide comparisons against alternative approaches, in-
cluding single-source evidential methods and other data-
driven classifiers.

A. Datasets

Experiments are conducted considering four compu-
tational datasets of quaternary alloys, one experimen-
tal dataset of quaternary alloys, and one experimental
dataset of quinary high-entropy borides (HEB), summa-
rized in Table [l HEBs are single-phase ceramics con-
taining multiple transition metal cations randomly dis-
tributed on the metal sublattice of a boride structure, of-
fering unique combinations of metallic and ceramic prop-
erties?®. Despite different bonding mechanisms, HEBs
exhibit similarly high elemental selectivity as HEAs—
boron’s restrictive bonding requirements create stringent
constraints on metal selection, analogous to the selec-
tive substitutability patterns in metallic HEAs, making
them suitable for testing our framework’s core princi-
ple of managing uncertainty in highly selective multi-
component systems.

® Dy.or,, and Dizsok: These computational datasets
include all possible quaternary alloys generated
from a set of 26 elements: Fe, Co, Ir, Cu, Ni, Pt,
Pd, Rh, Au, Ag, Ru, Os, Si, As, Al, Re, Mn, Ta,
Ti, W, Mo, Cr, V, Hf, Nb, and Zr. The stabil-
ity of these alloys is predicted using methods pro-
posed by Chen et al®? at two different tempera-
tures: 0.97,, (approximately 90% of the melting
temperature Ty, of the alloy) and 1350 (K'). These
predictions are obtained via a high-throughput
computational workflow, which employs a regular-
solution mode %47 ysing binary interaction param-
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TABLE II. Summary of alloy datasets used in evaluation experiments. No. alloys: Total number of alloys present in each
dataset. No. positive label: Number of alloys classified as forming HEA phases in datasets Do.orm and Dissox, the number of
alloys exhibiting non-zero magnetization in Dnag, and the number of alloys with a non-zero Curie temperature in Dr,. The
percentage values in parentheses represent the proportion of positive labels within each dataset.

Dataset No. alloys Physical properties Positive label No. positive label
Do.or1,, 14,950 quaternary alloys Stability HEA 4,218 (28%)
Dissok 14,950 quaternary alloys Stability HEA 1,402 (9%)
DMag 5,968 quaternary alloys Magnetization (7') Magnetic 2,428 (41%)
Dre 5,968 quaternary alloys Curie temperature (K)  Non-zero Curie Temperature 2,355 (39%)
Dipa 55 quaternary alloys Stability HEA 40 (73%)
Dien 19 quinary alloys-borides Stability HEB 15 (79%)
1 eters derived from ab initio density functional the- a0 of data) to determine how effectively LLM-derived knowl-
2 ory (DFT) to compute and compare Gibbs free en- a: edge aligns with material-specific relationships across dif-
3 ergies of solid solutions against competing inter- &= ferent data availability scenarios, with particular focus on
4 metallic phases™0H18, 3 data-limited conditions; and (2) Extrapolation on qua-

5 ® Dyrag and Dr,: These computational datasets
s comprise 5,968 quaternary high-entropy alloys
7 (HEAs)®?, each formed by selecting four elements
8 from a set of 21 transition metals: Fe, Co, Ir, Cu,
° Ni, Pt, Pd, Rh, Au, Ag, Ru, Os, Tc, Re, Mn,
10 Ta, W, Mo, Cr, V, and Nb. Their magnetizations
1 (Dasag) and Curie temperatures (Dr,,) in the body-
12 centered cubic (BCC) phase are computed using
13 the Korringa—Kohn-Rostoker coherent approxima-
1a tion method®®. These datasets are derived from
15 an original pool of 147,630 equiatomic quaternary
16 HEAs.

17 e Dips: The experimental dataset includes 55 ex-
18 perimentally verified quaternary HEAs from peer-
1 reviewed publications®®4%50 The dataset includes
20 both HEA (40 alloys) and non-HEA (15 alloys)
21 compositions, providing balanced representation
22 for validation.

23 e Dits: The experimental dataset includes 19 ex-
24 perimentally verified quinary HEBs from peer-
25 reviewed publications®¥. The dataset includes 15
26 quinary systems forming HEB.

27 B. Design of experiments

2s  We begin by verifying the reliability of the elemen-
20 tal substitutability knowledge queried from large lan-
30 guage models (LLMs). Specifically, we compare the
31 LLM-derived substitutability knowledge with the well-
32 established Hume—Rothery criteria for elemental substi-
33 tution.

3« With that reliability confirmed, we turn to predic-
35 tive capability. Two experiments on four computational
3e datasets serve as the framework’s proving ground to eval-
a7 uate predictive capability of our proposed framework: (1)
ss Cross-validation on quaternary alloys, assessing perfor-
3 mance with randomly partitioned training sets (1%-30%

4 ternary alloys, simulating real discovery scenarios by ex-
s cluding alloys containing a specific element from training
s and evaluating performance on compositions that incor-
47 porate this previously unseen element. These compu-
s tational datasets, free from experimental bias and large
49 enough for robust statistics, provide the controlled envi-
so ronment needed for framework development.

51 1o benchmark our multi-source method, we com-
s2 pare its predictive performance against two baseline ap-
s3 proaches.

54 e Single-source methods: These methods rely ex-
55 clusively on one source of evidence, either a mate-
56 rial dataset or domain knowledge derived from only
57 one LLM from the set of state-of-the-art models un-
58 der investigation.

50 e Traditional classification method: We employ
60 logistic regression (LR)>Y.

e1  Hyper-parameters of these methods are tuned via sys-
s> tematic grid search, as detailed in Supplementary Sec-
63 tion 1. Hereinafter, we define models employing the ev-
es idential method (based on the Dempster—Shafer theory)
es as follows: models trained solely on material datasets
es are termed DS-source models; those leveraging evidence
67 from LLMs are termed LLM-source models; and those in-
es tegrating both sources are termed multi-source models.
eo Notably, the LLM-source models are obtained by combin-
70 ing 20 independent sources—each of the 4 LLMs (GPT-
7 4o, GPT-4.5, Claude Opus 4, Grok3) queried across 5
72 scientific domains—through Dempster-Shafer theory (Sec-
73 tion . The multi-source model further integrates this
za combined LLM-source with the DS-source using the same
7s framework. Models utilizing logistic regression and sup-
7e port vector machines are referred to as LR-based model.
7z To assess the real-world applicability of our frame-
7s work, we next validate its predictive performance on
7o experimentally verified alloys. This validation exam-
so ines whether the proposed framework can accurately pre-
s1 dict phase stability for experimentally synthesized alloys.
s2 Our framework integrates LLM-derived knowledge with
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TABLE III. Confusion matrix comparing LLM consensus predictions with Hume—Rothery rules for 351 element pairs considered

in this study.

Hume—Rothery rules

Substitutable |Non-substitutable | Total
Substitutable 33 pairs 45 pairs 78 pairs
(True positive) | (False positive)
LLMs - - .
Non-substitutable 4 pairs 269 pairs 273 pairs
(False negative)| (True negative)
Total 37 pairs 314 pairs 351 pairs

1 substitutability patterns extracted from computational
> datasets. This reflects real-world scenarios where re-
s searchers must consider all available knowledge to fill the
« gaps raised by limited experimental data before selecting
s candidates for expensive synthesis. Finally, after evalu-
s ating the predictive performance across all settings, we
7 analyze the element substitutability patterns captured
s using the multi-source approach to gain deeper insights
o into the underlying HEA formation mechanisms of qua-
o ternary alloys.

"

11 C. Materials descriptors

12 Descriptors, which are the representation of alloys,
13 play a crucial role in building a recommender system to
14 explore potential new HEAs. In this research, the raw
1s data of alloys is represented in the form of element com-
16 binations. Several descriptors have been studied in ma-
17 terials informatics to represent the compounds®2. To em-
1s ploy the data-driven approaches for this work, we applied
1o compositional descriptor® and binary elemental descrip-
20 tor.

21 Compositional descriptors represent each alloy through
22 135 features derived from 15 atomic properties of con-
3 stituent elements. These properties include structural
« parameters (atomic number, mass, period, and group),
s electronic characteristics (first ionization energy, second
s jonization enerqy, Pauling electronegativity and Allen
7 electronegativity), size factors (van der Waals, covalent,
s and atomic radii), and thermophysical properties (melt-
s ing point, boiling point, density, specific heat). For each
o atomic property, we calculate statistical numbers, in-
31 cluding mean, standard deviation, and pairwise covari-
32 ances across the alloy’s elements, to represent the alloy.
33 The compositional descriptors can be applied not only to
3a crystalline systems but also to molecular systems. How-
3s ever, the descriptors cannot easily distinguish alloys with
36 different numbers of constituent elements, because they
37 treat the atomic properties as statistical distributions.
ss Therefore, the descriptors cannot be applied when ex-
s trapolating to alloys with a different number of compo-
a0 nents.

a1 Binary elemental descriptors use binary encoding to
2 indicate element presence (1) or absence (0) in an alloy.
43 The number of binary elemental descriptors corresponds
4 to the number of element types included in the train-

N

N

N

N

N

N

w

w

«s ing data. In this study, the binary elemental descrip-
s tors are used to represent the alloys in the DS-source,
a7z LLM-source, and multi-source models. In contrast, the
48 compositional descriptors are applied for the LR-based
40 model.

so IV. RESULTS AND DISCUSSIONS

s1 A. Reliability Assessment of LLM-Based Elemental
Substitutability Knowledge

5.

N

ss  Verifying the reliability of large language model (LLM)
sa Tesponses is a prerequisite for trusting downstream pre-
ss dictions. We therefore validate element-substitutability
se knowledge extracted from LLM queries against the em-
sz pirical Hume-Rothery rules®®, which are a set of ba-
ss sic rules for predicting elemental substitution. These
so rules stipulate that elements readily substitute in solid
oo solutions when: (i) atomic radius mismatch is lower
o1 than 15%, (ii) they share similar crystal structures and
o2 valence states, and (iii) they have similar electronega-
3 tivity. When electronegativity differences exceed criti-
s cal thresholds, metals typically form intermetallic com-
es pounds rather than solid solutions. For this validation,
ss we use an electronegativity difference threshold of 0.55.
ez For valency comparison in metallic alloy systems, we con-
es sider the effective valency® (number of electrons effec-
eo tively contributing to metallic cohesion). While most
7o metals exhibit a single characteristic valency, certain
transition metals (e.g., Fe, Co, Mn, Cr) can exhibit mul-
72 tiple effective valencies in different alloy environments.
73 In our analysis, two elements are considered to have sim-
7a ilar valency if they share at least one common valence
7s State.

7e  We aggregated substitutability assessments from four
7z LLMs, including Grok3, Claude Opus 4, GPT-40, and
s GPT-4.5, for 351 element pairs using our DST frame-
7o work. Each pair is classified as substitutable if the com-
so bined belief for substitutability exceeds that for non-
substitutability. =~ Comparison against Hume-Rothery
s2 predictions reveals strong alignment: 86% of element
s3 pairs show identical classifications with high recall rates
sa for substitutable labels and high precision for non-
ss substitutable labels, as shown in Table [T} Specifically,
ss 33 of 37 pairs (89%) deemed substitutable by Hume—
sz Rothery rules are correctly identified by LLMs, while

Y

7

P

8

=
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substitutable
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substitutable
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substitutable
Unknown
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FIG. 3.

Highly |
substitutable

o

Moderately |
substitutable

XX

poory | +———
substitutable
Unknown A I—_—| X
0.0 0.2 0.4 0.6 0.8 1.0

Electronegativity difference

=== Similar valency

Highly
substitutable

= Dissimilar valency

Moderately
substitutable
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substitutable
Unknown
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Proportion

Validation of LLM-extracted substitutability against Hume—Rothery rules. (a, b) Distribution of atomic

radius differences (a) and electronegativity differences (b) for element pairs categorized by LLM-predicted substitutability levels
(highly, moderately, and poorly substitutable, plus unknown). Box plots show median, interquartile range, and outliers. (c, d)
Proportions of element pairs with similar versus dissimilar crystal structures and valency, grouped by substitutability levels.

269 of 273 pairs classified as non-substitutable by LLMs
matched Hume-Rothery rules, achieving a precision of
99%.

The 14% misalignment consists entirely of cases where
LLMs identify additional substitutable pairs beyond the
traditional Hume-Rothery criteria. Among the 45 mis-
aligned pairs, most satisfy the size and electronegativity
requirements but exceed traditional thresholds for va-
lency or crystal structure differences. Remarkably, ex-
perimental validation supports these context-specific pre-
dictions: 14 of these pairs have been confirmed to form
single-phase binary systems®0, as shown in Supplemen-
tary Table 3. Additionally, Cr and Nb differ in valence
electron counts (Cr: 6, Nb: 5), placing them outside
general substitutability criteria. However, when incor-
porated into quaternary systems, they demonstrate suc-
cessful substitution—Cr in quaternary system Cr-Al-Ti-V
can be replaced by Nb (forming Nb-Al-Ti-V), and simi-
larly in Cr-Ta-Ti-V and Nb-Ta-Ti-V systems, both form
stable single-phase BCC structures.

This asymmetric difference reflects a fundamental
distinction between general rules and context-specific
knowledge. The Hume-Rothery rules, developed through
careful empirical observation, provide general guidelines
with well-defined thresholds (e.g., 15% for radius dif-
ference) that have successfully guided alloy design for
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decades. These universal criteria ensure high reliability
across diverse alloy systems. In contrast, LLMs capture
context-dependent substitutability documented in mate-
rials literaturé®?, in which specific processing conditions,
alloy compositions, or applications enable successful sub-
stitution despite exceeding general thresholds. LLMs in-
tegrate knowledge from documented experimental sys-
tems across material families for general substitutability
assessment, explaining why they complement conserva-
tive Hume-Rothery rules with context-specific insights.
Detailed analysis of all 45 pairs with experimental vali-
dation status is provided in Supplementary Table 3.

Figure [3 analyzes in detail the alignment of LLM’s re-
sponse with each criterion of substitutability from Hume—
Rothery rules. Element pairs that LLMs identified as
highly substitutable exhibit significantly lower atomic
radius differences and electronegativity differences com-
pared to pairs identified as poorly substitutable, as shown
in Figure a—b). Additionally, highly substitutable pairs
predominantly share similar crystal structures and valen-
cies, while poorly substitutable pairs rarely do as shown
in Figure 3{c-d).
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FIG. 4. Predictive capability evaluation via cross-validation on quaternary-alloy datasets Dy .97, and Dissok. (a,
d) Classification accuracy of the multi-source, single-source, and LR-based models on two quaternary alloy datasets Do o7, and
Dissox. (b, e) Receiver operating characteristic (ROC) curves for the same models at a 30% training-set size on these datasets.
(c, f) Area under the ROC curves (AUC) for each model across different training-set sizes, providing an overall measure of
discriminative performance. In all subplots, red lines indicate the multi-source model (using both DS and LLM sources), green
and blue lines represent single-source models (using either DS or LLM sources), and gray lines represent the LR-based model.

B. Cross-Validation Analysis of Multi-Source Knowledge
Integration

For the experiment, we systematically vary the train-
ing set size from 1% to 30% of each quaternary-alloy
dataset, incrementing by 1% up to 10%, followed by steps
of 20% and 30%. The variation enables the assessment of
how different methods handle data scarcity versus mod-
erate availability.

Figures [{[(a,d) and [f|a,d) show the classification ac-
curacy of the single-source, multi-source, and LR-based
models on the four datasets. At smaller training sizes
(approximately 1%-10%), the LR-based model achieves
the highest overall accuracy, outperforming evidential
models, which explicitly model element substitutabil-
ity to predict alloy properties. Among the evidential
models, single-source LLM models initially outperform
DS-source models, attributed to LLM-derived domain-
specific insights that assist in mitigating data limita-
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tions. However, multi-source models remain competitive
and sometimes achieve the highest accuracy among evi-
dential models, even with limited data. As the training
size exceeds 10%, DS-source models exhibit superior per-
formance on the magnetization and Curie temperature
datasets while achieving comparable accuracy to LLM-
source models on alloy stability datasets. Conversely,
the accuracy of LR-based models plateaus and is even-
tually outperformed by evidential models. These find-
ings underscore the importance of incorporating LLM-
based, DS-source, or multi-source knowledge to improve
quaternary-alloy property predictions.

Although prediction accuracy provides a convenient
single-metric overview, it relies on a fixed classification
threshold (typically 0.5), which may not be optimal for
imbalanced datasets, where HEAs (positive class) are rel-
atively rare. Under these conditions, LR-based models
may serve effectively at extremely small training sizes
when they effectively predict the dominant (Non-HEA)
class by default, thereby inflating accuracy. However,
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FIG. 5. Predictive capability evaluation via cross-validation on quaternary-alloy datasets Dy., and Dr.. (a,
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d) Classification accuracy of the multi-source, single-source, and LR~based models on two quaternary alloy datasets Dnag and
Dr.. (b, €) Receiver operating characteristic (ROC) curves for the same models at a 30% training-set size on these datasets.
(c, f) Area under the ROC curves (AUC) for each model across different training-set sizes, providing an overall measure of
discriminative performance. In all subplots, red lines indicate the multi-source model (using both DS and LLM sources), green
and blue lines represent single-source models (using either DS or LLM sources), and gray lines represent the LR-based model.

this approach fails to address scenarios where different
types of misclassifications (false positives versus false neg-
atives) incur different costs.

To effectively capture these trade-offs under dynamic
thresholds, we analyze receiver operating characteristic
(ROC) curves across the four datasets, which illustrate
variations in true positive rate (TPR) and false positive
rate (FPR) of each model across all possible decision
boundaries. Figures [4(b,e) and [5b,e) depict the ROC
curves for the multi-source models, LLM-source models,
DS-source models, and LR-based models at a 30% train-
ing size. Overall, the multi-source and DS-source mod-
els exhibit comparable ROC performance and outper-
form the other models. The LLM-source models achieve
results comparable to the best ones on the alloy sta-
bility datasets Dy.or, and Diszsox but lag behind DS-
source models on the magnetization and Curie tempera-
ture datasets Dyiag and Dr,. Therefore, knowledge col-
lected from the five considered research domains may
not fully capture the magnetic and thermal properties
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reflected in those datasets. Meanwhile, the LR-based
models consistently show the lowest performance across
all four datasets.

To further assess the ROC performance of each model
at different training sizes, we analyze the AUC distri-
bution from 1% to 30% training data, as shown in Fig-
ures[d(c,f) and [f(c,f). When the training set is extremely
small, LLM-based models generally attain an early ad-
vantage, presumably because domain insights compen-
sate for limited alloy observations. However, as data ac-
cumulates, DS-source models typically outperform LLM-
source models, suggesting that direct data-driven cues
from quaternary-alloy datasets become increasingly de-
cisive. In contrast, multi-source models maintain robust
performance across all training sizes, benefitting from
their ability to merge domain-specific substitutability in-
sights with empirical data. Multi-source models leverage
complementary evidence, enabling an effective balance
between TPR and FPR. On stability datasets Dy g7, and
D1350K, DS-source and multi-source models achieve com-
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Performance comparison of explicit versus implicit domain integration. Area under ROC curves for

predicting HEA stability (Do.o1,,, D13sox) and magnetic properties (Dasag, D1, ) using two domain integration strategies: (i)
systematic combination of four specialized domains (solid-state physics, corrosion science, metallurgy, materials mechanics)
shown in red, (ii) only using materials science, which serves as an integrative field that synthesizes perspectives from four

specialized domains, shown in blue.

parable AUC early on and remain highly competitive as
training data accumulates. For magnetization and Curie-
temperature datasets, DS-source models briefly outper-
form multi-source models at moderate training sizes (ap-
proximately 6-20%), but this gap diminishes at larger
training sizes.

We note that the LLM-derived substitutability ma-
trix M remains fixed across all training sizes (LLMs
are used out-of-the-box without retraining); improved
performance with larger training sets results from hav-
ing more host compositions available to apply this fixed
knowledge through substitution-based inference (Sec-
tion II.D). This explains why LLM-source and multi-
source models benefit from increased training data de-
spite the LLM knowledge itself remaining unchanged.

Figure[6] provides compelling evidence for the effective-
ness of our systematic evidence combination approach
compared to relying on materials science as an integra-
tive domain that synthesizes perspectives from the other
four domains. Significantly, using only materials science
knowledge yields substantially lower performance by 10-
20% across all datasets than our multi-source framework,
which systematically combines evidence from the four
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specialized domains, across different prediction tasks.
This performance gap demonstrates the fundamental ad-
vantage of our Dempster—Shafer-based approach: while
materials science provides a static, pre-integrated per-
spective that may obscure domain-specific nuances, our
framework preserves distinct domain insights and adap-
tively weights them based on their alignment with target
properties. The superior performance of our systematic
combination method validates that explicit, property-
aware evidence synthesis outperforms implicit knowledge
fusion, particularly when different domains contribute
varying degrees of relevant information for specific mate-
rial properties such as stability, magnetization, or Curie
temperature.

While LLM-source models generally perform well, our
results reveal two scenarios where they potentially un-
derperform compared to data-driven approaches.

1. Property-specific predictions with weak domain
alignment: For magnetic property datasets (Dyrag,
Dr..), DS-source substantially outperforms LLM-
source, showing a larger performance gap than
observed for phase stability datasets (Figures
and . The five selected domains (corrosion

Page 12 of 21
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TABLE IV. Prediction accuracy and Areas under the receiver operating characteristic (ROC) curves of various methods on
quaternary-alloy datasets in extrapolation experiments. For each dataset, alloys containing a specific element e are systemati-
cally excluded from the training set and used exclusively for testing. Results are reported as mean accuracy and mean AUC,
averaged across all elements e within each dataset, with standard deviations reflecting variability across elements.

Evaluation criteria Methods

Do.oT,

Di13sokx DMag Dr,

C
Prediction accuracy Multi-source model 0.86 + 0.06 0.92 £+ 0.04 0.86 £0.19 0.86 +£0.18
LLM-source model 0.84 +0.09 0.90 + 0.09 0.81 £0.21 0.86 = 0.18
DS-source model 0.50 + 0.04 0.51 £ 0.05 0.48 £ 0.07 0.50 £0.10
LR-based model 0.83 = 0.05 0.91 +0.04 0.67 £0.15 0.68 +=0.13
Area under ROC curves Multi-source model 0.93 £ 0.06 0.92 £ 0.08 0.95 £ 0.06 0.94 + 0.07
LLM-source model 0.91 £0.11 0.90 £0.12 0.95 £ 0.06 0.94 £0.07
DS-source model 0.50 & 0.00 0.50 & 0.00 0.50 £+ 0.00 0.50 & 0.00
LR-based model 0.85+0.11 0.82 £0.10 0.84 4+ 0.06 0.84 +0.06

science, materials mechanics, metallurgy, solid-
state physics, materials science) were optimized for
structural stability and do not adequately capture
magnetic exchange interactions or spin configura-
tions.

2. Data-rich regimes: At large training sizes (>20%,
Figures [4] and , DS-source matches or exceeds
LLM-source performance across all datasets. When
sufficient data exists, empirical patterns extracted
directly from the dataset provide adequate informa-
tion, and general domain knowledge offers minimal
additional value.

In conclusion, LLM-source models excel in data-scarce
scenarios by leveraging domain-specific insights to miti-
gate sparsity-related challenges. As data availability in-
creases, DS-source models outperform LLM-source mod-
els, particularly where DS-derived evidence provides suf-
ficient information for a purely data-driven learning ap-
proach. Multi-source models, which integrate insights
derived from LLM and DS-sources, demonstrate robust
and consistent performance across various training sizes.

C. Extrapolation Analysis of Multi-Source Knowledge
Integration

Having assessed the proposed framework via cross-
validation (Section @ , we examine its extrapolation
performance on quaternary alloys containing an element
e, which is excluded during training. Unlike the cross-
validation experiments, the training set size is not varied
for this set of experiments. Instead, for each element e,
we remove all e-containing alloys from the dataset and
train each model on the remaining alloys that do not
contain e. Further, we evaluate the ability of the mod-
els to predict the properties of e-containing alloys. This
procedure tests whether the learned models can general-
ize to compositions containing unseen elements in their
training datasets.

Table [[V] reveals distinct performance patterns across
model types. DS-source models fail in this scenario,
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achieving ~0.50 accuracy (random guessing) across all
datasets because they cannot extract substitutability
patterns for absent element e from training data. In con-
trast, LLM-source models achieve substantially higher
accuracies across all datasets. Multi-source models mod-
estly outperform LLM-source on phase stability datasets
(Do.or,, and Dy350k) but achieve nearly identical perfor-
mance on magnetic property datasets (Duag and Dr, ).

This convergence of multi-source and LLM-source per-
formance on magnetic datasets reflects proper uncer-
tainty handling rather than a limitation. When element
e is absent from training, DS-source has no observed sub-
stitutability patterns involving e. Following the principle
established in Section [[TA] DS-source assigns unit mass
to the uncertainty set, explicitly representing total igno-
rance about e-containing compositions. When this to-
tal uncertainty combines with confident LLM evidence
through Dempster’s rule (Equation 7), the final multi-
source prediction is naturally dominated by informative
LLM knowledge. The framework thus explicitly repre-
sents unknown rather than forcing unreliable predictions
from insufficient data, demonstrating principled uncer-
tainty quantification in extrapolation scenarios.

Figure [7] illustrates the ROC curves, showing that the
multi-source and LLM-source models consistently exhibit
higher TPR at comparable FPR across all datasets. Con-
versely, DS-source models exhibit near-random discrimi-
nation, as evidenced by their diagonal ROC curves, while
LR-based models yield moderate performance between
these extremes. To quantify these visual differences, Ta-
ble [V] also lists AUC for each dataset. Multi-source
models achieve the highest AUC scores (0.92-0.95), fol-
lowed closely by LLM-source models (0.90-0.95), while
LR-based models peak at approximately 0.85, and DS-
source models hover at approximately 0.50.

Figure [Bh—c illustrates knowledge integration in ex-
trapolation simulations for Os-based alloys using the
Do.or, dataset. Specifically, Figures [Sh and [8b present
maps reconstructed from element substitutability pat-
terns derived from the DS-source and multi-source mod-
els, respectively, both trained on Dy g7, dataset exclud-
ing Os-based alloys. Details of the visualization method
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Predictive capability evaluation via extrapolation on quaternary-alloy datasets. For each dataset, alloys

containing a specific element e are systematically excluded from the training set and used exclusively for testing. (a—d) Area
under the receiver operating characteristic (ROC) curves (AUC) is plotted for each model on their respective test sets in the
extrapolation experiments. In all subplots, red lines represent the multi-source model (integrating both DS and LLM sources),
green and blue lines represent single-source models (using either DS or LLM sources), and gray lines represent the LR-based

model.

are shown in Supplementary Section 4. In these visu-
alizations, the observed alloys are well-structured into
sub-clusters according to their phase formation behav-
ior, with blue markers indicating HEA-forming alloys and
red markers representing non-HEA alloys. The Os-based
candidate alloys, depicted as white circular markers, con-
sistently form a distinct sub-cluster in the upper region
of each map. In these visualizations, the background col-
oration indicates the predicted probability of HEA for-
mation, with deeper blue regions suggesting higher prob-
ability of forming stable HEAs.

The limitations of the DS-source model become evi-
dent in Figure [8h, where the phase behavior of Os-based
alloys remains undetermined due to the absence of Os-
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containing alloys in the training dataset. This knowledge
gap leaves researchers with no guidance when exploring
the uncharted territory of Os-based alloys, forcing them
to rely on random selection. In contrast, our multi-source
approach addresses this limitation by integrating expert
insights distilled from scientific literature using LLMs,
as illustrated in Figure Bp. The effectiveness of this
approach is visually confirmed in Figure B¢, where the
multi-source model’s predictions closely align with the
actual phase behavior of the candidates. This qualitative
assessment is complemented by quantitative evaluation
in Supplementary Table 4, which reports that the multi-
source model achieves an impressive 88% prediction ac-
curacy for Os-based alloys, validating our approach’s ca-
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FIG. 8. Visualization of Os-based alloy extrapolation in dataset Do.or,,. (a) Alloy map generated from element

substitutability patterns extracted using the DS-source model after excluding Os-based alloys from training. (b—c) Alloy maps
generated from element substitutability patterns extracted using the multi-source model after excluding Os-based alloys from
training. The map in (c) incorporates queried labels for Os-based candidate alloys. Marker colors represent phase formation:
blue for HEA alloys, red for non-HEA alloys, and white for Os-based candidate alloys. Background coloration indicates the
predicted phase formation probability according to the DS-source model (a) and multi-source model (b—c), with deeper blue

shades suggesting higher probability of HEA formation.

-

pability to effectively extrapolate to unexplored compo-
sitional spaces. In summary, these results confirm that
leveraging multi-source or LLM-based evidence signifi-
cantly enhances discriminative power in the extrapola-
tion scenario.

N

w

>

L

D. Effectiveness Assessment on Experimental High-Entropy
Alloy Data

o

~

s To assess the real-world applicability of our frame-
o work, we validated its performance on experimentally
10 verified alloys from the literature. This validation ex-
11 amines whether the proposed framework, developed pri-
12 marily using computational datasets, can accurately pre-
13 dict phase stability for experimentally synthesized al-
1a loys. Our framework integrates LLM-derived knowledge
15 with substitutability patterns extracted from computa-
16 tional databases using the methodology described in Sec-
17 tion [[[Al This reflects real-world scenarios where re-
1s searchers must consider all available knowledge before
10 selecting candidates for expensive synthesis.

20 We performed 5-fold cross-validation on experimental
1 datasets: Dijb, of 55 experimentally confirmed alloys.
22 For the HEA dataset Db, , we integrated LLM knowl-
23 edge with substitutability patterns extracted from com-
2a putational datasets Dizs50x, DarLow, DPcoarpuaD, and
2s Dyrye. Details of the computational datasets are in-
26 troduced in the Supplementary Section 6. Notably, the
27 predictions from these computational methods for the 55
2s experimentally confirmed alloys are not utilized in our
20 framework training, ensuring unbiased validation.

30 For benchmarking on the HEA dataset, we compared
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concentration (VEC) model

our framework against four empirical rules (ERs)?% 61
two free-energy models (FEM , and a valence-electron
Supplementary Table 2
provides details of these baseline models. Addition-
ally, we compared our framework with results obtained
from computational datasets DAFLOWIEI, DLTVCJE', and
131350K|EI These computational datasets are collected
by using high-throughput approaches and Hamiltonian
models.

Figure [Op presents ROC curves demonstrating that
our multi-source integration framework consistently out-
performs empirical phase selection models such as ERs,
FEMs, and VEC, while achieving performance compa-
rable to costly computational methods. These results
confirm that systematically integrating diverse evidence
sources through our DST framework enhances prediction
accuracy across different material classes. The frame-
work’s value does not lie in replacing established meth-
ods but in effectively combining their complementary
strengths, creating a unified platform that enhances prac-
tical decision-making in materials discovery.

To investigate the underlying mechanisms of forming
HEAs, we analyzed the elemental substitutability pat-
terns extracted by our framework from multiple evidence
sources. Specifically, we integrated substitutability infor-
mation from the experimental dataset Dj}b,, computa-

tional datasets (Dizsox, DarLow, DcaLpuap, Drrve),
and LLM-derived knowledge.

Figure [9b presents the substitutability matrix for 26
elements relevant to HEA stability, along with their hi-
erarchical clustering structure. The dendrogram is gen-
erated via hierarchical agglomerative clustering (HAC)
with the complete linkage criterion, grouping elements
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FIG. 9. Effectiveness Assessment of Multi-Source Knowledge Integration for High-Entropy Alloy Formation. (a)
Receiver operating characteristic (ROC) curves for the phase estimation task on experimental dataset Dij4 . Red line represent
the multi-source model (integrating both DS and LLM sources) and gray dashed line represent the random selection. Coloured
scatter points represent results of ERs, FEMs, VEC, and computational methods that return only a single stable/unstable
estimation. (b) Substitutability matrix and substitutability tree for 26 elements. Matrix values represent substitutability
scores derived from integrated computational datasets, experimental dataset and LLM sources. The substitutability tree is
generated using hierarchical agglomerative clustering with complete linkage criterion. Element colors: blue (early transition
metals), orange (intermediate transition metals), gray (post-transition elements). (c) Predicted phase stability for 70 possible
quaternary alloys from Group 1 elements (Hf, Zr, Nb, Ta, Mo, V, Ti, W). Bars show number of alloys predicted as single-
phase4<gl4)lgasigled from computational datasets (DAFLowls, DLTvclg, and D1350K45) and experimentally verified single-phase
HEAg*# 724,

1 based on similar substitutability patterns. The substi- 20 Group 1 quaternaries, and all 15 experimentally synthe-
> tutability analysis reveals three distinct element groups se sized compositions form single-phase HEAs (100% suc-
s with strong intra-group substitutability. Group 1 com- 31 cess rate). This agreement is consistent with established
s prises eight early transition metals from periodic groups sz principles for refractory high-entropy alloys*®4: early
s 4-6: Ti, Zr, Hf (group 4); V, Nb, Ta (group 5); and Mo, ss transition metals (groups 4-6) preferentially form stable
s« W (group 6). Cr, while belonging to group 6, exhibits 3« BCC solid solutions due to similar atomic sizes and com-
7 unique behavior, showing moderate substitutability with ss patible electronic structures, with single-phase stability
s Group 1 elements but high substitutability with Fe, Co, ss thermodynamically reinforced by configurational entropy
» Mn, and Al, which together form Group 2. Group 3 sr that lowers Gibbs free energy at elevated temperatures®?.
10 contains primarily late transition metals from periodic

1 groups 9-11, including Rh, Ir, Pd, Pt, Ni, Cu, Au, Ag.

12 Notably, Groups 1 and 3 show weak inter-group substi- ,; E. Effectiveness Assessment on Experimental High-Entropy
3 tutability but moderate substitutability with the bridg- s, Boride Data

« ing Group 2.

by

I

"

15 The exceptional intra-group substitutability of Group 4 We extend our analysis to high-entropy borides
e 1 elements (Ti, Zr, Hf, V, Nb, Ta, Mo, W), exhibiting s (HEBs), where boron’s restrictive bonding requirements
z notably higher scores than Groups 2 and 3, suggests a 42 create similarly high elemental selectivity as observed in
design principle: quaternary combinations should read- s HEAs®®. Despite different underlying mechanisms, both
o ily form stable single-phase HEAs. Critically, this sub- s systems share the key challenge of identifying rare viable
o stitutability matrix (Figure |§|b) is derived by fusing ev- s combinations within vast compositional spaces, making
1 idence from multiple independent sources—experimental 4 HEBs suitable for demonstrating our framework’s appli-
= HEA dataset (Dfjih, ), computational databases (Dy350k, 7 cability to diverse multi-component materials with strin-
23 Darrow, Drrve), and 20 LLM-domain sources—through s gent compatibility constraints.

22 Dempster—Shafer integration; such high mutual sub- s In this experiment, we applied our framework to a
s stitutability indicates unanimous agreement across all so dataset of 19 experimentally confirmed quinary borides
s sources regarding these patterns. Figure [0 validates s: collected from previous studies. Using these validated
27 this prediction: all three computational datasets unani- s2 compositions as training data, our framework was then
s mously predict single-phase formation for all 70 possible ss employed to rank 314 potential quinary boride candi-
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FIG. 10. Effectiveness Assessment of Multi-Source
Knowledge Integration for High-Entropy Borides For-
mation. (a) Correlation analysis between our framework’s
single-phase formation belief and the disordered enthalpy-
entropy descriptors (DEED) for 275 quinary boride candi-
dates. The dashed line indicates the DEED threshold of 35
(eV per atom) ™" for single-phase prediction. (b) Precision@k
and Recall@k performance metrics evaluated at k values from
5 to 100 with increments of 5

dates formed by boron as the anion and the following
metals: Cr, Hf, Ir, Mn, Mo, Nb, Ta, Ti, V, W, Y, Zr. To
benchmark our framework, we compared the rankings ob-
tained by our framework with those derived using the dis-
ordered enthalpy-entropy descriptors (DEED)** which
represents the state-of-the-art descriptor based on ab-
initio calculations for guiding experimental discovery of
new single-phase high-entropy carbonitrides and borides.

Figure [I0p illustrates the correlation between DEED
values and the belief of forming single-phase structures
for 275 of the 314 quinary boride candidates. For the
remaining 39 candidates, our framework could not pro-
vide reliable predictions due to insufficient training data
coverage, resulting in maximum uncertainty values that
rendered these predictions uninformative for comparison
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purposes. The results demonstrate a strong positive lin-
ear correlation between the single-phase formation belief
derived from our framework and the DEED values, with
Pearson and Spearman correlation coefficients of 0.81 and
0.76, respectively. The previous DEED study established
a threshold of 35 (eV per atom)~! to distinguish be-
tween single-phase and multiphase candidates, where val-
ues above this threshold indicate predicted single-phase
formation.

The strong correlation for the 275 confident predic-
tions, combined with explicit uncertainty flagging for 39
candidates, demonstrates effective uncertainty quantifi-
cation. To further validate this mechanism, we analyzed
prediction accuracy at varying uncertainty thresholds, as
shown in Supplementary Figure 8. The results reveal
a systematic trade-off: as the uncertainty threshold de-
creases (accepting more uncertain predictions as confi-
dent), prediction accuracy degrades accordingly. This
behavior confirms that high uncertainty values success-
fully flag regions where evidence is insufficient, prevent-
ing overconfident extrapolation beyond the training data.
The explicit uncertainty quantification thus serves as a
critical safeguard against overfitting in data-sparse sce-
narios, distinguishing our approach from conventional
machine learning methods that would force predictions
regardless of data sufficiency.

To evaluate our framework’s practical utility as a ma-
terials discovery tool, we analyzed how well it ranks
promising candidates compared to the established DEED
method. We measured this using standard ranking met-
rics: Precision@k (what percentage of our top k recom-
mendations are actually good) and Recall@k (what per-
centage of all good candidates we capture in our top k
recommendations). The results show impressive perfor-
mance: when we look at our top 25 recommendations
(k=25), all of them were also predicted to form single-
phase structures by the DEED method, giving us perfect
precision, as shown in Figure [[0b. More broadly, to cap-
ture 50% of all the promising candidates identified by
DEED, our method requires selecting approximately the
top 35-40 candidates and maintains over 90% precision,
meaning that more than 90% of these top-ranked can-
didates are correctly identified as single-phase according
to DEED. Even when capturing 75% of the promising
candidates, our precision remains above 85%. These re-
sults demonstrate that our framework effectively priori-
tizes the most promising compositions for experimental
synthesis.

The strong performance on high-entropy borides, com-
bined with the previous results on high-entropy alloys,
establishes the framework’s capability to handle uncer-
tainty in compositionally selective multi-component ma-
terial systems. Notably, while computational databases
such as AFLOW and CALPHAD carry inherent uncer-
tainties from DFT approximations and thermodynamic
extrapolationsi®, the Dempster—Shafer theory explicitly
models these through mass assignments to ignorance,
enabling robust integration with experimental data and
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mitigating risks of systematic errors in guiding alloy syn-
thesis. The discount factor mechanism (Equations 5-7)
automatically downweights unreliable sources based on
cross-validation performance, preventing error propaga-
tion by allowing high-quality evidence to dominate when
computational predictions conflict with experimental ob-
servations.

F. Limitations and Future Extensions

Previous sections have demonstrated the framework’s
effectiveness across computational and experimental
datasets. We now examine its current limitations and
corresponding opportunities for future development.

Context-Independent FEvidence Weighting: The cur-
rent implementation employs fixed weighting parameters
for each source without considering the specific context
of elemental substitution. For instance, metallurgical
knowledge may be more reliable for refractory elements,
while solid-state physics insights may better inform no-
ble metal substitutability. Future extensions could im-
plement context-dependent weighting, wherein discount
factors vary based on the element pair under consid-
eration. This could be achieved by conditioning dis-
count factors on elemental properties such as atomic ra-
dius, electronegativity, or periodic group membership,
enabling the framework to recognize element-specific re-
liability patterns across different knowledge sources.

From Uncertainty Quantification to Discovery Navi-
gation: This study proposes a framework to integrate
multi-source knowledge and quantify uncertainty for can-
didate materials. However, a subsequent challenge re-
mains: how to effectively utilize these uncertainty mea-
sures to select candidates for experimental validation un-
der limited resources. This candidate selection problem
inherently involves balancing exploration (investigating
compositions with high uncertainty that may reveal novel
alloys) and exploitation (refining predictions in promis-
ing regions with moderate uncertainty). Active learning
provides a principled approach to this challenge by iden-
tifying experiments that maximally reduce epistemic un-
certainty, prioritizing candidates where additional data
would most improve model reliability. Reinforcement
learning complements this by learning optimal selection
policies through iterative experimental feedback, dynam-
ically adjusting the exploration—exploitation balance as
the discovery campaign progresses. Together, these tech-
niques could transform the current prediction framework
into a comprehensive decision-support system for accel-
erated materials discovery.

Symmetric Substitutability Assumption: The sym-
metric substitutability assumption (A—B and B« A are
equivalent) represents a context-averaged approximation
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that may limit accuracy for systems with strong direc-
tional substitution preferences. This symmetric treat-
ment is justified in this study by two factors: first, the
limited training data in our data-sparse scenarios makes
learning separate directional patterns statistically infea-
sible; second, for near-equiatomic multi-principal element
HEAs characterized by disordered random solid solu-
tions, elements occupy statistically similar local envi-
ronments, rendering symmetric substitution a physically
reasonable first-order approximation. Future extensions
could incorporate asymmetric substitutability by main-
taining separate A—B and B+ A matrices and collect-
ing directional evidence from LLMs through modified
prompts.

Broaden Scope Beyond Phase Stability: To serve the
purpose of screening the element combinations forming
HEA phases, the proposed framework focuses on the fun-
damental question of whether the HEA phase exists. We
design a frame of discernment Qppa = {HEA,HEA} to
model the existence of HEA phases with mass functions.
Consequently, our framework has not answered essential
questions regarding the structure and other properties of
the HEAs. However, by redesigning the frame of discern-
ment to reflect the additional properties of interest, we
can also construct a model that can recommend poten-
tial alloys forming HEA phases with desirable properties.
Extending to mechanical, electronic, or catalytic proper-
ties represents another promising direction as sufficient
property-specific data becomes availableS?,

Scalability to Higher-Order Systems: The current val-
idation focuses primarily on quaternary alloy systems,
with limited exploration of higher-order compositions.
Extension to quinary and higher-order alloys could be
achieved through hierarchical decomposition, wherein
quaternary systems serve as baseline evidence augmented
by pairwise substitutability relationships. However, more
complex systems may require sparse approximation tech-
niques and substantially larger materials databases to
maintain predictive reliability.

V. CONCLUSIONS

The central contribution of this work lies in demon-
strating that the interpolation—extrapolation dichotomy
inherent to conventional data-driven materials discovery
can be systematically addressed through principled inte-
gration of multi-source knowledge. Crucially, the frame-
work does not indiscriminately combine all available ev-
idence; rather, it evaluates the reliability of each source
based on its alignment with the target property, en-
suring that only relevant domain knowledge contributes
meaningfully to predictions. By employing elemental
substitutability as a unifying concept and leveraging
Dempster—Shafer theory to combine empirical observa-
tions with insights extracted from scientific literature via
LLMs, the framework effectively bridges data-rich and
data-sparse regions in materials exploration. Our frame-
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work demonstrates superior performance compared to
traditional data-driven approaches and empirical phase
selection rules, while achieving accuracy comparable to
computationally expensive methods, particularly when
predicting phase stability for compositions containing
previously unseen elements. These results highlight that
the significance of the framework does not reside in su-
perseding established methods, but rather in effectively
synthesizing their complementary strengths while repre-
senting epistemic limitations transparently.

Beyond HEAs, this framework could accelerate dis-
covery in several materials classes facing similar chal-
lenges of vast compositional spaces and sparse data, in-
cluding functional ceramics?¥, and catalytic materials34.
Through successful validation on diverse alloy systems,
this study demonstrates that uncertainty-aware Al in-
tegration provides a viable path forward for accelerated
materials discovery. The element substitutability pat-
terns extracted using this framework may also inform
synthetic strategies for targeted property optimization
across diverse material applications.
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https://doi.org/10.5281/zenodo.17074832 .
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