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Abstract

Single-step retrosynthesis models are integral to the development of computer-aided

synthesis planning (CASP) tools, leveraging past reaction data to generate new synthetic

pathways. However, it remains unclear how the diversity of reactions within a training

set impacts model performance. Here, we assess how dataset size and diversity, as defined

using automatically extracted reaction templates, affect accuracy and reaction feasibility

of three state-of-the-art architectures – template-based LocalRetro and template-free

MEGAN and RootAligned. We show that increasing the diversity of the training

set (from 1k to 10k templates) significantly increases top-5 round-trip accuracy while

reducing top-10 accuracy, impacting prediction feasibility and recall, respectively. In

contrast, increasing dataset size without increasing template diversity yields minimal

performance gains for LocalRetro and MEGAN, showing that these architectures are

robust even with smaller datasets. Moreover, reaction templates that are less common

in the training dataset have significantly lower top-k accuracy than more common ones,

regardless of the model architecture. Finally, we use an external data source to validate
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the drastic difference between top-k accuracies on seen and unseen templates, showing

that there is limited capability for generalisation to novel disconnections. Our findings

suggest that reaction templates can be used to describe the underlying diversity of

reaction datasets and the scope of trained models, and that the task of single-step

retrosynthesis suffers from a class imbalance problem.

Introduction

Retrosynthesis is a key pillar of organic chemistry, requiring expert chemical knowledge to

develop a sequence of reactions that lead to the synthesis of a target product. As research has

progressed, so too has the space of possible transformations,1,2 yet organic synthesis remains

a bottleneck in drug discovery.3 The pioneering work of Corey and Wipke4 has since spawned

a plethora of computer-aided synthesis planning programs,5–7 in which a multi-step algorithm

recursively calls on a single-step model to generate potential precursors. These single-step

algorithms can be broadly categorised as template-based, where models learn to identify

reaction centres and apply rules from an explicitly pre-defined library,8–11 or template-free,

where models learn reaction patterns implicitly from reaction SMILES12–14 or molecular

graphs.15–17 The latter class of models is unconstrained by reaction templates and is thus

expected to be able to propose novel transformations.12–14,18,19

These methods, as is the case with machine learning algorithms generally,20,21 have

previously been found to be sensitive to imbalanced data, often reinforcing biases rather

than identifying important trends.22–24 This is most clearly evidenced by template-based

models, where retrosynthesis is formulated as a multi-class classification task25 and thus

model performance is heavily affected by the underlying distribution of the reaction templates

in the training data. Within retrosynthesis, this bias manifests as preferential prediction of

specific reaction classes, regioselectivities, or stereoselectivities which are better represented

in the training set.22–24 The widely used open-source USPTO reaction dataset,26 derived

from US patent data, and its subsets have been extensively used for training and model
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comparison,27–29 however, its underlying biases have been often overlooked during model

evaluation.23 Torren-Peraire et al. train and test multiple models on a variety of datasets, but

the lack of a common test set means that results and biases cannot be directly compared.30

Thakkar et al. investigate the impact of template library size on the performance of template-

based models, but do not use template-free models and do not discuss the impacts of bias.31

Thus, it is unclear how training data impacts model predictions, and what future reaction

databases should look like in terms of size and diversity.24,32

Despite many works evaluating and comparing retrosynthesis models, there is little

consensus on the best way to realistically evaluate extrapolation to real world scenarios.30,33

Often models are trained and evaluated on a particular random split of USPTO50k,27 which

is itself a cleaned random subset of the USPTO database,26 however this relatively small

dataset cannot demonstrate how model performance would scale when trained and tested on

much larger and more diverse in-house reaction libraries.30 Recently, Bradshaw et al. have

shown random splits of patent databases yield overly optimistic results, due to the similarity

of reactions within the same patent or published by the same author.34 Instead, they use

patent- and author-based splits to simulate out-of-distribution (OOD) data and measure

generalisation to reactions from unseen patents and authors, respectively. Other studies

instead define generalisation as the ability to predict novel transformations defined by reaction

templates.35–39 However, these studies focus on how well different model architectures can

generalise to new templates, but not how the underlying training data impacts generalisation.

Here, we investigate the effect that dataset size and diversity have on single-step model

performance by training and testing on different subsets of a reaction database. We generate

USPTO-retro, a retrosynthesis-specific dataset derived from USPTO,26 analyse its diversity

through local reaction templates,11 and use it to train and test three established single-step

architectures: LocalRetro11 (template-based), MEGAN17 (graph-based template-free), and

RootAligned14 (SMILES-based template-free). We show that top-k accuracy is correlated

with the popularity of reaction templates in the training set for all models, regardless of
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architecture, suggesting that this metric can serve as a measure of reaction diversity. Finally,

we evaluate performance on external test sets extracted from the Pistachio database40 to

demonstrate a protocol for measuring generalisation to seen and unseen reaction templates

(Figure 1A).

Methods

Data Two databases are used in this work: the USPTO reaction database26 for training and

testing, and the commercial Pistachio reaction database40 as an external test set. We apply

a retrosynthesis preprocessing pipeline to both datasets based on the cleaning procedure of

Gil et al.41 while also removing reagents and uncommon local reaction templates11 with less

than six reactions. The Pistachio database is further filtered to ensure no overlap with the

training data. This pipeline removes reagents and erroneous reactions to ensure data quality

and is applicable to any reaction database. A detailed description of the data cleaning steps

along with the codebase is provided in SI§S1.

This pipeline was applied to the USPTO reaction database26 to generate USPTO-retro,

which includes 1,103,781 atom-mapped reaction SMILES. Reaction templates were extracted

using the LocalTemplate11 algorithm, a modified version of RDChiral,42 generating a total

of 10,028 local reaction templates. This template extraction method was chosen to allow

for direct comparison to the LocalRetro model. Two external test sets were created from

Pistachio: Pistachio ID, containing 10k reactions with in-distribution templates seen in

USPTO-retro, and Pistachio OOD, containing 10k reactions with unseen out-of-distribution

templates.

Splitting The USPTO-retro dataset was split into training, validation, and test sets using

a random 90:5:5 split, consistent with established practice in retrosynthesis studies.26–29 This

is referred to as the full split. To prevent data leakage, all reactions sharing the same product

were assigned to the same subset.
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To investigate the effects of dataset size and diversity, the training set was further split

into 10%, 25%, and 50% subsets using two splitting strategies (Figure 1B):

• Narrow split: This strategy selects a subset of reaction templates and includes all

associated reactions in the training, validation, and test sets, sequentially increasing

template diversity with training dataset size. The validation and test sets are similarly

filtered to contain only templates seen during training. This split aims to measure

how many reaction templates models can learn to predict, and the effect of increasing

template diversity on model performance.

• Broad split: In contrast, this strategy randomly samples a fraction of reactions from

all templates in the full training set while ensuring at least one example of each template

is present. The validation and test sets are not altered. This split is designed to measure

how much data per template is needed to learn these chemical transformations.

Models Three model architectures were evaluated, each representing a distinct class of

retrosynthesis algorithms. (i) LocalRetro,11 a template-based algorithm that learns to choose

the most suitable template from an extracted list of templates; (ii) MEGAN,17 a semi-template

algorithm that formulates retrosynthesis as a sequence of graph edits, and (iii) RootAligned,14

a template-free algorithm that treats retrosynthesis as a sequence-to-sequence translation

task, translating product SMILES strings into reactant SMILES. All models were trained

using their respective repositories and evaluated using the Syntheseus platform,33 which

automatically removes duplicate and invalid predictions.

Evaluation While there are many evaluation metrics available to evaluate the performance

of single-step models,13,33,43 here we employed top-k accuracy and round-trip accuracy, which

respectively measure recall and chemical feasibility.13,33,43

Top-k accuracy measures the proportion of test reactions for which the ground truth

reactants appear among the model’s top-k predictions. In this case, the ground truth is

5
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USPTO USPTO-retro

Preprocessing

Stratified 
splitting by 
template Training Evaluation

Pistachio OOD

Train

Val

Test

ML model
(LocalRetro, MEGAN, 

RootAligned)

Top-k accuracy
Round-trip accuracy

Pistachio

Filter and 
sample by 
template Pistachio ID

10%        10%

Train Val TestSamples  Templates

25%        25%

50%        50%

90%       100%

50%      100%

25%      100%

10%      100%

Full

Broad

Narrow

A) Workflow

B) Stratified splitting

USPTO-retro

Pistachio

Figure 1: A) Workflow of data processing, training, and testing. The USPTO-retro dataset
(blue) was randomly split into training, validation, and test sets, and then further split via
stratified splitting by template. Two external test sets were created from Pistachio: Pistachio
ID (green), containing 10k reactions with templates seen in USPTO-retro, and Pistachio
OOD (red), containing 10k reactions with unseen templates. B) Visualisation of the splitting
strategies used for training and testing. The sizes of the coloured bars indicate the number
of templates sampled, while the opacity represents the proportion of reactions sampled.

the reported reactants from the test set. The top-10 accuracy metric is analysed in all

experiments to mimic the desired breadth of a search tree in a multi-step algorithm.33

Top-k round-trip accuracy evaluates the proportion of top-k predicted reactants that

satisfy back-translation.13 This is done by checking whether they regenerate the original

product via a forward reaction model (here RootAligned trained on the full USPTO-retro

training set) to predict the top-1 product from each set of predicted reactants. If the

predicted product matches the original target, the prediction is considered successful. We
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report top-1 and top-5 round-trip accuracy metrics to estimate the chemical feasibility of

the top predictions.13 It is important to note that the calculation of round-trip accuracy

requires the use of a forward prediction model and is thus not 100% accurate, and should be

interpreted as an approximation rather than an absolute measure of chemical validity.

Results and Discussion

Data analysis

We started our study by analysing the distribution of reaction templates within the newly

generated USPTO-retro dataset, extracted using LocalTemplate.11 Despite USPTO-retro

containing over 1 million atom-mapped reaction SMILES, it shows a significant bias towards

a small percentage of templates. Template frequency is used here to quantify the number

of reactions a template describes in the training set, and, by extension, reaction classes

(Figure 2A). The frequency of a template ranges from 2 to 78,922, with 50% of templates

occurring fewer than 12 times. This bias underscores the inherent nature of open-source

reaction databases, where certain reactions dominate. For example, the top 10 templates

account for just 0.1% of all templates and together describe 30% of the training data.

The most common reaction template, an example of which is shown in Figure 2B,

corresponds to a C-N bond-forming SN2 reaction, which accounts for >78k (8%) of all

reactions in the training set. This template is similar to the next two most popular templates,

which differ only in their leaving groups. Conversely, rarer templates include those with

uncommon leaving groups or highly specific reaction centres. While these reactions are less

common in the dataset, they are not necessarily less effective or harder to apply experimentally.

Therefore, understanding the implications of this template imbalance on model performance

is key for formulating better training and data curation strategies.

7
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N

O

O

H2N

H
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OH
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OH

+

H2N
NH2

HO
N
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H2N

H
N

N

N
+

OH

Br
Br

78,922

100

1,000

Template frequencyA) B)

Figure 2: A) Histogram of templates (blue) and reactions (red) in the training set grouped
by template frequency (on a log scale and with a box width of 0.3). Template frequency refers
to the number of reactions in the training set described by a specific template. B) Example
reactions from the training set with the template highlighted in blue and the template
frequency labelled.

Impact of template distribution on model performance

To evaluate the impact of template distribution on model performance, we employed two

splitting strategies to further partition the training set beyond the initial random split: the

narrow and broad split. Both strategies sequentially increase the size of the training data,

but differ in the diversity and distributions of their templates. The narrow split increases

the number of unique reaction templates in the training set as its size grows, allowing us

to isolate the effect of increasing template diversity. In contrast, the broad split maintains

template diversity while increasing the number of training examples, allowing us to assess

the effect of increasing data volume per template. We analyse the resulting performances

from these two strategies in the following subsections.

Narrow split

The narrow split is designed to evaluate how increasingly template-diverse datasets affect

model performance. As expected,25,31 models trained on less diverse datasets achieve higher

top-k accuracy, as they have fewer competing reactions to choose from (Figure 3A). Increasing
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the number of templates from 1k to 10k results in a decrease in top-10 accuracy of 11.6% for

LocalRetro, 14.5% for MEGAN, and 10.4% for RootAligned.

This decrease in top-k accuracy does not imply lower reaction feasibility; rather, it

indicates the model’s increased vocabulary of reactivity as a broader set of plausible reactions

is suggested. Round-trip accuracy is used here to estimate the feasibility of the predicted

reactions.13 The top-1 round-trip accuracy remains roughly consistent across all splits and

models, with over 89% of top predictions likely to be feasible reactions. In contrast, the top-5

round-trip accuracy increases by 14-21% across all models as template diversity increases,

suggesting that lower-ranked predictions become more feasible when the model is exposed to

more reaction types.

This behaviour differs from previous studies wherein top-k accuracy improves with

additional randomly split training data.25,44 In our case, increasing both the volume and

diversity of training data leads to a decrease in top-k accuracy. This highlights the importance

of explicitly reporting and accounting for reaction template diversity when comparing model

performance across datasets with varying levels of diversity.

Broad split

The broad split aims to model the effect of increasing training set size while maintaining

reaction diversity by using all available templates. Our results show that performance slightly

improves for LocalRetro and MEGAN, with top-10 accuracy increasing by 3.5% for LocalRetro

and 1.8% for MEGAN with a ninefold increase in training set size (Figure 3B). These results

suggest that, with sufficient reaction diversity, these models are robust against variations in

the size of the training set.

In contrast, the RootAligned model exhibits a substantial decrease in performance across

the broad split. Its top-10 accuracy degrades by 15.7% between the 10% to 50% training sets,

but recovers to 85.0% with the full training set. The consistent performances of LocalRetro

and MEGAN indicate that the variations observed for RootAligned arise from the underlying

9
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transformer architecture rather than the size or nature of these training sets. This template-

free approach attempts to implicitly learn chemistry directly from SMILES strings, whereas

the template-based and semi-template methods provide a more structured way of learning

reactions through predefined templates and graph edits. Consequently, the learning process of

the RootAligned model may require more examples of the same reactions to fully utilise this

chemistry. Models may also be more easily overfit on the smaller training datasets, leading

to memorisation and pattern matching, which cannot generalise to the test set. Further

investigation is needed to determine if this behaviour occurs with other template-free models.

A)

B)

Narrow
split

Broad
split

Top-10 accuracy Top-1 round-trip accuracy Top-5 round-trip accuracy

Figure 3: Top-10 accuracy (left), top-1 round-trip accuracy (middle) and top-5 round-trip
accuracy (right) of models trained on the (A) narrow (increasing template diversity) and (B)
broad splits (increasing data volume).
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Narrow
split

Broad
split

LocalRetro MEGAN RootAligned

Figure 4: Top-10 accuracy of all trained models, as grouped by template frequency in the
training set. The template frequency measures the number of times a particular template
appears in the training set.

Accuracy by template

Next, we investigated how template frequency bias in the training data affects model per-

formance, focusing on top-10 accuracy across reaction templates (Figure 4). A clear trend

emerges: templates that appear more frequently in the training set are predicted with signifi-

cantly higher accuracy. The difference in top-10 accuracy between rare templates (frequency

of 1-10) and popular templates (frequency of 10,001+) is at most 88.6% for LocalRetro, 83.5%

for MEGAN, and 55.4% for RootAligned. A similar, though weaker, correlation is observed

when considering Tanimoto similarities between the training and test sets (Figure S4). These

trends persist even in models that do not explicitly use reaction templates, such as MEGAN

and RootAligned, implying that template frequency reflects the underlying class distribution

of reaction data.

In both the narrow and broad splits, increasing the training set size amplifies the spread

of top-k accuracies across template frequencies. For the most frequent templates (with
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frequency > 10,001), LocalRetro and MEGAN consistently achieve top-10 accuracy above

95%, regardless of training set sizes. In contrast, rare templates (with frequency 1-10) show

a marked drop in accuracy as training set size increases: top-10 accuracy decreases between

the narrow 10% and full 90% training sets by 53.9% for LocalRetro, 33.8% for MEGAN, and

22.1% for RootAligned. This behaviour is most pronounced for LocalRetro, which explicitly

considers reaction templates and thus learns to prioritise more frequent classes during training.

RootAligned, which implicitly encodes chemistry through SMILES strings, is less sensitive to

these class imbalances. These results suggest that increasing both the number and imbalance

of reaction templates contributes to performance disparities. To mitigate this, further work

is needed to incorporate class balancing strategies during model training.

While the top-k accuracy measures how often a reaction template is correctly predicted,

it does not describe how often that type of template is recalled. Thus, it is also important to

understand if the models are oversampling from popular reaction classes as a way of mimicking

the training set distribution. This behaviour is most easily studied in the LocalRetro model,

as its algorithm readily outputs a ranked list of predicted templates. In all splits, the model

oversamples the most popular template classes for its highest ranked prediction (Figure 5A).

Rarer templates are undersampled compared to the true test distribution, which contributes

to their low top-10 accuracy. These rarer templates are instead sampled more often at lower

ranks as the model is less confident in their prediction (Figure 5B).

Generalisation to novel reactions

Generalisability in single-step retrosynthesis refers to a model’s predictive capability for novel

reactions. This can be assessed in multiple ways, for example, considering the prediction of

previously unseen target products using known reaction templates or the prediction of novel

disconnections not encountered during training. To systematically evaluate both aspects, we

split our external test set from the Pistachio database into Pistachio ID (In-Distribution),

which contains novel products with seen templates, and Pistachio OOD (Out-Of-Distribution),
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#k predictions

A)

B)

Figure 5: (A) Kernel density estimations (KDEs) of the training template frequency of the
top prediction from LocalRetro (red) and ground truth (yellow). (B) The KDE distributions
of the training template frequency of the #1, #5, #10, #20, and #50 predictions from the
LocalRetro model trained on the full training set.

which contains novel products with unseen templates (Figure 6A). We use the broad split to

evaluate generalisation to novel products (ID) and the narrow split to evaluate generalisation

to novel disconnections (OOD).

On the Pistachio ID test set (Figure 6B), all models exhibit a moderate decline in top-10

accuracies when compared to their performance on the USPTO-retro test set (Section 3.3):

7-9% for LocalRetro, 6% for MEGAN, and 5-12% for RootAligned. This indicates that

models successfully generalise to novel products using templates learnt during training, with

similar performance trends to previous results. The slightly reduced performance on this test

set is likely due to the lower structural similarity between Pistachio ID products and those in

the USPTO-retro training sets (Figure S5).
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B) Pistachio ID C) Pistachio OODA) Test set selection

USPTO-retro
Pistachio

ID
OOD

Figure 6: A) Diagrammatic representation of the overlap of templates between the USPTO-
retro and Pistachio datasets. The Pistachio ID test set is selected from in-distribution
templates (the intersection area shown in green), whereas the Pistachio OOD test set is
selected from out-of-distribution templates (the exclusive area shown in red). B) Top-10
accuracy of all models trained on the broad split and tested on the Pistachio ID test set. C)
Top-10 accuracy of all models trained on the narrow split and tested on the Pistachio OOD
test set.

In contrast, performance on the Pistachio OOD test set (Figure 6C) reveals severe

limitations in generalisability to novel disconnections, in agreement with previous findings.35–38

LocalRetro exhibits near-zero top-10 accuracy, which is expected given its reliance on

predefined templates. The non-zero accuracy suggests template ambiguity, where different

templates from the training and OOD test sets occasionally yield the same sets of reactants.

This occurs due to overlapping SMARTS patterns or errors in atom mapping. MEGAN and

RootAligned models show modest generalisability, which increases with increased training

diversity and peaks at top-10 accuracies of 1% and 2% respectively with the full training

sets. Their low but non-zero accuracy implies that models prioritise recognising and applying

patterns seen in the training data over utilising underlying chemical principles to generate

novel, feasible disconnections.

These results highlight the differences in capabilities between ID and OOD generalisation,

emphasising the need for distinct evaluations that distinguish between these two scenarios.

Previous studies showing the traditional learning pattern of increasing top-k accuracy with

increasing training data volume25,44 may, in fact, be misattributing the effect of additional
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template coverage of the test set to additional data. This explanation may also apply to

studies showing low generalisability to external datasets33 or author-/patent-based splits,34

wherein their test sets possibly contain both seen and unseen templates. Furthermore, the

extremely low generalisability of template-free models to novel templates suggests that these

models are not yet sufficiently developed to warrant their use for predicting new chemistries.

Conclusion and future work

In this study, we presented a comprehensive assessment of the accuracy and feasibility of three

established single-step retrosynthesis models – template-based LocalRetro and template-free

MEGAN and RootAligned – exploring how dataset size and diversity, defined in terms of

local reaction templates, affect performance.

Our results have highlighted the critical role of training set diversity in model performance.

Increasing the diversity of the training set significantly increases top-5 round-trip accuracy, an

indicator of prediction feasibility, while reducing top-10 accuracy, reflecting the ability of the

model to recover the ground truth. This trade-off suggests that more diverse datasets enable

the prediction of a broader range of plausible reactions, even if they differ from the ground

truth. Interestingly, increasing dataset size without increasing template diversity yields

minimal performance gains for LocalRetro and MEGAN models, suggesting that template

diversity has a greater impact on model performance than volume.

We also examined the impact of template frequency on model performance. All three

models, regardless of whether they explicitly use templates, show a strong correlation between

a template’s frequency in the training set and the model’s ability to predict it correctly. This

indicates that all models implicitly rely on the distribution of reaction templates learnt during

training, with rare templates consistently underperforming compared to more frequent ones.

Finally, to assess real-world applicability, we evaluated model performance on two external

test sets derived from the Pistachio database: one containing novel products with known
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templates (Pistachio in-distribution (ID)) and another with novel products and unseen

templates (Pistachio out-of-distribution (OOD)). While all models generalised reasonably

well to new molecules involving known templates, their ability to predict novel disconnections

was limited. These results highlight the differences in capabilities between ID and OOD

generalisation. LocalRetro failed almost entirely on OOD reactions due to its reliance on

predefined templates, while MEGAN and RootAligned achieved only 1–2% top-10 accuracy.

These results highlight the need for evaluation protocols that clearly distinguish between in-

and out-of-distribution generalisation.

These results also offer a new perspective on recent advances in transfer learning for

retrosynthesis prediction, wherein fine-tuning effectively modifies the training template

distribution. For instance, our reported mixed fine-tuning approach to bias predictions

towards heterocyclic ring disconnections can be viewed as addressing the underlying class

imbalance issues present in the initial training set.45 Our results suggest that similar systematic

approaches to class imbalance during training could improve representation across reaction

classes. Similar challenges have been addressed in other domains, such as computer vision,

through pre-training, data augmentation, and re-weighting strategies,46 and could be applied

to retrosynthesis through the selective augmentation of rare templates or lower weighting of

popular templates during the training process.

The performance trends across the narrow and broad splits raise questions about what

data should be used to train retrosynthesis models. Ideally, models would learn underlying

physical principles to propose feasible reactions; however, evaluation shows that they are more

likely to learn to mimic the template distribution of the training set. Further cheminformatic

analysis is needed to characterise the biases of common reaction datasets and identify areas

for improvement. Furthermore, models do not necessarily exhibit worse accuracy when

trained on less data; therefore, data curation efforts should prioritise quality and diversity

over quantity. As such, it is clear that as chemists we cannot blindly train models with all

available data and not consider the types of chemistry that data represents, and whether

16

Page 16 of 25Digital Discovery

D
ig

ita
lD

is
co

ve
ry

A
cc

ep
te

d
M

an
us

cr
ip

t

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

9 
D

ec
em

be
r 

20
25

. D
ow

nl
oa

de
d 

on
 1

/1
9/

20
26

 1
:4

7:
56

 A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
DOI: 10.1039/D5DD00358J

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5dd00358j


that chemistry suits our synthetic goals and targets.

Availability of data and materials

Preprocessing: The open-source code used to split the training data is provided at

https://github.com/duartegroup/template-splits (DOI: 10.5281/zenodo.17858529), which

also contains a link to download the raw USPTO dataset. The final train, validation, and

test splits are provided on FigShare (DOI: 10.6084/m9.figshare.30823988). The proprietary

Pistachio dataset (licensed by NextMove Software) is not provided.

Training: The open-source packages used to train the machine learning models (using the

configuration files provided at https://github.com/duartegroup/template-splits/tree/main/configs)

can be found at:

• LocalRetro: https://github.com/kaist-amsg/LocalRetro (since removed by the authors)

• MEGAN: https://github.com/molecule-one/megan

• RootAligned: https://github.com/otori-bird/retrosynthesis

Testing: The open-source syntheseus package used to analyse the trained models can be

found at https://github.com/microsoft/syntheseus/tree/main.
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Data Availability Statement: 

Preprocessing: The open-source code used to split the training data is provided at 
https://github.com/duartegroup/template-splits (DOI: 10.5281/zenodo.17858529), which 
also contains a link to download the raw USPTO dataset. The final train, validation, and test 
splits are provided on FigShare (DOI: 10.6084/m9.figshare.30823988). The proprietary 
Pistachio dataset (licensed by NextMove Software) is not provided.

Training: The open-source packages used to train the machine learning models (using the 
configuration files provided at https://github.com/duartegroup/template-
splits/tree/main/configs) can be found at:

• LocalRetro: https://github.com/kaist-amsg/LocalRetro (since removed by the 
authors)

• MEGAN: https://github.com/molecule-one/megan 
• RootAligned: https://github.com/otori-bird/retrosynthesis

Testing: The open-source syntheseus package used to analyse the trained models can be 
found at https://github.com/microsoft/syntheseus/tree/main.
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