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Discovering novel high-entropy alloys (HEAs) with desirable properties is challenged by the vast compositional17

space and the complexity of phase formation mechanisms. Several inductive screening methods that excel18

at interpolation have been developed; however, they struggle with extrapolating to novel alloy systems.19

This study introduces a framework that addresses the extrapolation limitation by systematically integrating20

knowledge extracted from material datasets with expert knowledge derived from scientific literature using large21

language models (LLMs). Central to our framework is the elemental substitution principle, which identifies22

chemically similar elements that can be interchanged while preserving desired properties. To model and23

combine evidence from these multiple sources of knowledge, we employ the Dempster–Shafer theory, which24

provides a mathematical foundation for reasoning under uncertainty. Our framework consistently outperforms25

conventional phase selection models that rely on single-source knowledge across all experiments, showing26

notable advantages in predicting phase stability for compositions containing elements absent from training27

data. Importantly, the framework effectively complements the strengths of the existing methods. Moreover,28

it provides interpretable reasoning that elucidates element substitutability patterns critical to alloy stability29

in HEA formation. These results highlight the framework’s potential for knowledge integration, offering an30

efficient approach to exploring the vast compositional space of HEAs with enhanced generalizability and31

interpretability.32

I. INTRODUCTION33

High-entropy alloys (HEAs), also known as multi-34

principal element alloys (MPEAs), have garnered sig-35

nificant attention owing to their exceptional mechan-36

ical properties, thermal stability, and corrosion resis-37

tance1–3. Typically consisting of five or more princi-38

pal elements in near-equiatomic ratios, these alloys uti-39

lize high-configurational entropy to stabilize single-phase40

solid solutions4–6. However, identifying stable composi-41

tions remains a significant challenge due to the vast com-42

positional space and the complex interplay of factors such43

as mixing entropy, enthalpy, atomic size differences, and44

electronic structure. These challenges, including explor-45

ing expansive design spaces, handling sparse data, and46

managing uncertainty, represent broader issues in com-47

binatorial materials research, where efficient navigation48

strategies of compositional possibilities are essential.49

A useful framework for understanding this challenge is50

a decision-making model in which researchers must bal-51

a)Electronic mail: dam@jaist.ac.jp

ance exploitation and exploration7,8, as illustrated in Fig-52

ure 1. Exploitation focuses on well-characterized regions53

of the design space, having sufficient data for reliable54

property predictions. This approach supports steady,55

incremental improvements to existing alloys. In these56

data-rich regions, uncertainty is primarily aleatoric, aris-57

ing from irreducible variability within the system. Con-58

versely, exploration targets novel regions where data is59

insufficient for reliable property predictions. These re-60

gions introduce higher epistemic uncertainty that can be61

decreased as we collect more data through systematic ex-62

perimentation. Although exploration bears greater risk,63

it offers the exciting potential to uncover groundbreak-64

ing and fundamentally new alloys with exceptional prop-65

erties. Achieving an optimal balance between these two66

strategies is crucial for advancing HEA development.67

Data-driven methods have emerged as transformative68

tools for guiding these exploitation-exploration decisions,69

enabling the processing of large datasets and streamlin-70

ing the search for promising HEAs9–13. High-throughput71

approaches, such as CALPHAD3,14,15, AFLOW16–18,72

and Hamiltonian models19,20, alongside machine learning73

(ML)21, have significantly reduced the time and cost as-74

sociated with evaluating candidate compositions. While75
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FIG. 1. Illustration of decision-making scenarios in
high-entropy alloy (HEA) discovery. Colored regions
represent well-established areas of the HEA compositional
space, characterized by sufficient data suitable for effective
exploitation. In contrast, white regions depict unexplored ar-
eas with sparse or no existing data, highlighting opportunities
for risky yet potentially transformative exploration that could
lead to discovering groundbreaking alloys with fundamentally
new and exceptional properties. HEAs and Non-HEAs de-
note alloys that respectively form or do not form a stable
high-entropy phase.

conventional ML models excel at interpolation, accu-1

rately predicting outcomes for compositions similar to2

those in the training sets (supporting exploitation), they3

struggle with extrapolation to novel systems, limiting ex-4

ploration capability22. Although careful feature engi-5

neering can partially address extrapolation challenges23,6

designing features that generalize across vast composi-7

tional spaces remains practically difficult22,24. This in-8

terpolation–extrapolation dichotomy needs to be over-9

come as HEA discovery obviously requires venturing into10

uncharted territory.11

A critical aspect of managing exploration–exploitation12

balance is uncertainty quantification, which falls into two13

categories. Epistemic uncertainty arises from incomplete14

or sparse data and is reducible through targeted informa-15

tion gathering, while aleatoric uncertainty corresponds to16

intrinsic variability within the system and is irreducible17

regardless of data volume25. Traditional methods, such18

as Bayesian neural networks, Gaussian processes, and19

Monte Carlo dropout, are commonly employed to quan-20

tify these uncertainties26,27. However, they often falter21

in early-stage materials discovery, where data is sparse22

or conflicting28–30.23

An alternative framework, the Dempster–Shafer the-24

ory31–33, also known as evidence theory, offers a more25

flexible means of representing uncertainty. Unlike26

Bayesian methods, which assign probabilities to indi-27

vidual elements within a set of possibilities (denoted as28

Ω), evidence theory assigns non-negative weights (sum-29

ming to one) to subsets of Ω. This enables the ex-30

plicit representation of ignorance rather than requiring31

an assumption about a prior probability distribution25,32

allowing for nuanced characterization of both epistemic33

and aleatoric uncertainties. Thus, this framework can34

guide researchers to specific regions of the compositional35

space for either efficient exploitation or effective explo-36

ration22,34,35.37

However, collecting additional data to reduce epis-38

temic uncertainty is often impractical due to high costs39

and experimental constraints. Expert knowledge offers a40

valuable alternative for mitigating this uncertainty. Do-41

main specialists bring insights accumulated across multi-42

ple studies and contexts, providing heuristics that extend43

beyond any single dataset36–38. Physics-informed neural44

networks (PINNs) exemplify one approach to incorpo-45

rating domain knowledge by embedding a priori physical46

laws, enabling inference of governing equations from lim-47

ited observations when those laws are explicit and well-48

defined39. Yet their performance degrades when the un-49

derlying physics is only partially understood or key con-50

straints remain unknown. More broadly, expert knowl-51

edge often resides in unstructured forms, such as labora-52

tory notebooks, informal rules of thumb, or tacit experi-53

ence, making its integration with structured, data-driven54

models a significant challenge.55

To bridge this gap, this study introduces a framework56

that integrates knowledge from material datasets with57

expert domain knowledge accessed through AI systems–58

in this implementation, large language models (LLMs)59

extracting insights from scientific literature–while ac-60

counting for inherent uncertainties in each source. This61

uncertainty-aware integration enables systematic predic-62

tions beyond the interpolative boundaries of conventional63

data-driven methods. Central to our methodology is the64

elemental substitution principle40,41, a well-established65

concept in alloy design wherein chemically similar ele-66

ments can be interchanged while preserving target prop-67

erties. We treat observed alloy pairs as evidence for68

substitutability patterns, then consolidate this empirical69

data with AI-derived insights obtained through state-of-70

the-art LLMs, including GPT-4o, GPT-4.5, Claude Opus71

4, and Grok3. These LLMs leverage documented knowl-72

edge from related scientific domains through knowledge73

integration to assess elemental substitutability beyond74

the training dataset, not by generating information be-75

yond their training corpus. Through Dempster–Shafer76

theory, the framework systematically models and com-77

bines these diverse evidence sources while quantifying78

both epistemic and aleatoric uncertainties. By providing79

accurate predictions in well-characterized regions along-80

side uncertainty-aware guidance for data-sparse spaces,81

this framework demonstrates–using HEAs as a proof82

of concept–the viability of materials discovery through83

uncertainty-aware AI integration.84
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↔

Collecting evidence from large language models (LLMs)

Large language models

Collecting evidence from material dataset (DS) Evaluating the hypothetical candidates

User: Can copper and manganese be substituted
for each other?

AI-Agent: No. Mn induces antiferromagnetic
ordering (Tₙ ≈ 100 K for α-Mn), while Cu is
non-magnetic. Thus, their substitution may cause
magnetic frustration or spinodal decomposition,
affecting stability at extreme temperatures.

Material datasets

Fe Co Cu

Fe Pd Mn

𝑌

Substitutable

↔

HEAcompositional elements

Co Ni Mn 𝑌

Ni

a

b

Source of evidence Evidence about substitution

Source of evidence Evidence about substitution

c

Fe Co Cu 𝑌

Fe Co Mn

↔ ←

Co Al Cu N

Co Al Ag N

←

+− Epistemic

Non-HEAs HEAs

Degree of belief that
FeCoAlCu form single phase

Degree of belief that 
FeCoAlCu forms multi phase

…

…

Pieces of evidence about HEA formation

Evidence 1 Evidence q

Fe

Fe Co Al Mn 𝑌

Al

support

…

FIG. 2. Hybrid framework integrating Data and AI-extracted Knowledge for high-entropy alloy (HEA) dis-
covery. (a–b) Schematic depicting the collection of substitutability evidence from a single material dataset (DS) and large
language models (LLMs). (c) Schematic illustrating the assessment of hypothetical candidate properties using aggregated
evidence derived from substitution-based methods.

II. METHODOLOGY1

Each alloy A in the dataset D is represented by its con-2

stituent elements. The property of interest yA, for any3

alloy A, can be eitherHEA orHEA. Here, HEA denotes4

alloys that form a stable high-entropy phase (single-phase5

solid solution), while HEA (or Non-HEA) denotes al-6

loys that do not form a stable high-entropy phase (multi-7

phase structures). To determine elemental substitutabil-8

ity, we assess the similarity between different element9

combinations by adapting evidence theory, which models10

and aggregates diverse pieces of evidence obtained from11

D. Similarities between objects can manifest in various12

forms42; e.g., pairwise ratings, object sorting, commu-13

nal associations, substitutability, and correlation. In this14

study, we specifically focus on the solid-solution forma-15

bility of element combinations and quantify their similar-16

ities based on elemental substitutability.17

Our approach is intuitively illustrated using the exam-18

ple of element substitutability between Mn and Cu in19

Figure 2. Suppose we observe from materials datasets20

that two alloys, FeCoNiCu and FeCoNiMn, both form21

HEAs. This provides evidence that Cu can substitute22

for Mn in this context. Meanwhile, consulting domain23

knowledge through LLMs might reveal that metallurgists24

consider Cu-Mn pairs as non-substitutable, contribut-25

ing additional conflicting evidence. Our proposed frame-26

work models and combines these independent pieces of27

evidence using evidence theory, potentially resulting in28

stronger belief in their substitutability than either source29

alone would provide. When predicting whether a new al-30

loy, such as FeCoAlCu, forms an HEA, the framework31

can leverage existing data about FeCoAlMn and the es-32

tablished Cu-Mn substitutability to make informed pre-33

dictions.34

A. Transforming Materials Data to Substitutability Evidence35

Consider two alloys, Ai and Aj in D, that share at least36

one common element. This non-disjoint pair of alloys37

provides evidence regarding the substitutability between38

the element combinations:39

Ct = Ai \ (Ai ∩Aj) and Cv = Aj \ (Ai ∩Aj).

The intersection Ai∩Aj serves as the context for measur-40

ing similarity. If yAi and yAj agree (i.e., both are classi-41

fied as HEA or both as HEA), we infer that Ct and Cv42

are substitutable; otherwise, they are non-substitutable,43

as shown in Figure 2a.44

The symmetric substitutability assumption (Ct → Cv45

and Cv → Ct are the same) used in this work represents a46

context-averaged approximation. While empirically val-47

idated for near-equiatomic HEAs, this assumption may48

limit accuracy for systems with strong directional substi-49

tution preferences. However, this symmetric treatment50

is justified in this study by two factors: first, the limited51

training data in our data-sparse scenarios makes learning52

separate directional patterns statistically infeasible; sec-53

ond, for near-equiatomic multi-principal element HEAs54

characterized by disordered random solid solutions, el-55

ements occupy statistically similar local environments,56

rendering symmetric substitution a physically reasonable57

first-order approximation.58

Evidence for similarity is captured by defining a frame59

of discernment32 Ωsim = {similar, dissimilar}, encom-60
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passing all possible outcomes. The evidence from Ai and1

Aj is then represented by a mass function (or basic prob-2

ability assignment) mCt,Cv

Ai,Aj
. This mass function assigns3

non-zero probability to the non-empty subsets of Ωsim,4

as:5

mCt,Cv

Ai,Aj
({similar}) =

{
α, if yAi = yAj ,

0, otherwise,
(1)

mCt,Cv

Ai,Aj
({dissimilar}) =

{
α, if yAi 6= yAj ,

0, otherwise,
(2)

mCt,Cv

Ai,Aj
(Ωsim) = 1− α. (3)

Here, the parameter 0 < α < 1 is determined through6

an exhaustive search for optimal cross-validation per-7

formance, as shown in Supplementary Section 1. Intu-8

itively, mCt,Cv

Ai,Aj
({similar}) and mCt,Cv

Ai,Aj
({dissimilar}) rep-9

resent the extent to which alloys Ai and Aj support sub-10

stitutability or non-substitutability of Ct and Cv. Fur-11

ther, mCt,Cv

Ai,Aj
(Ωsim) encodes epistemic uncertainty (i.e.,12

lack of definitive information). The probabilities assigned13

to these three subsets of Ωsim must sum to 1.14

Assuming that we collect q pieces of evidence from D15

to compare Ct and Cv, each piece of evidence corresponds16

to a pair of alloys that generates a mass function mCt,Cv

i .17

These q mass functions are combined via Dempster’s rule18

of combination31 to obtain a joint mass function mCt,Cv

D :19

mCt,Cv

D (ω) =
(
mCt,Cv

1 ⊕mCt,Cv

2 ⊕· · ·⊕mCt,Cv
q

)
(ω), (4)

where ω ⊆ Ωsim, ω 6= ∅ and ⊕ denotes the Dempster’s20

rule of combinations, as described in Supplementary Sec-21

tion 2. When no relevant evidence is available, mCt,Cv

D22

is initialized with a mass of 1 on {similar,dissimilar},23

indicating total uncertainty.24

B. Transforming Domain Knowledge to Substitutability25

Evidence26

In addition to evidence collected from material27

datasets (DS), we focus on evidence derived from do-28

main knowledge, utilizing LLMs to extract insights from29

a vast corpus of scientific literature. Specifically, we use30

a set of state-of-the-art LLMs including GPT-4o, GPT-31

4.5, Claude Opus 4, and Grok3 to assess element sub-32

stitutability based on expert perspectives within a given33

domain, as illustrated in Figure 2b. The proposed model34

evaluates the substitutability of element pairs from the35

perspective of a domain expert, ensuring that the anal-36

ysis aligns with established scientific reasoning. To en-37

hance result reliability, we implement a two-step prompt-38

ing procedure:39

• Question 1: Do you possess sufficient knowledge40

or data to evaluate the substitutability of elements41

Ct and Cv within the context of [domain knowl-42

edge]?43

• Question 2: If the answer to the first question is44

Yes, the LLM further rates element substitutability45

as High, Medium, or Low, based on insights distilled46

from relevant scientific literature in the given do-47

main.48

Detailed prompts used for each LLM are provided in49

Supplementary File 1. This approach is based on the as-50

sumption that, when given clear and structured prompts,51

these LLMs can simulate expert reasoning across multi-52

ple scientific domains. This capability stems from their53

extensive training on scientific literature, which enables54

them to provide contextually relevant, domain-specific55

feedback tailored to the challenges of HEA discovery.56

Elemental substitutability is not universal and is57

property-specific, strongly associated with functionality58

and applications. For example, substitution for struc-59

tural stability differs from substitution targeting the60

magnetic, optical, or mechanical properties. Recogniz-61

ing this property-specific nature, our framework requires62

careful domain selection tailored to the target property63

to ensure accurate predictions. To facilitate the extrac-64

tion of domain knowledge, we focus on five key scientific65

domains, including corrosion science, materials mechan-66

ics, metallurgy, solid-state physics, and materials science.67

These domains are selected due to their critical roles in68

understanding and optimizing HEAs, specifically tailored69

for phase stability prediction5. Each domain contributes70

essential insights into different aspects of alloy design.71

• Corrosion science: This domain examines chem-72

ical degradation mechanisms and protective strate-73

gies, essential for ensuring long-term durability.74

• Materials mechanics: This domain investigates75

mechanical properties such as strength, ductility,76

and toughness, crucial for structural performance.77

• Metallurgy: This domain analyzes phase forma-78

tion, phase diagrams, and microstructure control,79

offering insights into alloy stability and processing80

methods.81

• Solid-state physics: This domain explores82

atomic-scale interactions, electronic structure, and83

thermal behavior, all of which influence phase sta-84

bility and material performance.85

• Materials science: This domain serves as an inte-86

grative field that synthesizes perspectives from the87

other domains, emphasizing the relationships be-88

tween composition, structure, properties, and per-89

formance to optimize alloy design strategies.90

The evidence collected from the LLM for each do-91

main is categorized into one of four outcomes: High,92
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TABLE I. Possible outcomes generated by an LLM for each domain-specific criterion, along with the corresponding mass
functions mCt,Cv

LLMs ({similar}), mCt,Cv
LLMs ({dissimilar}), and mCt,Cv

LLMs ({similar, dissimilar}). Here, 0 < β < 1 indicates our confidence
in LLM’s response, with determination details provided in Supplementary Section 1.

Q1 Q2 mCt,Cv
LLMs ({similar}) mCt,Cv

LLMs ({dissimilar}) mCt,Cv
LLMs (Ωsim) Interpretation

No – 0 0 1 LLM does not provide sufficient domain knowledge
Yes High β 0 1− β Ct and Cv are considered highly substitutable
Yes Medium β/2 β/2 1− β Ct and Cv are considered moderately substitutable
Yes Low 0 β 1− β Ct and Cv are considered poorly substitutable

Medium, Low, or No Knowledge. Further, these outcomes1

are mapped to a corresponding mass function denoted2

as mCt,Cv

LLMs , as shown in Table I. If the LLM indicates No3

Knowledge, then the entire mass is assigned to the set4

{similar,dissimilar}, reflecting complete epistemic uncer-5

tainty. Conversely, if the LLM provides a specific substi-6

tutability rating (High, Medium, and Low), then a portion7

of the mass is allocated to either {similar} or {dissimilar},8

while the remaining mass is assigned to Ωsim to account9

for residual uncertainty in the prediction.10

Notably, all LLMs (GPT-4o, GPT-4.5, Claude Opus11

4, and Grok3) are used as pre-trained models out-of-12

the-box without any fine-tuning, retraining, or in-context13

literature provision. These models are queried directly14

through their respective API interfaces using the two-15

step prompting procedure described above and detailed16

in Supplementary File 1. The LLMs leverage knowledge17

from scientific literature encountered during their origi-18

nal pre-training by the respective model developers; we19

do not modify these models in any way. Each LLM pro-20

vides independent assessments that are later combined21

using Dempster-Shafer theory (Section II.C).22

C. Combining Evidence from Multiple Sources23

In this study, a source S refers to an independent24

knowledge provider that generates evidence about ele-25

mental substitutability. Our multi-source framework in-26

tegrates two kinds of independent sources:27

• DS-source: A material dataset D provides em-28

pirical evidence by analyzing alloy pairs that differ29

by element substitution (Section IIA). This dataset30

contains factual observations about the target do-31

main (e.g., which alloy compositions form HEAs).32

• LLM sources: We query 4 state-of-the-art LLMs33

(GPT-4o, GPT-4.5, Claude Opus 4, Grok3) across34

5 scientific domains (corrosion science, materials35

mechanics, metallurgy, solid-state physics, materi-36

als science), creating 4×5 = 20 independent knowl-37

edge sources (Section II B). Each combination of an38

LLM and a domain provides documented scientific39

knowledge from related or similar domains to the40

target domain.41

To integrate substitutability evidence collected from42

multiple sources, Dempster’s rule of combination with a43

reliability-aware discounting step is used32,43. Recogniz-44

ing that substitutability is property-specific and differ-45

ent sources capture different aspects of elemental substi-46

tutability, our framework implements an adaptive mech-47

anism that evaluates each source’s relevance to the target48

property. This reliability-aware discounting automati-49

cally assigns higher weights to sources that align well with50

the specific property being predicted while suppressing51

sources that capture irrelevant substitutability criteria,52

thereby preventing inappropriate knowledge integration.53

For each source S, we compute a dataset-specific dis-54

count factor as:55

γS = disc
(
mCt,Cv

S ,D
)
∈ [0, 1], (5)

where disc(.) quantifies how well the substitutability ev-56

idence collected from source S generalizes to the alloy57

properties in D. The reliability of each source is assessed58

using the macro-averaged F1 score with 10-fold cross-59

validation. For instance, if a source S has historically60

demonstrated accurate predictions on alloys similar to61

those in D, we assign γS a value closer to 1. Conversely,62

if S performs poorly or unpredictably for alloys in D, γS63

is reduced accordingly.64

The original mass function mCt,Cv

S for source S is then
modified by incorporating the discount factor γS , leading
to an adjusted function γSmCt,Cv

S :

γSmCt,Cv

S ({similar}) = γS ×mCt,Cv

S

(
{similar}

)
,

γSmCt,Cv

S ({dissimilar}) = γS ×mCt,Cv

S

(
{dissimilar}

)
,

γSmCt,Cv

S (Ωsim) = 1− γS + γS ×mCt,Cv

S

(
Ωsim

)
.

(6)

This redistribution shifts mass from definitive conclu-65

sions {similar} and {dissimilar} to the ambiguous set66

{similar,dissimilar}, thereby encoding epistemic uncer-67

tainty for less reliable sources. Therefore, when all mass68

functions are subsequently merged using Dempster’s rule,69

less credible sources exert a weaker influence on the final70

decision.71

Assuming p sources {S1, S2, . . . , Sp}, the substitutabil-72

ity evidence gathered from them is aggregated using73

Dempster’s rule of combination:74

mCt,Cv (ω) =
(
γS1mCt,Cv

S1
⊕ γS2mCt,Cv

S2
⊕· · ·⊕ γSpmCt,Cv

Sp

)
(ω),

(7)
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Beyond Interpolation: Integration of Data and AI-Extracted Knowledge for High-Entropy Alloy Discovery 6

where ω denotes non-empty subsets of Ωsim. The rule it-1

eratively integrates evidence while normalizing conflicts2

(such as empty-set intersections arising from contradic-3

tory sources). This approach preserves diverse insights,4

from data-driven correlations to LLM-derived domain5

knowledge, while mitigating the influence of unreliable6

sources. Critically, when evidence about substitutability7

is insufficient or conflicting, Dempster’s rule of combina-8

tion assigns high mass tomCt,Cv (Ωsim), explicitly signal-9

ing uncertainty rather than forcing confident predictions.10

This naturally prevents overfitting in data-sparse scenar-11

ios common in materials discovery.12

Similar analyses are conducted for all pairs of element13

combinations, resulting in a symmetric matrix M , where14

(M [t, v] = M [v, t] = mCt,Cv ({similar})).15

D. Evaluating Hypothetical Candidates by Analogy-Based16

Inference17

To predict whether a new alloy Anew is likely to form18

an HEA, we employ a substitution-based inference ap-19

proach utilizing the similarity matrix M . The process20

begins with a known alloy Ak, labeled yAk
, and iden-21

tifies the subset Ct ⊂ Ak that, when replaced by Cv,22

generates Anew (Figure 2 c). If Ct and Cv are deemed23

substitutable, then yAnew
is more likely to match yAk

;24

conversely, if they are dissimilar, yAnew
may differ.25

We formalize this inference using a frame of discern-26

ment32 ΩHEA = {HEA,HEA} and define a mass function27

mAnew

Ak,Ct←Cv
to model the evidence collected from Ak and28

the substitution of Ct, for Cv, denoted as Ct ← Cv. This29

mass function distributes belief among {HEA}, {HEA},30

or {HEA,HEA} according to the similarity M [t, v] and31

the label of Ak as:32

mAnew

Ak,Ct←Cv

(
{HEA}

)
=

{
M [t, v], if yAk

= HEA,

0, otherwise,
(8)

mAnew

Ak,Ct←Cv

(
{HEA}

)
=

{
M [t, v], if yAk

= HEA,

0, otherwise,
(9)

mAnew

Ak,Ct←Cv

(
ΩHEA

)
= 1−M [t, v]. (10)

Here, the probability mass assigned to {HEA} and33

{HEA} reflects the confidence levels with which Ak and34

the substitution of Cv for Ct support the probabilities35

that Anew is or is not an HEA, respectively. The mass36

assigned to subset {HEA, HEA} represents epistemic37

uncertainty, signifying cases where the available evidence38

does not provide definitive information regarding the39

properties of Anew. The total probability mass assigned40

to all three non-empty subsets of ΩHEA is constrained to41

sum to 1, ensuring a consistent probabilistic framework.42

An illustrative example employing the Dempster-Shafer43

theory for the evaluation of hypothetical candidates is44

provided in Supplementary Section 3.45

We assume that multiple pieces of evidence can be46

collected, each derived from a distinct pair of host al-47

loy Ahost and substitution pair Ct ← Cv, for a new48

alloy candidate Anew. These individual pieces of evi-49

dence are systematically combined using Dempster’s rule50

of combination to generate a final mass function mAnew .51

This function integrates all available analogies, resolving52

potential inconsistencies and contradictions among the53

sources. The resulting combined evidence offers a coher-54

ent assessment, aiding in informed decision-making re-55

garding whether further resource-intensive experiments56

are necessary to validate the HEA formation ability of57

Anew.58

III. EXPERIMENTAL SETTING59

In this section, we present the design of experiments,60

which assess both the predictive capability and inter-61

pretability of our proposed method. Additionally, we62

provide comparisons against alternative approaches, in-63

cluding single-source evidential methods and other data-64

driven classifiers.65

A. Datasets66

Experiments are conducted considering four compu-67

tational datasets of quaternary alloys, one experimen-68

tal dataset of quaternary alloys, and one experimental69

dataset of quinary high-entropy borides (HEB), summa-70

rized in Table II. HEBs are single-phase ceramics con-71

taining multiple transition metal cations randomly dis-72

tributed on the metal sublattice of a boride structure, of-73

fering unique combinations of metallic and ceramic prop-74

erties44. Despite different bonding mechanisms, HEBs75

exhibit similarly high elemental selectivity as HEAs–76

boron’s restrictive bonding requirements create stringent77

constraints on metal selection, analogous to the selec-78

tive substitutability patterns in metallic HEAs, making79

them suitable for testing our framework’s core princi-80

ple of managing uncertainty in highly selective multi-81

component systems.82

• D0.9Tm and D1350K: These computational datasets83

include all possible quaternary alloys generated84

from a set of 26 elements: Fe, Co, Ir, Cu, Ni, Pt,85

Pd, Rh, Au, Ag, Ru, Os, Si, As, Al, Re, Mn, Ta,86

Ti, W, Mo, Cr, V, Hf, Nb, and Zr. The stabil-87

ity of these alloys is predicted using methods pro-88

posed by Chen et al.45 at two different tempera-89

tures: 0.9Tm (approximately 90% of the melting90

temperature Tm of the alloy) and 1350 (K). These91

predictions are obtained via a high-throughput92

computational workflow, which employs a regular-93

solution model46,47 using binary interaction param-94
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Beyond Interpolation: Integration of Data and AI-Extracted Knowledge for High-Entropy Alloy Discovery 7

TABLE II. Summary of alloy datasets used in evaluation experiments. No. alloys: Total number of alloys present in each
dataset. No. positive label: Number of alloys classified as forming HEA phases in datasets D0.9Tm and D1350K, the number of
alloys exhibiting non-zero magnetization in DMag, and the number of alloys with a non-zero Curie temperature in DTC . The
percentage values in parentheses represent the proportion of positive labels within each dataset.

Dataset No. alloys Physical properties Positive label No. positive label

D0.9Tm 14,950 quaternary alloys Stability HEA 4,218 (28%)
D1350K 14,950 quaternary alloys Stability HEA 1,402 (9%)
DMag 5,968 quaternary alloys Magnetization (T ) Magnetic 2,428 (41%)
DTC 5,968 quaternary alloys Curie temperature (K) Non-zero Curie Temperature 2,355 (39%)
Dexp

HEA 55 quaternary alloys Stability HEA 40 (73%)
Dexp

HEB 19 quinary alloys-borides Stability HEB 15 (79%)

eters derived from ab initio density functional the-1

ory (DFT) to compute and compare Gibbs free en-2

ergies of solid solutions against competing inter-3

metallic phases16–18.4

• DMag and DTC
: These computational datasets5

comprise 5,968 quaternary high-entropy alloys6

(HEAs)35, each formed by selecting four elements7

from a set of 21 transition metals: Fe, Co, Ir, Cu,8

Ni, Pt, Pd, Rh, Au, Ag, Ru, Os, Tc, Re, Mn,9

Ta, W, Mo, Cr, V, and Nb. Their magnetizations10

(DMag) and Curie temperatures (DTC
) in the body-11

centered cubic (BCC) phase are computed using12

the Korringa–Kohn–Rostoker coherent approxima-13

tion method48. These datasets are derived from14

an original pool of 147, 630 equiatomic quaternary15

HEAs.16

• Dexp
HEA: The experimental dataset includes 55 ex-17

perimentally verified quaternary HEAs from peer-18

reviewed publications45,49,50. The dataset includes19

both HEA (40 alloys) and non-HEA (15 alloys)20

compositions, providing balanced representation21

for validation.22

• Dexp
HEB: The experimental dataset includes 19 ex-23

perimentally verified quinary HEBs from peer-24

reviewed publications44. The dataset includes 1525

quinary systems forming HEB.26

B. Design of experiments27

We begin by verifying the reliability of the elemen-28

tal substitutability knowledge queried from large lan-29

guage models (LLMs). Specifically, we compare the30

LLM-derived substitutability knowledge with the well-31

established Hume–Rothery criteria for elemental substi-32

tution.33

With that reliability confirmed, we turn to predic-34

tive capability. Two experiments on four computational35

datasets serve as the framework’s proving ground to eval-36

uate predictive capability of our proposed framework: (1)37

Cross-validation on quaternary alloys, assessing perfor-38

mance with randomly partitioned training sets (1%-30%39

of data) to determine how effectively LLM-derived knowl-40

edge aligns with material-specific relationships across dif-41

ferent data availability scenarios, with particular focus on42

data-limited conditions; and (2) Extrapolation on qua-43

ternary alloys, simulating real discovery scenarios by ex-44

cluding alloys containing a specific element from training45

and evaluating performance on compositions that incor-46

porate this previously unseen element. These compu-47

tational datasets, free from experimental bias and large48

enough for robust statistics, provide the controlled envi-49

ronment needed for framework development.50

To benchmark our multi-source method, we com-51

pare its predictive performance against two baseline ap-52

proaches.53

• Single-source methods: These methods rely ex-54

clusively on one source of evidence, either a mate-55

rial dataset or domain knowledge derived from only56

one LLM from the set of state-of-the-art models un-57

der investigation.58

• Traditional classification method: We employ59

logistic regression (LR)51.60

Hyper-parameters of these methods are tuned via sys-61

tematic grid search, as detailed in Supplementary Sec-62

tion 1. Hereinafter, we define models employing the ev-63

idential method (based on the Dempster–Shafer theory)64

as follows: models trained solely on material datasets65

are termed DS-source models; those leveraging evidence66

from LLMs are termed LLM-source models; and those in-67

tegrating both sources are termed multi-source models.68

Notably, the LLM-source models are obtained by combin-69

ing 20 independent sources–each of the 4 LLMs (GPT-70

4o, GPT-4.5, Claude Opus 4, Grok3) queried across 571

scientific domains–through Dempster-Shafer theory (Sec-72

tion IIC). The multi-source model further integrates this73

combined LLM-source with the DS-source using the same74

framework. Models utilizing logistic regression and sup-75

port vector machines are referred to as LR-based model.76

To assess the real-world applicability of our frame-77

work, we next validate its predictive performance on78

experimentally verified alloys. This validation exam-79

ines whether the proposed framework can accurately pre-80

dict phase stability for experimentally synthesized alloys.81

Our framework integrates LLM-derived knowledge with82
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TABLE III. Confusion matrix comparing LLM consensus predictions with Hume–Rothery rules for 351 element pairs considered
in this study.

Hume–Rothery rules
Substitutable Non-substitutable Total

LLMs
Substitutable 33 pairs 45 pairs 78 pairs

(True positive) (False positive)

Non-substitutable 4 pairs 269 pairs 273 pairs
(False negative) (True negative)

Total 37 pairs 314 pairs 351 pairs

substitutability patterns extracted from computational1

datasets. This reflects real-world scenarios where re-2

searchers must consider all available knowledge to fill the3

gaps raised by limited experimental data before selecting4

candidates for expensive synthesis. Finally, after evalu-5

ating the predictive performance across all settings, we6

analyze the element substitutability patterns captured7

using the multi-source approach to gain deeper insights8

into the underlying HEA formation mechanisms of qua-9

ternary alloys.10

C. Materials descriptors11

Descriptors, which are the representation of alloys,12

play a crucial role in building a recommender system to13

explore potential new HEAs. In this research, the raw14

data of alloys is represented in the form of element com-15

binations. Several descriptors have been studied in ma-16

terials informatics to represent the compounds52. To em-17

ploy the data-driven approaches for this work, we applied18

compositional descriptor53 and binary elemental descrip-19

tor.20

Compositional descriptors represent each alloy through21

135 features derived from 15 atomic properties of con-22

stituent elements. These properties include structural23

parameters (atomic number, mass, period, and group),24

electronic characteristics (first ionization energy, second25

ionization energy, Pauling electronegativity and Allen26

electronegativity), size factors (van der Waals, covalent,27

and atomic radii), and thermophysical properties (melt-28

ing point, boiling point, density, specific heat). For each29

atomic property, we calculate statistical numbers, in-30

cluding mean, standard deviation, and pairwise covari-31

ances across the alloy’s elements, to represent the alloy.32

The compositional descriptors can be applied not only to33

crystalline systems but also to molecular systems. How-34

ever, the descriptors cannot easily distinguish alloys with35

different numbers of constituent elements, because they36

treat the atomic properties as statistical distributions.37

Therefore, the descriptors cannot be applied when ex-38

trapolating to alloys with a different number of compo-39

nents.40

Binary elemental descriptors use binary encoding to41

indicate element presence (1) or absence (0) in an alloy.42

The number of binary elemental descriptors corresponds43

to the number of element types included in the train-44

ing data. In this study, the binary elemental descrip-45

tors are used to represent the alloys in the DS-source,46

LLM-source, and multi-source models. In contrast, the47

compositional descriptors are applied for the LR-based48

model.49

IV. RESULTS AND DISCUSSIONS50

A. Reliability Assessment of LLM-Based Elemental51

Substitutability Knowledge52

Verifying the reliability of large language model (LLM)53

responses is a prerequisite for trusting downstream pre-54

dictions. We therefore validate element-substitutability55

knowledge extracted from LLM queries against the em-56

pirical Hume–Rothery rules54, which are a set of ba-57

sic rules for predicting elemental substitution. These58

rules stipulate that elements readily substitute in solid59

solutions when: (i) atomic radius mismatch is lower60

than 15%, (ii) they share similar crystal structures and61

valence states, and (iii) they have similar electronega-62

tivity. When electronegativity differences exceed criti-63

cal thresholds, metals typically form intermetallic com-64

pounds rather than solid solutions. For this validation,65

we use an electronegativity difference threshold of 0.55.66

For valency comparison in metallic alloy systems, we con-67

sider the effective valency55 (number of electrons effec-68

tively contributing to metallic cohesion). While most69

metals exhibit a single characteristic valency, certain70

transition metals (e.g., Fe, Co, Mn, Cr) can exhibit mul-71

tiple effective valencies in different alloy environments.72

In our analysis, two elements are considered to have sim-73

ilar valency if they share at least one common valence74

state.75

We aggregated substitutability assessments from four76

LLMs, including Grok3, Claude Opus 4, GPT-4o, and77

GPT-4.5, for 351 element pairs using our DST frame-78

work. Each pair is classified as substitutable if the com-79

bined belief for substitutability exceeds that for non-80

substitutability. Comparison against Hume–Rothery81

predictions reveals strong alignment: 86% of element82

pairs show identical classifications with high recall rates83

for substitutable labels and high precision for non-84

substitutable labels, as shown in Table III. Specifically,85

33 of 37 pairs (89%) deemed substitutable by Hume–86

Rothery rules are correctly identified by LLMs, while87
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Proportion

Highly
substitutable

Moderately
substitutable

Poorly
substitutable

Unknown

Atomic radius difference (%)

Proportion

a

Similar structure Dissimilar structure

Electronegativity difference

c Similar valency Dissimilar valency

Highly
substitutable

Moderately
substitutable

Poorly
substitutable

Unknown

Highly
substitutable

Moderately
substitutable

Lowly
substitutable

Unknown

Highly
substitutable

Moderately
substitutable

Poorly
substitutable

Unknown

b

d

FIG. 3. Validation of LLM-extracted substitutability against Hume–Rothery rules. (a, b) Distribution of atomic
radius differences (a) and electronegativity differences (b) for element pairs categorized by LLM-predicted substitutability levels
(highly, moderately, and poorly substitutable, plus unknown). Box plots show median, interquartile range, and outliers. (c, d)
Proportions of element pairs with similar versus dissimilar crystal structures and valency, grouped by substitutability levels.

269 of 273 pairs classified as non-substitutable by LLMs1

matched Hume–Rothery rules, achieving a precision of2

99%.3

The 14% misalignment consists entirely of cases where4

LLMs identify additional substitutable pairs beyond the5

traditional Hume–Rothery criteria. Among the 45 mis-6

aligned pairs, most satisfy the size and electronegativity7

requirements but exceed traditional thresholds for va-8

lency or crystal structure differences. Remarkably, ex-9

perimental validation supports these context-specific pre-10

dictions: 14 of these pairs have been confirmed to form11

single-phase binary systems56, as shown in Supplemen-12

tary Table 3. Additionally, Cr and Nb differ in valence13

electron counts (Cr: 6, Nb: 5), placing them outside14

general substitutability criteria. However, when incor-15

porated into quaternary systems, they demonstrate suc-16

cessful substitution–Cr in quaternary system Cr-Al-Ti-V17

can be replaced by Nb (forming Nb-Al-Ti-V), and simi-18

larly in Cr-Ta-Ti-V and Nb-Ta-Ti-V systems, both form19

stable single-phase BCC structures.20

This asymmetric difference reflects a fundamental21

distinction between general rules and context-specific22

knowledge. The Hume-Rothery rules, developed through23

careful empirical observation, provide general guidelines24

with well-defined thresholds (e.g., 15% for radius dif-25

ference) that have successfully guided alloy design for26

decades. These universal criteria ensure high reliability27

across diverse alloy systems. In contrast, LLMs capture28

context-dependent substitutability documented in mate-29

rials literature57, in which specific processing conditions,30

alloy compositions, or applications enable successful sub-31

stitution despite exceeding general thresholds. LLMs in-32

tegrate knowledge from documented experimental sys-33

tems across material families for general substitutability34

assessment, explaining why they complement conserva-35

tive Hume-Rothery rules with context-specific insights.36

Detailed analysis of all 45 pairs with experimental vali-37

dation status is provided in Supplementary Table 3.38

Figure 3 analyzes in detail the alignment of LLM’s re-39

sponse with each criterion of substitutability from Hume–40

Rothery rules. Element pairs that LLMs identified as41

highly substitutable exhibit significantly lower atomic42

radius differences and electronegativity differences com-43

pared to pairs identified as poorly substitutable, as shown44

in Figure 3(a-b). Additionally, highly substitutable pairs45

predominantly share similar crystal structures and valen-46

cies, while poorly substitutable pairs rarely do as shown47

in Figure 3(c-d).48
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FIG. 4. Predictive capability evaluation via cross-validation on quaternary-alloy datasets D0.9Tm and D1350K. (a,
d) Classification accuracy of the multi-source, single-source, and LR-based models on two quaternary alloy datasets D0.9Tm and
D1350K. (b, e) Receiver operating characteristic (ROC) curves for the same models at a 30% training-set size on these datasets.
(c, f) Area under the ROC curves (AUC) for each model across different training-set sizes, providing an overall measure of
discriminative performance. In all subplots, red lines indicate the multi-source model (using both DS and LLM sources), green
and blue lines represent single-source models (using either DS or LLM sources), and gray lines represent the LR-based model.

B. Cross-Validation Analysis of Multi-Source Knowledge1

Integration2

For the experiment, we systematically vary the train-3

ing set size from 1% to 30% of each quaternary-alloy4

dataset, incrementing by 1% up to 10%, followed by steps5

of 20% and 30%. The variation enables the assessment of6

how different methods handle data scarcity versus mod-7

erate availability.8

Figures 4(a,d) and 5(a,d) show the classification ac-9

curacy of the single-source, multi-source, and LR-based10

models on the four datasets. At smaller training sizes11

(approximately 1%–10%), the LR-based model achieves12

the highest overall accuracy, outperforming evidential13

models, which explicitly model element substitutabil-14

ity to predict alloy properties. Among the evidential15

models, single-source LLM models initially outperform16

DS-source models, attributed to LLM-derived domain-17

specific insights that assist in mitigating data limita-18

tions. However, multi-source models remain competitive19

and sometimes achieve the highest accuracy among evi-20

dential models, even with limited data. As the training21

size exceeds 10%, DS-source models exhibit superior per-22

formance on the magnetization and Curie temperature23

datasets while achieving comparable accuracy to LLM-24

source models on alloy stability datasets. Conversely,25

the accuracy of LR-based models plateaus and is even-26

tually outperformed by evidential models. These find-27

ings underscore the importance of incorporating LLM-28

based, DS-source, or multi-source knowledge to improve29

quaternary-alloy property predictions.30

Although prediction accuracy provides a convenient31

single-metric overview, it relies on a fixed classification32

threshold (typically 0.5), which may not be optimal for33

imbalanced datasets, where HEAs (positive class) are rel-34

atively rare. Under these conditions, LR-based models35

may serve effectively at extremely small training sizes36

when they effectively predict the dominant (Non-HEA)37

class by default, thereby inflating accuracy. However,38
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FIG. 5. Predictive capability evaluation via cross-validation on quaternary-alloy datasets DMag and DTC . (a,
d) Classification accuracy of the multi-source, single-source, and LR-based models on two quaternary alloy datasets DMag and
DTC . (b, e) Receiver operating characteristic (ROC) curves for the same models at a 30% training-set size on these datasets.
(c, f) Area under the ROC curves (AUC) for each model across different training-set sizes, providing an overall measure of
discriminative performance. In all subplots, red lines indicate the multi-source model (using both DS and LLM sources), green
and blue lines represent single-source models (using either DS or LLM sources), and gray lines represent the LR-based model.

this approach fails to address scenarios where different1

types of misclassifications (false positives versus false neg-2

atives) incur different costs.3

To effectively capture these trade-offs under dynamic4

thresholds, we analyze receiver operating characteristic5

(ROC) curves across the four datasets, which illustrate6

variations in true positive rate (TPR) and false positive7

rate (FPR) of each model across all possible decision8

boundaries. Figures 4(b,e) and 5(b,e) depict the ROC9

curves for the multi-source models, LLM-source models,10

DS-source models, and LR-based models at a 30% train-11

ing size. Overall, the multi-source and DS-source mod-12

els exhibit comparable ROC performance and outper-13

form the other models. The LLM-source models achieve14

results comparable to the best ones on the alloy sta-15

bility datasets D0.9Tm
and D1350K but lag behind DS-16

source models on the magnetization and Curie tempera-17

ture datasets DMag and DTC
. Therefore, knowledge col-18

lected from the five considered research domains may19

not fully capture the magnetic and thermal properties20

reflected in those datasets. Meanwhile, the LR-based21

models consistently show the lowest performance across22

all four datasets.23

To further assess the ROC performance of each model24

at different training sizes, we analyze the AUC distri-25

bution from 1% to 30% training data, as shown in Fig-26

ures 4(c,f) and 5(c,f). When the training set is extremely27

small, LLM-based models generally attain an early ad-28

vantage, presumably because domain insights compen-29

sate for limited alloy observations. However, as data ac-30

cumulates, DS-source models typically outperform LLM-31

source models, suggesting that direct data-driven cues32

from quaternary-alloy datasets become increasingly de-33

cisive. In contrast, multi-source models maintain robust34

performance across all training sizes, benefitting from35

their ability to merge domain-specific substitutability in-36

sights with empirical data. Multi-source models leverage37

complementary evidence, enabling an effective balance38

between TPR and FPR. On stability datasets D0.9Tm
and39

D1350K, DS-source and multi-source models achieve com-40
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FIG. 6. Performance comparison of explicit versus implicit domain integration. Area under ROC curves for
predicting HEA stability (D0.9Tm , D1350K) and magnetic properties (DMag, DTC ) using two domain integration strategies: (i)
systematic combination of four specialized domains (solid-state physics, corrosion science, metallurgy, materials mechanics)
shown in red, (ii) only using materials science, which serves as an integrative field that synthesizes perspectives from four
specialized domains, shown in blue.

parable AUC early on and remain highly competitive as1

training data accumulates. For magnetization and Curie-2

temperature datasets, DS-source models briefly outper-3

form multi-source models at moderate training sizes (ap-4

proximately 6–20%), but this gap diminishes at larger5

training sizes.6

We note that the LLM-derived substitutability ma-7

trix M remains fixed across all training sizes (LLMs8

are used out-of-the-box without retraining); improved9

performance with larger training sets results from hav-10

ing more host compositions available to apply this fixed11

knowledge through substitution-based inference (Sec-12

tion II.D). This explains why LLM-source and multi-13

source models benefit from increased training data de-14

spite the LLM knowledge itself remaining unchanged.15

Figure 6 provides compelling evidence for the effective-16

ness of our systematic evidence combination approach17

compared to relying on materials science as an integra-18

tive domain that synthesizes perspectives from the other19

four domains. Significantly, using only materials science20

knowledge yields substantially lower performance by 10-21

20% across all datasets than our multi-source framework,22

which systematically combines evidence from the four23

specialized domains, across different prediction tasks.24

This performance gap demonstrates the fundamental ad-25

vantage of our Dempster–Shafer-based approach: while26

materials science provides a static, pre-integrated per-27

spective that may obscure domain-specific nuances, our28

framework preserves distinct domain insights and adap-29

tively weights them based on their alignment with target30

properties. The superior performance of our systematic31

combination method validates that explicit, property-32

aware evidence synthesis outperforms implicit knowledge33

fusion, particularly when different domains contribute34

varying degrees of relevant information for specific mate-35

rial properties such as stability, magnetization, or Curie36

temperature.37

While LLM-source models generally perform well, our38

results reveal two scenarios where they potentially un-39

derperform compared to data-driven approaches.40

1. Property-specific predictions with weak domain41

alignment: For magnetic property datasets (DMag,42

DTC
), DS-source substantially outperforms LLM-43

source, showing a larger performance gap than44

observed for phase stability datasets (Figures 445

and 5). The five selected domains (corrosion46
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TABLE IV. Prediction accuracy and Areas under the receiver operating characteristic (ROC) curves of various methods on
quaternary-alloy datasets in extrapolation experiments. For each dataset, alloys containing a specific element e are systemati-
cally excluded from the training set and used exclusively for testing. Results are reported as mean accuracy and mean AUC,
averaged across all elements e within each dataset, with standard deviations reflecting variability across elements.

Evaluation criteria Methods D0.9Tm D1350K DMag DTC

Prediction accuracy Multi-source model 0.86± 0.06 0.92± 0.04 0.86± 0.19 0.86± 0.18
LLM-source model 0.84± 0.09 0.90± 0.09 0.81± 0.21 0.86± 0.18
DS-source model 0.50± 0.04 0.51± 0.05 0.48± 0.07 0.50± 0.10
LR-based model 0.83± 0.05 0.91± 0.04 0.67± 0.15 0.68± 0.13

Area under ROC curves Multi-source model 0.93± 0.06 0.92± 0.08 0.95± 0.06 0.94± 0.07
LLM-source model 0.91± 0.11 0.90± 0.12 0.95± 0.06 0.94± 0.07
DS-source model 0.50± 0.00 0.50± 0.00 0.50± 0.00 0.50± 0.00
LR-based model 0.85± 0.11 0.82± 0.10 0.84± 0.06 0.84± 0.06

science, materials mechanics, metallurgy, solid-1

state physics, materials science) were optimized for2

structural stability and do not adequately capture3

magnetic exchange interactions or spin configura-4

tions.5

2. Data-rich regimes: At large training sizes (>20%,6

Figures 4 and 5), DS-source matches or exceeds7

LLM-source performance across all datasets. When8

sufficient data exists, empirical patterns extracted9

directly from the dataset provide adequate informa-10

tion, and general domain knowledge offers minimal11

additional value.12

In conclusion, LLM-source models excel in data-scarce13

scenarios by leveraging domain-specific insights to miti-14

gate sparsity-related challenges. As data availability in-15

creases, DS-source models outperform LLM-source mod-16

els, particularly where DS-derived evidence provides suf-17

ficient information for a purely data-driven learning ap-18

proach. Multi-source models, which integrate insights19

derived from LLM and DS-sources, demonstrate robust20

and consistent performance across various training sizes.21

C. Extrapolation Analysis of Multi-Source Knowledge22

Integration23

Having assessed the proposed framework via cross-24

validation (Section IVB), we examine its extrapolation25

performance on quaternary alloys containing an element26

e, which is excluded during training. Unlike the cross-27

validation experiments, the training set size is not varied28

for this set of experiments. Instead, for each element e,29

we remove all e-containing alloys from the dataset and30

train each model on the remaining alloys that do not31

contain e. Further, we evaluate the ability of the mod-32

els to predict the properties of e-containing alloys. This33

procedure tests whether the learned models can general-34

ize to compositions containing unseen elements in their35

training datasets.36

Table IV reveals distinct performance patterns across37

model types. DS-source models fail in this scenario,38

achieving ∼0.50 accuracy (random guessing) across all39

datasets because they cannot extract substitutability40

patterns for absent element e from training data. In con-41

trast, LLM-source models achieve substantially higher42

accuracies across all datasets. Multi-source models mod-43

estly outperform LLM-source on phase stability datasets44

(D0.9Tm
and D1350K) but achieve nearly identical perfor-45

mance on magnetic property datasets (DMag and DTC
).46

This convergence of multi-source and LLM-source per-47

formance on magnetic datasets reflects proper uncer-48

tainty handling rather than a limitation. When element49

e is absent from training, DS-source has no observed sub-50

stitutability patterns involving e. Following the principle51

established in Section IIA, DS-source assigns unit mass52

to the uncertainty set, explicitly representing total igno-53

rance about e-containing compositions. When this to-54

tal uncertainty combines with confident LLM evidence55

through Dempster’s rule (Equation 7), the final multi-56

source prediction is naturally dominated by informative57

LLM knowledge. The framework thus explicitly repre-58

sents unknown rather than forcing unreliable predictions59

from insufficient data, demonstrating principled uncer-60

tainty quantification in extrapolation scenarios.61

Figure 7 illustrates the ROC curves, showing that the62

multi-source and LLM-source models consistently exhibit63

higher TPR at comparable FPR across all datasets. Con-64

versely, DS-source models exhibit near-random discrimi-65

nation, as evidenced by their diagonal ROC curves, while66

LR-based models yield moderate performance between67

these extremes. To quantify these visual differences, Ta-68

ble IV also lists AUC for each dataset. Multi-source69

models achieve the highest AUC scores (0.92–0.95), fol-70

lowed closely by LLM-source models (0.90–0.95), while71

LR-based models peak at approximately 0.85, and DS-72

source models hover at approximately 0.50.73

Figure 8a–c illustrates knowledge integration in ex-74

trapolation simulations for Os-based alloys using the75

D0.9Tm
dataset. Specifically, Figures 8a and 8b present76

maps reconstructed from element substitutability pat-77

terns derived from the DS-source and multi-source mod-78

els, respectively, both trained on D0.9Tm
dataset exclud-79

ing Os-based alloys. Details of the visualization method80
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FIG. 7. Predictive capability evaluation via extrapolation on quaternary-alloy datasets. For each dataset, alloys
containing a specific element e are systematically excluded from the training set and used exclusively for testing. (a–d) Area
under the receiver operating characteristic (ROC) curves (AUC) is plotted for each model on their respective test sets in the
extrapolation experiments. In all subplots, red lines represent the multi-source model (integrating both DS and LLM sources),
green and blue lines represent single-source models (using either DS or LLM sources), and gray lines represent the LR-based
model.

are shown in Supplementary Section 4. In these visu-1

alizations, the observed alloys are well-structured into2

sub-clusters according to their phase formation behav-3

ior, with blue markers indicating HEA-forming alloys and4

red markers representing non-HEA alloys. The Os-based5

candidate alloys, depicted as white circular markers, con-6

sistently form a distinct sub-cluster in the upper region7

of each map. In these visualizations, the background col-8

oration indicates the predicted probability of HEA for-9

mation, with deeper blue regions suggesting higher prob-10

ability of forming stable HEAs.11

The limitations of the DS-source model become evi-12

dent in Figure 8a, where the phase behavior of Os-based13

alloys remains undetermined due to the absence of Os-14

containing alloys in the training dataset. This knowledge15

gap leaves researchers with no guidance when exploring16

the uncharted territory of Os-based alloys, forcing them17

to rely on random selection. In contrast, our multi-source18

approach addresses this limitation by integrating expert19

insights distilled from scientific literature using LLMs,20

as illustrated in Figure 8b. The effectiveness of this21

approach is visually confirmed in Figure 8c, where the22

multi-source model’s predictions closely align with the23

actual phase behavior of the candidates. This qualitative24

assessment is complemented by quantitative evaluation25

in Supplementary Table 4, which reports that the multi-26

source model achieves an impressive 88% prediction ac-27

curacy for Os-based alloys, validating our approach’s ca-28
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FIG. 8. Visualization of Os-based alloy extrapolation in dataset D0.9Tm . (a) Alloy map generated from element
substitutability patterns extracted using the DS-source model after excluding Os-based alloys from training. (b–c) Alloy maps
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predicted phase formation probability according to the DS-source model (a) and multi-source model (b–c), with deeper blue
shades suggesting higher probability of HEA formation.

pability to effectively extrapolate to unexplored compo-1

sitional spaces. In summary, these results confirm that2

leveraging multi-source or LLM-based evidence signifi-3

cantly enhances discriminative power in the extrapola-4

tion scenario.5

D. Effectiveness Assessment on Experimental High-Entropy6

Alloy Data7

To assess the real-world applicability of our frame-8

work, we validated its performance on experimentally9

verified alloys from the literature. This validation ex-10

amines whether the proposed framework, developed pri-11

marily using computational datasets, can accurately pre-12

dict phase stability for experimentally synthesized al-13

loys. Our framework integrates LLM-derived knowledge14

with substitutability patterns extracted from computa-15

tional databases using the methodology described in Sec-16

tion IIA. This reflects real-world scenarios where re-17

searchers must consider all available knowledge before18

selecting candidates for expensive synthesis.19

We performed 5 -fold cross-validation on experimental20

datasets: Dexp
HEA of 55 experimentally confirmed alloys.21

For the HEA dataset Dexp
HEA , we integrated LLM knowl-22

edge with substitutability patterns extracted from com-23

putational datasets D1350K, DAFLOW, DCALPHAD, and24

DLTVC. Details of the computational datasets are in-25

troduced in the Supplementary Section 6. Notably, the26

predictions from these computational methods for the 5527

experimentally confirmed alloys are not utilized in our28

framework training, ensuring unbiased validation.29

For benchmarking on the HEA dataset, we compared30

our framework against four empirical rules (ERs)58–61,31

two free-energy models (FEM)3,62, and a valence-electron32

concentration (VEC) model63. Supplementary Table 233

provides details of these baseline models. Addition-34

ally, we compared our framework with results obtained35

from computational datasets DAFLOW
15, DLTVC

19, and36

D1350K
45. These computational datasets are collected37

by using high-throughput approaches and Hamiltonian38

models.39

Figure 9a presents ROC curves demonstrating that40

our multi-source integration framework consistently out-41

performs empirical phase selection models such as ERs,42

FEMs, and VEC, while achieving performance compa-43

rable to costly computational methods. These results44

confirm that systematically integrating diverse evidence45

sources through our DST framework enhances prediction46

accuracy across different material classes. The frame-47

work’s value does not lie in replacing established meth-48

ods but in effectively combining their complementary49

strengths, creating a unified platform that enhances prac-50

tical decision-making in materials discovery.51

To investigate the underlying mechanisms of forming52

HEAs, we analyzed the elemental substitutability pat-53

terns extracted by our framework from multiple evidence54

sources. Specifically, we integrated substitutability infor-55

mation from the experimental dataset Dexp
HEA, computa-56

tional datasets (D1350K, DAFLOW, DCALPHAD, DLTVC),57

and LLM-derived knowledge.58

Figure 9b presents the substitutability matrix for 2659

elements relevant to HEA stability, along with their hi-60

erarchical clustering structure. The dendrogram is gen-61

erated via hierarchical agglomerative clustering (HAC)62

with the complete linkage criterion, grouping elements63
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FIG. 9. Effectiveness Assessment of Multi-Source Knowledge Integration for High-Entropy Alloy Formation. (a)
Receiver operating characteristic (ROC) curves for the phase estimation task on experimental dataset Dexp

HEA. Red line represent
the multi-source model (integrating both DS and LLM sources) and gray dashed line represent the random selection. Coloured
scatter points represent results of ERs, FEMs, VEC, and computational methods that return only a single stable/unstable
estimation. (b) Substitutability matrix and substitutability tree for 26 elements. Matrix values represent substitutability
scores derived from integrated computational datasets, experimental dataset and LLM sources. The substitutability tree is
generated using hierarchical agglomerative clustering with complete linkage criterion. Element colors: blue (early transition
metals), orange (intermediate transition metals), gray (post-transition elements). (c) Predicted phase stability for 70 possible
quaternary alloys from Group 1 elements (Hf, Zr, Nb, Ta, Mo, V, Ti, W). Bars show number of alloys predicted as single-
phase obtained from computational datasets (DAFLOW

15, DLTVC
19, and D1350K

45) and experimentally verified single-phase
HEAs45,49,50.

based on similar substitutability patterns. The substi-1

tutability analysis reveals three distinct element groups2

with strong intra-group substitutability. Group 1 com-3

prises eight early transition metals from periodic groups4

4–6: Ti, Zr, Hf (group 4); V, Nb, Ta (group 5); and Mo,5

W (group 6). Cr, while belonging to group 6, exhibits6

unique behavior, showing moderate substitutability with7

Group 1 elements but high substitutability with Fe, Co,8

Mn, and Al, which together form Group 2. Group 39

contains primarily late transition metals from periodic10

groups 9–11, including Rh, Ir, Pd, Pt, Ni, Cu, Au, Ag.11

Notably, Groups 1 and 3 show weak inter-group substi-12

tutability but moderate substitutability with the bridg-13

ing Group 2.14

The exceptional intra-group substitutability of Group15

1 elements (Ti, Zr, Hf, V, Nb, Ta, Mo, W), exhibiting16

notably higher scores than Groups 2 and 3, suggests a17

design principle: quaternary combinations should read-18

ily form stable single-phase HEAs. Critically, this sub-19

stitutability matrix (Figure 9b) is derived by fusing ev-20

idence from multiple independent sources–experimental21

HEA dataset (Dexp
HEA), computational databases (D1350K,22

DAFLOW, DLTVC), and 20 LLM-domain sources–through23

Dempster–Shafer integration; such high mutual sub-24

stitutability indicates unanimous agreement across all25

sources regarding these patterns. Figure 9c validates26

this prediction: all three computational datasets unani-27

mously predict single-phase formation for all 70 possible28

Group 1 quaternaries, and all 15 experimentally synthe-29

sized compositions form single-phase HEAs (100% suc-30

cess rate). This agreement is consistent with established31

principles for refractory high-entropy alloys41,64: early32

transition metals (groups 4–6) preferentially form stable33

BCC solid solutions due to similar atomic sizes and com-34

patible electronic structures, with single-phase stability35

thermodynamically reinforced by configurational entropy36

that lowers Gibbs free energy at elevated temperatures65.37

E. Effectiveness Assessment on Experimental High-Entropy38

Boride Data39

We extend our analysis to high-entropy borides40

(HEBs), where boron’s restrictive bonding requirements41

create similarly high elemental selectivity as observed in42

HEAs66. Despite different underlying mechanisms, both43

systems share the key challenge of identifying rare viable44

combinations within vast compositional spaces, making45

HEBs suitable for demonstrating our framework’s appli-46

cability to diverse multi-component materials with strin-47

gent compatibility constraints.48

In this experiment, we applied our framework to a49

dataset of 19 experimentally confirmed quinary borides50

collected from previous studies. Using these validated51

compositions as training data, our framework was then52

employed to rank 314 potential quinary boride candi-53
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FIG. 10. Effectiveness Assessment of Multi-Source
Knowledge Integration for High-Entropy Borides For-
mation. (a) Correlation analysis between our framework’s
single-phase formation belief and the disordered enthalpy-
entropy descriptors (DEED) for 275 quinary boride candi-
dates. The dashed line indicates the DEED threshold of 35
(eV per atom)−1 for single-phase prediction. (b) Precision@k
and Recall@k performance metrics evaluated at k values from
5 to 100 with increments of 5

dates formed by boron as the anion and the following1

metals: Cr, Hf, Ir, Mn, Mo, Nb, Ta, Ti, V, W, Y, Zr. To2

benchmark our framework, we compared the rankings ob-3

tained by our framework with those derived using the dis-4

ordered enthalpy-entropy descriptors (DEED)44, which5

represents the state-of-the-art descriptor based on ab-6

initio calculations for guiding experimental discovery of7

new single-phase high-entropy carbonitrides and borides.8

Figure 10a illustrates the correlation between DEED9

values and the belief of forming single-phase structures10

for 275 of the 314 quinary boride candidates. For the11

remaining 39 candidates, our framework could not pro-12

vide reliable predictions due to insufficient training data13

coverage, resulting in maximum uncertainty values that14

rendered these predictions uninformative for comparison15

purposes. The results demonstrate a strong positive lin-16

ear correlation between the single-phase formation belief17

derived from our framework and the DEED values, with18

Pearson and Spearman correlation coefficients of 0.81 and19

0.76, respectively. The previous DEED study established20

a threshold of 35 (eV per atom)−1 to distinguish be-21

tween single-phase and multiphase candidates, where val-22

ues above this threshold indicate predicted single-phase23

formation.24

The strong correlation for the 275 confident predic-25

tions, combined with explicit uncertainty flagging for 3926

candidates, demonstrates effective uncertainty quantifi-27

cation. To further validate this mechanism, we analyzed28

prediction accuracy at varying uncertainty thresholds, as29

shown in Supplementary Figure 8. The results reveal30

a systematic trade-off: as the uncertainty threshold de-31

creases (accepting more uncertain predictions as confi-32

dent), prediction accuracy degrades accordingly. This33

behavior confirms that high uncertainty values success-34

fully flag regions where evidence is insufficient, prevent-35

ing overconfident extrapolation beyond the training data.36

The explicit uncertainty quantification thus serves as a37

critical safeguard against overfitting in data-sparse sce-38

narios, distinguishing our approach from conventional39

machine learning methods that would force predictions40

regardless of data sufficiency.41

To evaluate our framework’s practical utility as a ma-42

terials discovery tool, we analyzed how well it ranks43

promising candidates compared to the established DEED44

method. We measured this using standard ranking met-45

rics: Precision@k (what percentage of our top k recom-46

mendations are actually good) and Recall@k (what per-47

centage of all good candidates we capture in our top k48

recommendations). The results show impressive perfor-49

mance: when we look at our top 25 recommendations50

(k=25), all of them were also predicted to form single-51

phase structures by the DEED method, giving us perfect52

precision, as shown in Figure 10b. More broadly, to cap-53

ture 50% of all the promising candidates identified by54

DEED, our method requires selecting approximately the55

top 35-40 candidates and maintains over 90% precision,56

meaning that more than 90% of these top-ranked can-57

didates are correctly identified as single-phase according58

to DEED. Even when capturing 75% of the promising59

candidates, our precision remains above 85%. These re-60

sults demonstrate that our framework effectively priori-61

tizes the most promising compositions for experimental62

synthesis.63

The strong performance on high-entropy borides, com-64

bined with the previous results on high-entropy alloys,65

establishes the framework’s capability to handle uncer-66

tainty in compositionally selective multi-component ma-67

terial systems. Notably, while computational databases68

such as AFLOW and CALPHAD carry inherent uncer-69

tainties from DFT approximations and thermodynamic70

extrapolations18, the Dempster–Shafer theory explicitly71

models these through mass assignments to ignorance,72

enabling robust integration with experimental data and73
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mitigating risks of systematic errors in guiding alloy syn-1

thesis. The discount factor mechanism (Equations 5–7)2

automatically downweights unreliable sources based on3

cross-validation performance, preventing error propaga-4

tion by allowing high-quality evidence to dominate when5

computational predictions conflict with experimental ob-6

servations.7

8

F. Limitations and Future Extensions9

Previous sections have demonstrated the framework’s10

effectiveness across computational and experimental11

datasets. We now examine its current limitations and12

corresponding opportunities for future development.13

14

Context-Independent Evidence Weighting: The cur-15

rent implementation employs fixed weighting parameters16

for each source without considering the specific context17

of elemental substitution. For instance, metallurgical18

knowledge may be more reliable for refractory elements,19

while solid-state physics insights may better inform no-20

ble metal substitutability. Future extensions could im-21

plement context-dependent weighting, wherein discount22

factors vary based on the element pair under consid-23

eration. This could be achieved by conditioning dis-24

count factors on elemental properties such as atomic ra-25

dius, electronegativity, or periodic group membership,26

enabling the framework to recognize element-specific re-27

liability patterns across different knowledge sources.28

29

From Uncertainty Quantification to Discovery Navi-30

gation: This study proposes a framework to integrate31

multi-source knowledge and quantify uncertainty for can-32

didate materials. However, a subsequent challenge re-33

mains: how to effectively utilize these uncertainty mea-34

sures to select candidates for experimental validation un-35

der limited resources. This candidate selection problem36

inherently involves balancing exploration (investigating37

compositions with high uncertainty that may reveal novel38

alloys) and exploitation (refining predictions in promis-39

ing regions with moderate uncertainty). Active learning40

provides a principled approach to this challenge by iden-41

tifying experiments that maximally reduce epistemic un-42

certainty, prioritizing candidates where additional data43

would most improve model reliability. Reinforcement44

learning complements this by learning optimal selection45

policies through iterative experimental feedback, dynam-46

ically adjusting the exploration–exploitation balance as47

the discovery campaign progresses. Together, these tech-48

niques could transform the current prediction framework49

into a comprehensive decision-support system for accel-50

erated materials discovery.51

52

Symmetric Substitutability Assumption: The sym-53

metric substitutability assumption (A→B and B←A are54

equivalent) represents a context-averaged approximation55

that may limit accuracy for systems with strong direc-56

tional substitution preferences. This symmetric treat-57

ment is justified in this study by two factors: first, the58

limited training data in our data-sparse scenarios makes59

learning separate directional patterns statistically infea-60

sible; second, for near-equiatomic multi-principal element61

HEAs characterized by disordered random solid solu-62

tions, elements occupy statistically similar local envi-63

ronments, rendering symmetric substitution a physically64

reasonable first-order approximation. Future extensions65

could incorporate asymmetric substitutability by main-66

taining separate A→B and B←A matrices and collect-67

ing directional evidence from LLMs through modified68

prompts.69

Broaden Scope Beyond Phase Stability: To serve the70

purpose of screening the element combinations forming71

HEA phases, the proposed framework focuses on the fun-72

damental question of whether the HEA phase exists. We73

design a frame of discernment ΩHEA = {HEA,HEA} to74

model the existence of HEA phases with mass functions.75

Consequently, our framework has not answered essential76

questions regarding the structure and other properties of77

the HEAs. However, by redesigning the frame of discern-78

ment to reflect the additional properties of interest, we79

can also construct a model that can recommend poten-80

tial alloys forming HEA phases with desirable properties.81

Extending to mechanical, electronic, or catalytic proper-82

ties represents another promising direction as sufficient83

property-specific data becomes available67.84

Scalability to Higher-Order Systems: The current val-85

idation focuses primarily on quaternary alloy systems,86

with limited exploration of higher-order compositions.87

Extension to quinary and higher-order alloys could be88

achieved through hierarchical decomposition, wherein89

quaternary systems serve as baseline evidence augmented90

by pairwise substitutability relationships. However, more91

complex systems may require sparse approximation tech-92

niques and substantially larger materials databases to93

maintain predictive reliability.94

V. CONCLUSIONS95

The central contribution of this work lies in demon-96

strating that the interpolation–extrapolation dichotomy97

inherent to conventional data-driven materials discovery98

can be systematically addressed through principled inte-99

gration of multi-source knowledge. Crucially, the frame-100

work does not indiscriminately combine all available ev-101

idence; rather, it evaluates the reliability of each source102

based on its alignment with the target property, en-103

suring that only relevant domain knowledge contributes104

meaningfully to predictions. By employing elemental105

substitutability as a unifying concept and leveraging106

Dempster–Shafer theory to combine empirical observa-107

tions with insights extracted from scientific literature via108

LLMs, the framework effectively bridges data-rich and109

data-sparse regions in materials exploration. Our frame-110
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work demonstrates superior performance compared to1

traditional data-driven approaches and empirical phase2

selection rules, while achieving accuracy comparable to3

computationally expensive methods, particularly when4

predicting phase stability for compositions containing5

previously unseen elements. These results highlight that6

the significance of the framework does not reside in su-7

perseding established methods, but rather in effectively8

synthesizing their complementary strengths while repre-9

senting epistemic limitations transparently.10

Beyond HEAs, this framework could accelerate dis-11

covery in several materials classes facing similar chal-12

lenges of vast compositional spaces and sparse data, in-13

cluding functional ceramics44, and catalytic materials34.14

Through successful validation on diverse alloy systems,15

this study demonstrates that uncertainty-aware AI in-16

tegration provides a viable path forward for accelerated17

materials discovery. The element substitutability pat-18

terns extracted using this framework may also inform19

synthetic strategies for targeted property optimization20

across diverse material applications.21
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