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stand the periodic table?

Ge Lei * and Samuel J. Cooper

Large Language Models (LLMs) demonstrate remarkable abilities in synthesizing scientific knowledge, yet

their limitations, particularly with basic arithmetic, raise questions about their reliability. As materials

science increasingly employs LLMs for tasks like hypothesis generation, understanding how these models

encode specialized knowledge becomes crucial. Here, we investigate how the open-source Llama series

of LLMs represent the periodic table of elements. We observe a 3D spiral structure in the hidden states

of LLMs that aligns with the conceptual structure of the periodic table, suggesting that LLMs can reflect

the geometric organization of scientific concepts learned from text. Linear probing reveals that middle

layers encode continuous, overlapping attributes that enable indirect recall, while deeper layers sharpen

categorical distinctions and incorporate linguistic context. These findings suggest that LLMs represent

symbolic knowledge not as isolated facts, but as structured geometric manifolds that intertwine

semantic information across layers. We hope this inspires further exploration into the interpretability

mechanisms of LLMs within chemistry and materials science, enhancing trust of model reliability, guiding

model optimization and tool design, and promoting mutual innovation between science and AI.
1 Introduction

Large Language Models (LLMs) have demonstrated a notable
capacity to synthesize and generate insights from vast amounts
of expert knowledge, drawing attention across multiple scien-
tic domains.1,2 Yet, despite their impressive capabilities,
researchers have observed their surprising inability to reliably
perform seemingly straightforward tasks, such as basic arith-
metic operations.3–5 This phenomenon highlights an important
aspect of LLMs: their fundamental reliance on learned patterns
and probabilistic predictions based on token embeddings,
rather than explicit arithmetic operations. Consequently,
simple numerical tasks, effortlessly handled by even the most
rudimentary calculators with orders of magnitude less compu-
tation, remain challenging and error-prone for these sophisti-
cated LLMs.

In parallel, interest is rapidly growing in leveraging LLMs
within the materials sciences community. Recent research has
proposed intriguing applications such as laboratory
orchestration,6–8 hypothesis generation,9–12 and complex mate-
rials property prediction.13,14 However, despite convincing
demonstrations reported in numerous studies, there remains
skepticism regarding the reliability and trustworthiness of
these systems in rigorous scientic research. One particular risk
is that large language models are designed during training to
generate responses in ways that align with the user's expecta-
tions. This can make the answers appear more authoritative
than they actually are, potentially giving users a false sense of
l College London, SW7 2AZ, UK. E-mail: g.

rial.ac.uk

y the Royal Society of Chemistry
condence in the output, even when the underlying informa-
tion may be incorrect or fabricated.15

This raises a critical question: Can LLMs be trusted to
accurately represent chemical information and serve as scien-
tic foundation models? To approach these questions, under-
standing internal representations is critical. If LLMs simply
memorize isolated facts, they would need constant task-specic
ne-tuning, effectively functioning as many small models. By
contrast, if they organize complex knowledge into structured
forms, this would suggest an ability to extract and generalize
abstract regularities. More ambitiously, if these representations
are geometry-aware and aligned with physical laws, this may
suggest that LLMs can capture aspects of universal scientic
regularities. Such representations would support compression
and generalization, enabling inference of unmentioned prop-
erties and transfer across tasks, thereby increasing their
potential to contribute meaningfully to scientic research.

In this work, we investigate whether the prominent open-
source LLMs, Llamas,16 store chemical knowledge in a struc-
tured and rational manner, whether fragmented into isolated
clusters of disconnected facts, or interconnected through
rational webs of structured knowledge. We delve into how LLMs
encode and recall such knowledge through layer-wise,
geometry-aware representations. The contributions of our
study are:

(1) We report the rst observation of a 3D spiral structure in
LLM hidden states that organizes chemical elements in align-
ment with the structure of the periodic table (Section 4).

(2) We are the rst to compare regression and classication
probing, showing that middle layers encode continuous
Digital Discovery
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attribute structure, while later layers sharpen boundaries for
ne-grained decisions (Section 5.1).

(3) We show that linguistic structure increasingly shapes
knowledge representations in later layers (Section 5.2).

(4) We nd that LLMs recall related attributes through strong
linear associations in middle layers, which weaken in deeper
layers (Section 6).

2 Related work

LLMs have demonstrated strong factual recall across a wide
range of domains, from history and geography to science and
mathematics.17–19 Much still remains unknown about how
interconnected knowledge is internally organized in LLMs.
Clarifying these mechanisms is vital for aligning LLMs with
human values,20 enhancing their design, and broadening their
applications. Mechanistic interpretability offers a pathway to
answer these questions.21–23

2.1 Superposition

The superposition hypothesis suggests that neural networks
can encode far more features than neurons they have by com-
pressing high-dimensional concepts into overlapping, nearly
orthogonal directions.24–26 Instead of assigning features to
individual neurons, features are represented as sparse linear
combinations across neurons, improving encoding efficiency
and reducing interference. Toy models demonstrate that spar-
sity enhances feature disentanglement, balancing compression
and accuracy.27 Early layers encode numerous features with
sparse combinations, while intermediate layers focus on
higher-level contextual features.28

2.2 Linear representation hypothesis

The linear representation hypothesis suggests that neural
networks encode high-level features as linear directions in activa-
tion space, enabling easier interpretation and manipulation.29

Probing, introduced by,30 assesses feature encoding in models and
builds on ndings in word embeddings like GloVe andWord2Vec,
which capture semantic relationships through linear struc-
tures.31,32 Empirical support spans various contexts, including
spatial and temporal representations,33 sentiment analysis,34 task-
specic features,35 and broader relational structures.36

2.3 Non-linear representations

Although the linear representation hypothesis offers insights into
neural network representations, studies have highlighted its
limitations and emphasized the signicance of non-linear
structures. Non-linear structures, such as the ‘pizza’ and ‘clock’
patterns,37,38 and circular representations observed in tasks like
predicting days or months using modular arithmetic prompts
(considering that every day of the week has one before and aer
it, so they should be represented as a loop, rather than a line),39

reveal the complexity of these representations. These observa-
tions raise a deeper question: can LLMs represent interwoven
knowledge in forms that mirror more complex conceptual
geometry in the real world? Following this, we observe a 3D spiral
Digital Discovery
in element representations aligned with periodic trends, sug-
gesting geometric organization of knowledge in LLMs.

2.4 Intermediate layers matter

Recent studies underscore the importance of intermediate
layers in LLMs, emphasizing their role in producing more
informative representations for downstream tasks compared to
nal layers.40–43 These layers are crucial for encoding abstract
knowledge, enabling advanced capabilities like in-context
learning and transfer learning, which are vital for under-
standing and optimizing LLMs.44 Additionally, intermediate
layers exhibit distinct patterns of information compression and
abstraction, such as reduced entropy, allowing them to effi-
ciently represent complex inputs.45,46 Building on these nd-
ings, our probing results show that intermediate layers encode
knowledge in a continuous form, while sharper categorical
boundaries emerge in later layers.

2.5 Factual recall

Ref. 47 showed that early MLP layers at the entity token are key
to recalling factual associations, while later attention layers
propagate this information to the output.48 expanded this into
a three-stage process—enrichment, transfer, and extraction,
revealing subject tokens carry multiple implicit attributes.49

further validated this through detailed circuit analysis,
demonstrating entity token representations linearly encode
categorical attributes. Most prior studies have focused
predominantly on individual attributes, leaving unclear how
large language models jointly encode and retrieve multiple,
interrelated pieces of information. However, chemical knowl-
edge typically exhibits structured complexity characterized by
interconnected relationships, demanding integrated and
holistic representations. Motivated by this, we delve into how
LLMs encode and recall complex, interwoven chemical knowl-
edge through global, structured, and geometry-aware repre-
sentations that evolve across the model's depth.

3 Preliminaries

Our study only focuses on how reliably acquired knowledge (i.e.
things we're condent the model knows) is represented within
LLMs, and excludes hallucinations or information not in the
training set. We use the properties of chemical elements in the
periodic table as a case study due to their frequent occurrence in
training data, well-dened attributes, quantiable properties,
and making them an ideal subject for this investigation. We
adopt Llama series models16,50 in this study.

3.1 Residual stream collection

To study how LLMs represent attributes across layers, we
construct a prompt dataset based on a set of attributes (A =

{Aj}j=1
M, such as ‘atomic number’ or ‘group’) and a set of

elements (X = {Xi}i=1
N, constituting the rst 50 elements, such

as ‘Mg’ or ‘Al’). For linguistic diversity, we incorporate pre-
dened template sets: Tcont = {Tcontk }k=1

11 for continuation-style
prompts and Tques = {Tquesk }k=1

11 for question-style prompts,
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 1 t-SNE visualization of Meta-Llama-3.1-70B last-token residual
streams from the 1st, 50th, and 80th layers, using 11 continuation-style
templates across the first 50 elements (550 points per plot). Each
column shows one layer, while rows represent different colormaps
highlighting attributes: ‘atomic number’, ‘group’, ‘period’, and ‘cate-
gory’. In the top-left plot, circled clusters correspond to individual
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with 11 templates in each. The complete list of templates are
provided in Appendix A.

In the continuation-style templates, the next output token
would be the factual knowledge directly such as:

Tcont
1 (Aj, Xi) = ‘The Aj of Xi is’ (e.g., ‘The atomic number of Al is’)

Tcont
2 (Aj, Xi) = ‘Xi’s Aj is’ (e.g., ‘Al’s atomic number is’)

In question-style templates, the next output token is typically
a syntactic word like ‘The’, which ensures the grammatical
structure is correct, such as:

Tques
1 (Aj, Xi) = ‘What is the Aj of Xi?’ (e.g., ‘What is the atomic

number of Al?’)

Tques
2 (Aj, Xi) = ‘Which value represents Xi’s Aj?’ (e.g., ‘Which

value represents Al’s atomic number?’)

By substituting each element and attribute (Xi, Aj) into these
templates, we generate prompts:

pi,j,k = Tk(Xi, Aj)

Each prompt pi,j,k can then be fed into LLMs to study the
corresponding residual streams at different layers. Last-token
residual streams capture the full prompt context in decoder-
only models with masked attention, as they integrate informa-
tion from all preceding tokens. For each layer l, we collect last-
token residual streams hi,j,k

(l) from prompts pi,j,k across all
elements and templates:

hi;j;k
ðlÞ ¼ f ðlÞ

�
pi;j;k

�
˛ℝT�d ;

where f(l) denotes the layer-l transformation, T is the token length
of the prompt, and d is the hidden dimension. The initial residual
stream h(0)i,j,k is obtained by embedding the prompt through an
embedding layer E0, followed by processing through L Transformer
layers. Each layer applies multi-head attention and a feedforward
network with residual connections and layer normalization:

h
ðlÞ0
i;j;k ¼ h

ðl�1Þ
i;j;k þAttention ​

�
Norm

�
h
ðl�1Þ
i;j;k

��

h
ðlÞ
i;j;k ¼ h

ðlÞ0
i;j;k þ FFN ​

�
Norm

�
h
ðlÞ0
i;j;k

��

Finally, hi,j,k
(L) is mapped to the vocabulary space using the

vocabulary head Wvocab to produce logits:

logitsi,j,k = hi,j,k
(L)Wvocab

By analyzing last-token residual streams hi,j,k
(l) across layers,

we investigate how attributes are represented in the model's
hidden states.
© 2025 The Author(s). Published by the Royal Society of Chemistry
3.2 Residual stream distribution

We start with a preliminary visualization of the distribution of
last-token residual streams for the ‘atomic number’ attribute.
Residual streams from each transformer layer l were collected
for the atomic number attribute across the rst 50 elements
using 11 continuation-style templates, forming the set Hatomic

number
(l). During our preliminary investigations we had noticed

that Llama 7B would occasionally misremember facts about the
heavier elements, which is presumably because they appear less
frequently in the training set. As such, we choose to investigate
just the rst 50 elements (where all models are condent) to
avoid confounding our analysis with factual errors.

To enable informative plots to be produced efficiently, PCA
was applied to each member of H and then t-SNE was use to
project the rst 50 principal components into 2D. Fig. 1 shows
the resulting distributions for Meta-Llama-3.1-70B, with points
colored by atomic number as well as the other attributes (to
visualize their association to atomic number).

The rst column of the gure colors residual streams by true
atomic number values (explicitly requested in the prompt). In
early layers, prompts with similar template (i.e. sentence
templates, each containing 50 points.

Digital Discovery
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Fig. 2 Residual stream patching results for layer 20 in Meta-Llama-3.1-70B. The model's predictions are evaluated after replacing the residual
stream of the ‘element’ token at the last token position with the predicted residual stream ĥpred,(20)
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structure and vocabulary) cluster together irrespective of atomic
number, reecting token-level similarity. In the middle layers,
residual streams for the same element form tight clusters for
each element, containing each of the 11 prompt templates. By
the nal layers, although the same elements still cluster
together, individual points become distinguishable due to
increased spread within the clusters.

In the next three rows, we show the same results, but the
residual streams are colored by the true values of attributes
unmentioned in the prompt: ‘group’, ‘period’, and ‘category’.
Despite not being mentioned in the prompt, in middle layers,
chemically similar elements (small clusters with similar colors)
cluster closely together. By the nal layers, the clustering of
some attributes, such as group and category, becomes less
coherent, indicating a shi in representation.

Furthermore, the geometric shape of attribute distributions
varies. For example, atomic numbers form a linear arrangement
transitioning from red to purple (1st row, 3rd column), while
the ‘group’ attribute activities form a cyclic pattern with
sequential transitions (2nd row, 2nd column), potentially
reecting periodic relationships.

These visualizations suggest that LLM residual streams may
encode attribute relationships in a structured and potentially
geometric manner that reect properties of the physical world.
In particular, intermediate layers appear to capture implicit
similarities even for unmentioned attributes, while later layers
are tuned for task-specic outputs.

t-SNE visualizations are sensitive to hyperparameters such as
perplexity and initialization. To this end, Fig. 1 is presented only
as an intuitive aid for visualizing abstract representational
patterns and for motivating our hypotheses. These hypotheses
are examined in the following sections.
4 Geometric relationships among
attributes

Previous work has argued that 2D spiral representations of the
periodic table provide a more natural visualization of
Digital Discovery
periodicity by arranging elements sequentially along a contin-
uous polar axis, where recurring properties manifest as
repeated turns of the spiral.51 Unlike the conventional tabular
layout that enforces line breaks, the 2D spiral highlights both
the continuity of atomic number progression and the grouping
of chemically similar elements along radial directions.
Extending this idea, 3D spiral constructions of the periodic
table have also been proposed, in which elements are mapped
onto a helical structure, offering additional dimensionality to
emphasize periodic trends and inter-element relationships.52

Motivated by these connections, we investigate whether LLMs—
having been exposed during training to extensive data about the
properties of elements—inherently capture such physical peri-
odicities and reect analogous spiral structures in their learned
embeddings.

We hypothesize that attributes in LLMs exist in a high-
dimensional space, manifesting as linear, circular, or spiral
patterns based on their structure, and then proceed to validate
these geometries.

Inspired by ref. 39, we map the last-token residual streams
hðlÞ˛ℝk at layer l to a geometric space f(r, g, p), which encodes
atomic number r, group g, and period p. To learn this mapping,
we rst reduce the dimensionality of the residual streams to 30
using PCA, denoted as P(h(l)), and t a linear projection using all
50 elements except one held-out target:

WðlÞ; bðlÞ ¼ argmin
W

0
;b
0

X
is0

kW0
P
�
hi

ðlÞ
�
þ b

0 � fik
2

2

where WðlÞ˛ℝd
0 �30, bðlÞ˛ℝd

0
, and fi = f(ri, gi, pi) denotes the

mapping of the i-th element in the geometric space.
To perform the intervention, we compute the centroid of the

PCA-reduced residual streams for the remaining N = K − 1
elements:

h
ðlÞ ¼ 1

N

X
is0

P
�
hi

ðlÞ
�

thenmap it to the geometric space: z=W(l)�h(l) + b(l). Let f0= f(r0,
g0, p0) denote the target element's embedding in the geometric
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 3 Predicted atomic numbers after intervention in 3D spiral space
(r cos q, r sin q, r). Colored points indicate the tokens with highest logits.

Fig. 4 Euclidean distance heatmap of approximated vector repre-
sentations for numeric tokens (1–50) in the hidden space of the last
layer in Meta-Llama-3.1-70B.
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space. The deviation f0 − z is projected back to the residual
stream space using the pseudo-inverse of W(l), giving the pre-
dicted (intervened) residual stream:

ĥpred,(l)0 = P−1(�h(l) + (W(l))+(f0 − z))

Importantly, the model never accesses the original residual
stream of the target element; the predicted residual stream is
computed solely from its geometric representation and the
residual streams of other elements. During inference, we
replace the residual stream of ‘element’ (last token position) in
the 20th layer† with ĥpred,(20)

0 , using the prompt ‘In the periodic
table, the atomic number of element’. We then evaluate whether
the model can correctly output the target token without ever
seeing its original residual stream.

We evaluate the effectiveness of different geometric spaces
for interventions, including linear, 2D spiral, and 3D spiral (i.e.
conical helix) geometries, as shown in Fig. 3. Angular variables

q ¼ 2pg
18

are used to capture periodic relationships. To test the

impact of disrupted geometry, two random spaces are intro-
duced: in Space 8, atomic numbers r are shuffled; in Space 9, q is
randomly permuted. Additionally, in Space 10, the prompt ‘In
numbers, the Arabic numeral for number’ generates numbers
1–50, testing whether periodic patterns emerge without explicit
element references. We designed this control to examine
whether the observed geometric shapes arise from element-
related knowledge or simply from numerical sequences.

Effective residual stream patching suggests that the target
space f(r, g, p): (1) retains sufficient information for accurate
reconstruction during transformations with the residual stream
space, and (2) preserves geometric structures similar to those in
the residual stream space to ensure valid adjustments in the
high-dimensional space.

Patching results for Meta-Llama-3.1-70B are shown in Fig. 2,
with detailed values in Table B.1 (Appendix). Results show that
intervention can be applied in various geometric spaces, with
some performing signicantly better. Spaces such as (cos q, sin
† See Appendix B.1 for details on intervention performance. Interventions become
effective from layer 20 onward.

© 2025 The Author(s). Published by the Royal Society of Chemistry
q, r) and (r cos q, r sin q, r) over 70% predictions of the atomic
number have an absolute error within 2, suggesting the
potential existence of latent 3D structures in LLMs resembling
3D spirals. Fig. 3 illustrates the LLM's output post-intervention
in 3D spiral geometry. Additional geometric analyses are in
Appendix B.2. Randomly generated prompts perform very
poorly, which is expected given their lack of coherent semantic
structure and context, but even element unrelated prompts with
clear linguistic form also yield poor performance. This suggests
that the geometry of the embedding space is not merely tied to
numerical correlations or surface-level semantics, but is
inherently aligned with the background knowledge invoked by
the prompt, reecting real-world knowledge structures.

In a concurrent study,53 observed spiral-like structures in
number space with periods of 2, 5, 10, and 100, likely reecting
common human conventions in numerical representation. In
contrast, our model exhibits a distinct 18-period spiral‡ aligned
with the periodic structure of chemical elements. This repre-
sentation performs notably worse for ordinary numbers without
elemental context (which aligns with their observation that the
18-period does not prominently emerge), indicating that such
geometric patterns emerge from underlying physical or
semantic regularities rather than arbitrary structures.

In the intervention experiments, it is actually not obvious
whether a smaller numerical difference between the output
token and the true value always implies smaller error. To
investigate this, we project token IDs for numbers 1–50 into the
last hidden layer using the pseudoinverse of the vocabulary
projection matrix Wvocab

+. This operation reconstructs an
approximation of the hidden representations that would
produce these token IDs as logits. Fig. 4 shows that smaller
numerical differences generally correspond to closer
‡ In our study, each period is arranged on an 18-sector scale corresponding to the
18 groups; in the rst three periods, only 2, 8, 8 sectors are lled, with the
remaining sectors le empty. Thus, the ner 2/8/8/18 period is preserved within
the 18-sector framework.
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representations, while larger differences oen result in incon-
sistent distances, reecting the model's difficulty with numer-
ical consistency over larger gaps. For instance, the vector for ‘1’
is closer to ‘2’ than to ‘5’, while the distances between ‘10’ and
‘40’ is closer than between ‘10’ and ‘21’. In the intervention,
when the predicted value is close to the true value, hidden logits
align well with true logits, suggesting higher accuracy. However,
large numerical deviations cannot fully capture prediction
errors, so we evaluate results using an absolute error threshold
(#2) in Fig. 2, representing a small distance.
5 Direct attribute recall

In the previous section, we observed that elemental knowledge
in LLMs forms a 3D spiral structure. Interestingly, although
prompts mentioned only atomic numbers, the embeddings also
reected elemental groups, suggesting that LLMs retrieve both
explicitly requested and implicitly related attributes. To better
understand these mechanisms, this section investigates direct
attribute knowledge recall and Section 6 will explores how LLMs
access related but unprompted knowledge.
5.1 From continuity to boundary sharpening

Some elemental attributes, such as group and period, naturally
exist in both categorical and numerical forms. This duality
enables both classication and regression probing, allowing for
direct comparisons that have been underexplored in prior work,
which oen focused exclusively on a single type.
Fig. 5 Linear probing results on last token across layers. (a) Regression
(accuracy) for categorical attributes. All results use 5-fold cross-validatio

Digital Discovery
To examine how LLMs access explicitly mentioned knowl-
edge, we use the last-token residual stream from the continu-
ation style prompt hj

ðlÞ˛ℝk as the representation of attribute Aj,
and t a linear probe to predict its corresponding values via:

fj
(l)(hj) = Wj

(l)hj
(l) + bj

(l)

For categorical attribute forms (e.g., category, group, period),
Wj

ðlÞ˛ℝjCjj�k, bj
ðlÞ˛ℝjCjj. Predictions are made by:

ŷðlÞ ¼ argmax
c˛Cj

h
fj
ðlÞ
�
hj

ðlÞ
�i

c
:

For continuous attributes, we perform scalar regression by
setting Wj

ðlÞ ¼ wj
ðlÞu, wj

ðlÞ˛ℝk, bj
ðlÞ˛ℝ, yielding:

ŷðlÞ ¼ wj
ðlÞuhj

ðlÞ þ bj
ðlÞ

Probes are trained using 5-fold cross-validation on last-token
residual streams. We use a linear Support Vector Machine
(SVM) for categorical tasks and Support Vector Regression (SVR)
with a linear kernel for continuous tasks. The resulting classi-
cation accuracies and regression R2 scores are shown in Fig. 5,
with best-layer results provided in Appendix F.5.

Regression probes reveal that continuous numerical features
are effectively represented in intermediate layers, as indicated
by high R2 values (while not reaching 1, see Appendix F.1).
These intermediate layers sometimes even outperform the nal
(R2) for numerical attributes and a random baseline. (b) Classification
n on last-token residual streams.

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 6 AverageDR2 across five attributes, with 95% confidence interval
shaded. DR2 = Rcont

2 − Rques
2.
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layers, suggesting that numerical knowledge is already encoded
before the nal output stage. This aligns with ndings by ref.
47, which show that factual knowledge recall is already medi-
ated by intermediate MLP layers.

In classication probes, intermediate layers perform simi-
larly or even better than nal layers for clearly distinct non-
numerical categories (e.g., metal vs. non-metal), aligning with
prior work.49 However, they signicantly underperform in ne-
grained numerical classication, e.g., period accuracy drops
from ∼1.0 (nal) to ∼0.7, and group from ∼1.0 to ∼0.6.

This suggests that while intermediate layers already encode
meaningful numerical structure, additional processing in later
layers is required to sharpen boundaries and support accurate
ne-grained classication. This aligns with intuition: later
layers prepare for discrete token outputs, where clearer classi-
cation boundaries must emerge. As shown in Appendix
Fig. F.1, the confusion matrix from Layer 40 (70B middle layer)
is not perfectly accurate, but most misclassications fall near
the diagonal, further demonstrating that intermediate layers
encode coherent numerical structure, albeit with blurred cate-
gorical boundaries. These observations may provide useful
insights for choosing between intermediate and later-layer
embeddings in downstream tasks.

Notably, Llama2 7B shows low accuracy (<0.4) on group
classication compared to Llama3.1 8B (>0.8) (but similar
performance in group regression probing) potentially due to its
single number tokenization (splitting numbers like ‘12’ into ‘1’
and ‘2’), which may cause confusion between the representa-
tions of output tokens like ‘12’ and ‘1’. In contrast, Llama 3 uses
separate tokens for numbers below 1000.
5.2 Higher language sensitivity in later layers

The sharpening of numerical representations into categorical
boundaries in later layers suggests that these layers might be
shaped by the expected output tokens. This raises a question:
does the linguistic structure inuence the factual representa-
tions across layers?

We compared question-style and continuation-style prompts
using linear regression probes. Continuation prompts generally
lead to direct generation of fact-related tokens, whereas
question-style prompts tend to introduce syntactic llers (e.g.,
‘The’) and are more inuenced by supercial language patterns.

Fig. 6 reports the average delta R2 across ve attributes, with
per-attribute results shown in Fig. F.2 (Appendix). As analyses in
earlier sections show stronger semantic signals and higher R2 in
mid-to-late layers, we focus on depths 0.6–1.0. DR2 increases in
the mid-to-late layers, indicating a growing gap between prompt
types. Among the 15 attribute–model combinations (3 models
× 5 attributes), 12 show a signicant increasing trend (FDR-
corrected p < 0.05), with a median Mann–Kendall s of 0.55
(Appendix F.3).

The results indicate that, as depth increases, question
prompts become progressively less effective than continuation
prompts at encoding factual attributes, hinting that the
prompt's linguistic structure exerts a stronger inuence on
representations in deeper layers. Interestingly, the larger
© 2025 The Author(s). Published by the Royal Society of Chemistry
models show a slower increase in DR2 across layers than the
smaller models, suggesting they maintain more stable factual
representations across prompt types and thus exhibit a smaller
distinction between continuation and question prompts.

The rising DR2 suggests that deeper layers increasingly blend
factual content with linguistic structure to prepare the nal
tokens. To further test this, we applied the logit lens54 and
tuned-lens.55 These analyses estimate the token distribution
each layer would produce if decoding were halted at that depth,
and show that the correct numerical token becomes highly
ranked only in the later layers (Appendix D). Complementary
attention statistics (Appendix C) reveal that mid-layers focus
tightly on the factual token, whereas later layers spread atten-
tion over a wider context patterns consistent with increased
syntactic and contextual integration.
6 Indirect attribute recall

In the previous section, we analyzed direct recall of explicitly
mentioned attributes across layers. Our earlier geometric anal-
ysis showed that LLMs can also recall related attributes that are
not explicitly mentioned. In this section, we explore how related
but unmentioned attributes are recalled.
6.1 Middle layers excel at indirect recall

We conducted experiments using linear probing to examine the
relationships between distinct attributes. Specically, we
extracted last-token residual streams from continuation
prompts that mention attribute Aj1 (matching) or a different
attribute Aj2 (non-matching), i.e. seeing if we can extract infor-
mation that was not explicitly requested in the prompt. We also
extracted the residual stream at the element token position,
before any attribute is introduced (no mention). Separate
probes were trained for each residual stream dataset, always
using labels of attribute Aj1 as targets. To avoid confounding
factors, we selected six attribute pairs without direct linear
relationships for non matching probe (see Appendix F.4.1).
Average R2 curves for all attributes are shown in Fig. 7; detailed
Digital Discovery
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Fig. 7 Average R2 scores from regression probing across layers for three prompt types: matching, non-matching, and no-mention. All probes
predict a fixed target attribute Aj1; no-mention uses element token residual streams before any attribute appears. Shaded areas show 95%
confidence intervals.

Digital Discovery Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

4 
O

ct
ob

er
 2

02
5.

 D
ow

nl
oa

de
d 

on
 1

0/
30

/2
02

5 
4:

36
:0

3 
PM

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
case-wise linear probing results appear in Appendix Fig. F.3 and
F.4.

Attribute information was detectable across all prompt
styles. Intuitively, matching prompts should perform best by
providing explicit cues, no-mention comes next as it relies on
inference, and non-matching prompts perform worst due to
misleading signals. Surprisingly, at intermediate layers (around
0.5 depth), non-matching prompts yielded higher linear R2

scores than no-mention prompts, suggesting stronger inter-
attribute interactions at these depths. This may reect entan-
gled representations between related attributes, which we
analyze further in Section 6.2.

Beyond 60% depth, performance follows the expected trend:
matching > no-mention > non-matching. The gap between
matching and non-matching prompts increases steadily from
0.6 to 1.0 depth. Across 15 model–attribute tests, 14 exhibited
statistically signicant divergence (FDR corrected p < 0.05), with
a median Mann–Kendall s of 0.77 (Appendix Fig. F.5 and Table
F.3). It suggests that attribute representations become more
specialized and context-sensitive in deeper layers. Further
analyses in Section 6.2 provide a more direct explanation,
examining how structural relationships between attributes
contribute to this layered specialization.
Fig. 8 R2 scores across layers in Meta-Llama-3.1-70B for linear
mappings between attribute pairs using the final residual stream from
a fixed prompt.

Digital Discovery
The fact that the ‘no-mention’ prompts perform best in the
early layers may seem counterintuitive; however, this is likely
because, unlike the other two scenarios, in the ‘no-mention’
case, the last token is the element itself, whichmay aid recall. In
contrast, matching prompts extract residual streams at the nal
token (such as ‘is’), requiring holistic semantic understanding.
As layer depth increases, semantic clarity improves, enhancing
explicitly mentioned attributes and reversing this initial trend.

To explicitly capture relationships between attribute repre-
sentation, we train a linear mapping from the representation of
attribute Aj1 to attribute Aj2 at each model layer. Specically, we
utilize the nal residual streams from a xed prompt template
(aer applying PCA to reduce the dimensionality to 20). The
mapping performance is evaluated using R2 scores obtained via
5-fold cross-validation.

Fig. 8 illustrates the variation of R2 scores across layers for
different attribute pairs. In early layers, R2 scores are high;
however, this observation alone does not necessarily indicate
meaningful attribute-level relationships, as initial representa-
tions are predominantly sensitive to token-level similarity (see t-
SNE analysis in Fig. 1). Due to the use of a xed input template,
the resulting inputs exhibit substantial token-level overlap.

6.2 Stronger linear correlations in middle layers

In the intermediate layers, where concept-level understanding
is evident (as shown by t-SNE and linear probing), we observe
a peak in R2 scores. This indicates that even simple linear
models can effectively capture relationships between different
attributes, reecting their connection in the learned represen-
tation space. This also explains why prompts with non-
matching attributes outperform those with no attribute
mention at these layers in the last Section 6.1. In deeper layers,
R2 scores decline, suggesting a shi toward specialized repre-
sentations. Similar conclusions from the linear probing weight
analysis further support this, as shown in Appendix E.1.

7 Discussion and conclusions

This study highlights that despite their exclusive reliance on
textual training data, LLMs internally develop structured repre-
sentations aligning closely with scientic knowledge. Specically,
we observe a 3D spiral structure within the hidden states of LLMs
© 2025 The Author(s). Published by the Royal Society of Chemistry
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that mirrors the conceptual organization of the periodic table,
indicating the models’ implicit grasp of domain-specic regu-
larities without explicit supervision.

Probing experiments reveal that the encoding of chemical
knowledge evolves across model depth: middle layers encode
continuous, overlapping attribute subspaces suitable for coarse
categorization, while deeper layers sharpen decision bound-
aries and integrate linguistic structure. In addition, we nd that
related attributes are strongly linearly associated in middle
layers, enabling indirect recall.

Our results demonstrate that symbolic scientic knowledge,
particularly in chemistry, is represented within LLMs as
coherent, geometry-aware manifolds where conceptual infor-
mation is systematically intertwined across model layers.
Furthermore, this geometric structure aligns with the laws
observed in the physical world, indicating that knowledge
within LLMs is not arbitrary, but rather organized and reective
of inherent natural order. Moreover, it is unsurprising that
these large models discover meaningful relationships between
concepts and these must oen represent efficient compression.

We hope this work inspires further investigation into how
LLMs represent and reason about scientic knowledge, such as
materials property prediction, and informs the design of
downstream embedding-based tasks. We believe interpret-
ability in LLMs is essential for AI safety, reducing unintended
behaviors and building trust. Understanding how knowledge is
stored and recalled across layers can inspire more interpretable,
efficient models, advance knowledge editing and scientic
discovery.
7.1 Limitations

Our prompts have specically targeted chemical elements in the
periodic table; future studies could expand this to include other
chemical structures and properties. The hypothesis-driven
validation of geometric structures may oversimplify LLMs’
non-linear interactions.
Conflicts of interest

There are no conicts to declare.
Data availability

The code required to reproduce the results presented in this
paper is available at https://github.com/tldr-group/LLM-
knowledge-representation with an MIT license agreement and
archived on Zenodo with DOI: https://doi.org/10.5281/
zenodo.17280841.

Supplementary information is available. See DOI: https://
doi.org/10.1039/d5dd00374a.
Acknowledgements

This project has received funding from the European Union’s
research and innovation programme Horizon Europe under the
grant agreement No. 101192848 and the Imperial Lee Family
© 2025 The Author(s). Published by the Royal Society of Chemistry
Scholarship. We would like to thank the members of the TLDR
group for their valuable comments and insightful discussions.
References

1 O. Wysocki, M. Wysocka, D. Carvalho, A. T. Bogatu,
D. M. Gusicuma, M. Delmas, et al., An llm-based
knowledge synthesis and scientic reasoning framework
for biomedical discovery, arXiv, 2024, preprint,
arXiv:2406.18626, DOI: 10.48550/arXiv.2406.18626.

2 G. Lei, R. Docherty and S. J. Cooper, Materials science in the
era of large language models: a perspective, Digital Discovery,
2024, 3(7), 1257–1272.

3 J. Qian, H. Wang, Z. Li, S. Li and X. Yan, Limitations of
language models in arithmetic and symbolic induction,
arXiv, 2022, preprint, arXiv:2208.05051, DOI: 10.48550/
arXiv.2208.05051.

4 T. Baeumel, J. van Genabith and S. Ostermann, The
lookahead limitation: Why multi-operand addition is hard
for llms, arXiv, 2025, preprint, arXiv:2502.19981, DOI:
10.48550/arXiv.2502.19981.

5 A. Gambardella, Y. Iwasawa and Y. Matsuo, Language
models do hard arithmetic tasks easily and hardly do easy
arithmetic tasks, arXiv, 2024, preprint, arXiv:2406.02356,
DOI: 10.48550/arXiv.2406.02356.

6 M. Sim, M. G. Vakili, F. Strieth-Kalthoff, H. Hao,
R. J. Hickman, S. Miret, et al., ChemOS 2.0: An
orchestration architecture for chemical self-driving
laboratories, Matter, 2024, 7(9), 2959–2977.

7 K. Darvish, M. Skreta, Y. Zhao, N. Yoshikawa, S. Som,
M. Bogdanovic, et al., ORGANA: A robotic assistant for
automated chemistry experimentation and
characterization, Matter, 2025, 8(2), 101897.

8 E. A. Olowe and D. Chitnis, LABIIUM: AI-Enhanced Zero-
conguration Measurement Automation System, in 2025
IEEE International Instrumentation and Measurement
Technology Conference (I2MTC), IEEE, 2025, pp. 1–6.

9 Q. Liu, M. P. Polak, S. Y. Kim, M. A. A. Shuvo, H. S. Deodhar,
J. Han, et al., Beyond designer's knowledge: Generating
materials design hypotheses via a large language model,
Acta Mater., 2025, 121307.

10 S. Kumbhar, V. Mishra, K. Coutinho, D. Handa, A. Iquebal
and C. Baral, Hypothesis generation for materials
discovery and design using goal-driven and constraint-
guided llm agents, arXiv, 2025, preprint, arXiv:2501.13299,
DOI: 10.48550/arXiv.2501.13299.

11 A. Bazgir, Y. Zhang, et al., Agentichypothesis: A survey on
hypothesis generation using llm systems, Towards Agentic
AI for Science: Hypothesis Generation, Comprehension,
Quantication, and Validation, 2025.

12 A. Bazgir, Y. Zhang, et al., MatAgent: A human-in-the-loop
multi-agent LLM framework for accelerating the material
science discovery cycle, in AI for Accelerated Materials
Design-ICLR 2025, 2025.

13 S. Liu, T. Wen, B. Ye, Z. Li, H. Liu, Y. Ren, et al., Large
language models for material property predictions: elastic
Digital Discovery

https://github.com/tldr-group/LLM-knowledge-representation
https://github.com/tldr-group/LLM-knowledge-representation
https://doi.org/10.5281/zenodo.17280841
https://doi.org/10.5281/zenodo.17280841
https://doi.org/10.1039/d5dd00374a
https://doi.org/10.1039/d5dd00374a
https://doi.org/10.48550/arXiv.2406.18626
https://doi.org/10.48550/arXiv.2208.05051
https://doi.org/10.48550/arXiv.2208.05051
https://doi.org/10.48550/arXiv.2502.19981
https://doi.org/10.48550/arXiv.2406.02356
https://doi.org/10.48550/arXiv.2501.13299
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5dd00374a


Digital Discovery Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

4 
O

ct
ob

er
 2

02
5.

 D
ow

nl
oa

de
d 

on
 1

0/
30

/2
02

5 
4:

36
:0

3 
PM

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
constant tensor prediction and materials design, Digital
Discovery, 2025, 4(6), 1625–1638.

14 A. N. Rubungo, K. Li, J. Hattrick-Simpers and A. B. Dieng,
LLM4Mat-bench: benchmarking large language models for
materials property prediction, Mach. Learn.: Sci. Technol.,
2025, 6(2), 020501.

15 M. Steyvers, H. Tejeda, A. Kumar, C. Belem, S. Karny, X. Hu,
et al., What large language models know and what people
think they know, Nat. Mach. Intell., 2025, 7(2), 221–231.

16 A. Grattaori, A. Dubey, A. Jauhri, A. Pandey, A. Kadian, A. Al-
Dahle, et al., The llama 3 herd of models, arXiv, 2024,
preprint, arXiv:2407.21783, DOI: 10.48550/arXiv.2407.21783.

17 H. Naveed, A. U. Khan, S. Qiu, M. Saqib, S. Anwar, M. Usman,
et al., A comprehensive overview of large language models,
arXiv, 2023, preprint, arXiv:2307.06435, DOI: 10.48550/
arXiv.2307.06435.

18 Y. Chang, X. Wang, J. Wang, Y. Wu, L. Yang, K. Zhu, et al., A
survey on evaluation of large language models, ACM Trans.
Intell. Syst. Technol., 2024, 15(3), 1–45.

19 J. Kaddour, J. Harris, M. Mozes, H. Bradley, R. Raileanu and
R. McHardy, Challenges and applications of large language
models, arXiv, 2023, preprint, arXiv:2307.10169, DOI:
10.48550/arXiv.2307.10169.

20 J. Ji, T. Qiu, B. Chen, B. Zhang, H. Lou, K. Wang, et al., Ai
alignment: A comprehensive survey, arXiv, 2023, preprint,
arXiv:2310.19852, DOI: 10.48550/arXiv.2310.19852.

21 L. Bereska and E. Gavves, Mechanistic Interpretability for AI
Safety–A Review, arXiv, 2024, preprint, arXiv:2404.14082,
DOI: 10.48550/arXiv.2404.14082.

22 C. Singh, J. P. Inala, M. Galley, R. Caruana and J. Gao,
Rethinking interpretability in the era of large language
models, arXiv, 2024, preprint, arXiv:2402.01761, DOI:
10.48550/arXiv.2402.01761.

23 G. Dar, M. Geva, A. Gupta and J. Berant, Analyzing
transformers in embedding space, arXiv, 2022, preprint,
arXiv:2209.02535, DOI: 10.48550/arXiv.2209.02535.

24 S. Arora, Y. Li, Y. Liang, T. Ma and A. Risteski, Linear
algebraic structure of word senses, with applications to
polysemy, Trans. Assoc. Comput. Linguist., 2018, 6, 483–495.

25 A. Scherlis, K. Sachan, A. S. Jermyn, J. Benton and
B. Shlegeris, Polysemanticity and capacity in neural
networks, arXiv, 2022, preprint, arXiv:2210.01892, DOI:
10.48550/arXiv.2210.01892.

26 A. S. Jermyn, N. Schiefer and E. Hubinger, Engineering
monosemanticity in toy models, arXiv, 2022, preprint,
arXiv:2211.09169, DOI: 10.48550/arXiv.2211.09169.

27 N. Elhage, T. Hume, C. Olsson, N. Schiefer, T. Henighan,
S. Kravec, et al., Toy models of superposition, arXiv, 2022,
preprint, arXiv:2209.10652, DOI: 10.48550/arXiv.2209.10652.

28 W. Gurnee, N. Nanda, M. Pauly, K. Harvey, D. Troitskii and
D. Bertsimas, Finding neurons in a haystack: Case studies
with sparse probing, arXiv, 2023, preprint,
arXiv:2305.01610, DOI: 10.48550/arXiv.2305.01610.

29 N. Nanda, et al., Transformer Circuit Faithfulness Metrics
Are Not Robust, arXiv, 2023, preprint, arXiv:2407.08734,
DOI: 10.48550/arXiv.2407.08734.
Digital Discovery
30 G. Alain, Understanding intermediate layers using linear
classier probes, arXiv, 2016, preprint, arXiv:1610.01644,
DOI: 10.48550/arXiv.1610.01644.

31 T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado and J. Dean,
Distributed Representations of Words and Phrases and their
Compositionality, in Advances in Neural Information
Processing Systems, vol. 26, 2013.

32 J. Pennington, R. Socher and C. D. Manning, GloVe: Global
Vectors for Word Representation, in Proceedings of the 2014
Conference on Empirical Methods in Natural Language
Processing (EMNLP), 2014, pp. 1532–1543.

33 W. Gurnee and M. Tegmark, Language models represent
space and time, arXiv, 2023, preprint, arXiv:2310.02207,
DOI: 10.48550/arXiv.2310.02207.

34 C. Tigges, O. J. Hollinsworth, A. Geiger and N. Nanda, Linear
representations of sentiment in large language models,
arXiv, 2023, preprint, arXiv:2310.15154, DOI: 10.48550/
arXiv.2310.15154.

35 R. Hendel, M. Geva and A. Globerson, In-context learning
creates task vectors, arXiv, 2023, preprint,
arXiv:2310.15916, DOI: 10.48550/arXiv.2310.15916.

36 E. Hernandez, A. S. Sharma, T. Haklay, K. Meng,
M. Wattenberg, J. Andreas, et al., Linearity of relation
decoding in transformer language models, arXiv, 2023,
preprint, arXiv:2308.09124, DOI: 10.48550/arXiv.2308.09124.

37 N. Nanda, L. Chan, T. Lieberum, J. Smith and J. Steinhardt,
Progress measures for grokking via mechanistic
interpretability, arXiv, 2023, preprint, arXiv:2301.05217,
DOI: 10.48550/arXiv.2301.05217.

38 Z. Zhong, Z. Liu, M. Tegmark and J. Andreas, The clock and
the pizza: Two stories in mechanistic explanation of neural
networks, Adv. Neural Inf. Process. Syst., 2024, 36, 27223–
27250.

39 J. Engels, E. J. Michaud, I. Liao, W. Gurnee and M. Tegmark,
Not all language model features are linear, arXiv, 2024,
preprint, arXiv:2405.14860, DOI: 10.48550/arXiv.2405.14860.

40 O. Skean, M. R. Aren, D. Zhao, N. Patel, J. Naghiyev,
Y. LeCun, et al., Layer by Layer: Uncovering Hidden
Representations in Language Models, arXiv, 2025, preprint,
arXiv:2502.02013, DOI: 10.48550/arXiv.2502.02013.

41 P. Kavehzadeh, M. Valipour, M. Tahaei, A. Ghodsi, B. Chen
and M. Rezagholizadeh, Sorted LLaMA: Unlocking the
Potential of Intermediate Layers of Large Language Models
for Dynamic Inference, in Findings of the Association for
Computational Linguistics: EACL 2024, 2024, pp. 2129–2145.

42 T. Ju, W. Sun, W. Du, X. Yuan, Z. Ren and G. Liu, How large
language models encode context knowledge? a layer-wise
probing study, arXiv, 2024, preprint, arXiv:2402.16061,
DOI: 10.48550/arXiv.2402.16061.

43 Z. Liu, C. Kong, Y. Liu and M. Sun, Fantastic Semantics and
Where to Find Them: Investigating Which Layers of
Generative LLMs Reect Lexical Semantics, arXiv, 2024,
preprint, arXiv:2403.01509, DOI: 10.48550/arXiv.2403.01509.

44 Y. Zhang, Y. Dong and K. Kawaguchi, Investigating Layer
Importance in Large Language Models, in Proceedings of
the 7th BlackboxNLP Workshop: Analyzing and Interpreting
Neural Networks for NLP, ed. Y. Belinkov, N. Kim, J.
© 2025 The Author(s). Published by the Royal Society of Chemistry

https://doi.org/10.48550/arXiv.2407.21783
https://doi.org/10.48550/arXiv.2307.06435
https://doi.org/10.48550/arXiv.2307.06435
https://doi.org/10.48550/arXiv.2307.10169
https://doi.org/10.48550/arXiv.2310.19852
https://doi.org/10.48550/arXiv.2404.14082
https://doi.org/10.48550/arXiv.2402.01761
https://doi.org/10.48550/arXiv.2209.02535
https://doi.org/10.48550/arXiv.2210.01892
https://doi.org/10.48550/arXiv.2211.09169
https://doi.org/10.48550/arXiv.2209.10652
https://doi.org/10.48550/arXiv.2305.01610
https://doi.org/10.48550/arXiv.2407.08734
https://doi.org/10.48550/arXiv.1610.01644
https://doi.org/10.48550/arXiv.2310.02207
https://doi.org/10.48550/arXiv.2310.15154
https://doi.org/10.48550/arXiv.2310.15154
https://doi.org/10.48550/arXiv.2310.15916
https://doi.org/10.48550/arXiv.2308.09124
https://doi.org/10.48550/arXiv.2301.05217
https://doi.org/10.48550/arXiv.2405.14860
https://doi.org/10.48550/arXiv.2502.02013
https://doi.org/10.48550/arXiv.2402.16061
https://doi.org/10.48550/arXiv.2403.01509
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5dd00374a


Paper Digital Discovery

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

4 
O

ct
ob

er
 2

02
5.

 D
ow

nl
oa

de
d 

on
 1

0/
30

/2
02

5 
4:

36
:0

3 
PM

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
Jumelet, H. Mohebbi, A. Mueller and H. Chen, Association
for Computational Linguistics, Miami, Florida, US, 2024,
pp. 469–479, https://aclanthology.org/2024.blackboxnlp-
1.29/.

45 D. Doimo, A. Serra, A. Ansuini and A. Cazzaniga, The
representation landscape of few-shot learning and ne-
tuning in large language models, arXiv, 2024, preprint,
arXiv:2409.03662, DOI: 10.48550/arXiv.2409.03662.

46 M. Yin, C. Wu, Y. Wang, H. Wang, W. Guo, Y. Wang, et al.,
Entropy law: The story behind data compression and llm
performance, arXiv, 2024, preprint, arXiv:2407.06645, DOI:
10.48550/arXiv.2407.06645.

47 K. Meng, D. Bau, A. Andonian and Y. Belinkov, Locating and
editing factual associations in gpt, Adv. Neural Inf. Process.
Syst., 2022, 35, 17359–17372.

48 M. Geva, J. Bastings, K. Filippova and A. Globerson,
Dissecting recall of factual associations in auto-regressive
language models, arXiv, 2023, preprint, arXiv:2304.14767,
DOI: 10.48550/arXiv.2304.14767.

49 N. Nanda, S. Rajamanoharan, J. Kramár and R. Shah, Fact
Finding: Attempting to Reverse-Engineer Factual Recall on
the Neuron Level, Alignment Forum post, 2023, accessed
© 2025 The Author(s). Published by the Royal Society of Chemistry
April 29, 2025, https://www.alignmentforum.org/posts/
iGuwZTHWb6DFY3sKB/fact-nding-attempting-to-reverse-
engineer-factual-recall.

50 H. Touvron, L. Martin, K. Stone, P. Albert, A. Almahairi,
Y. Babaei, et al., Llama 2: Open foundation and ne-tuned
chat models, arXiv, 2023, preprint, arXiv:2307.09288, DOI:
10.48550/arXiv.2307.09288.
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