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The rapid advancement of machine learning in computational chemistry has opened new doors
for designing molecules, predicting molecular properties, and discovering novel materials. How-
ever, building scalable and robust models for molecular machine learning remains a significant
challenge due to the vast size and complexity of chemical space. Recent advances in chemical
foundation models hold considerable promise for addressing these challenges, but such models
remain difficult to train and are often fully or partially proprietary. For this reason, we introduce
ChemBERTa-3, an open source training and benchmarking framework designed to train and fine-
tune large-scale chemical foundation models. ChemBERTa-3 provides: (i) unified, reproducible
infrastructure for model pretraining and fine-tuning, (ii) systematic benchmarking tooling to evalu-
ate proposed chemical foundation model architectures on tasks from the MoleculeNet suite, and
(iii) fully open release of model weights, training configurations, and deployment workflows. Our
experiments demonstrate that although both graph-based and transformer-based architectures
perform well at small scale, transformer-based models are considerably easier to scale. We also
discuss how to overcome the numerous challenges that arise when attempting to reproducibly
construct large chemical foundation models, ranging from subtle benchmarking issues to training
instabilities. We test ChemBERTa-3 infrastructure in both an AWS-based Ray deployment and
in an on-premise high-performance computing cluster to verify the reproducibility of the frame-
work and results. We anticipate that ChemBERTa-3 will serve as a foundational building block for
next-generation chemical foundation models and for the broader project of creating open source
LLMs for scientific applications. In support of reproducible and extensible science, we have open
sourced all ChemBERTa3 models and our Ray cluster configurations.

1 Introduction
Drug discovery is a complex and time-intensive process that in-
volves identifying potential therapeutic compounds and evaluat-
ing their biological efficacy. Molecular property prediction models
have had a significant impact in the drug discovery process, since
predicted properties are central to evaluating, selecting, and gen-
erating candidate molecules1. In recent years, deep learning has
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been widely used for molecular property prediction. A range of
architectures including graph neural networks and transformer-
based architectures, alongside methodologies such as pretrain-
ing, contrastive learning, multi-task learning, and transfer learn-
ing, have all been used to enhance predictive accuracy and gen-
eralization2 1. Large pre-trained transformer architectures, also
known as chemical foundation models, have risen to particular
prominence in recent years due to their potential to learn basic
chemistry directly from large unlabeled compound databases3–9.

Despite rapid progress in the development of chemical founda-
tion models, there has been little systematic comparison of how
different pretraining methodologies perform across diverse model
architectures. Most existing studies focus on individual model
classes, offering only a limited perspective on their strengths. This
results in a narrow or incomplete understanding of how different
models perform and compare across various contexts. One con-
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tributing factor to this lack of benchmarking is the substantial
infrastructure required to pretrain and evaluate chemical foun-
dation models at scale. Even with the availability of large-scale
chemical datasets10, the process of pre-training these models re-
mains computationally intensive, and requires both scalable hard-
ware and software infrastructure. These challenges have made
large-scale reproducible benchmarking difficult.

In previous work, we introduced and open-sourced Chem-
BERTa 3 and ChemBERTa-24, BERT-like transformer models de-
signed to learn molecular fingerprints through semi-supervised
pretraining. ChemBERTa was trained on a dataset of 10 mil-
lion compounds, leveraging masked-language modeling (MLM)
to extract meaningful molecular representations11. ChemBERTa-
2 further explored the scaling hypothesis—that pretraining on
larger datasets enhances downstream performance—by employ-
ing both MLM and multi-task regression (MTR) over a signifi-
cantly larger corpus of 77 million SMILES strings. The associ-
ated pretrained models were open sourced and have been widely
used12,13 (with over 700 citations for ChemBERTa and 200 ci-
tations for ChemBERTa-2 at time of writing). In past work, we
have also introduced MoleculeNet14, a widely used benchmark-
ing framework for molecular property prediction (cited over three
thousand times at time of writing). All these works (Chem-
BERTa, ChemBERTa-2, and MoleculeNet) have been released as
part of the open source DeepChem ecosystem15 which has built a
broadly used open-source framework (over six thousand stars on
Github) for drug discovery, materials science, and biology.

Recent work, such as MegaMolBART6 and Chemformer7, has
introduced transformer-based models trained on significantly
more data than ChemBERTa and ChemBERTa-2 for molecular
property prediction. However, in some cases, models have not
been fully open sourced and remain hard to use and reproduce.
For example, while MoLFormer5 has demonstrated strong perfor-
mance and conducted extensive benchmarking, the largest state-
of-art MoLFormer models have not been open sourced. Further-
more, benchmarking was not performed in a unified fashion:
comparisons between MoLFormer and other models relied pri-
marily on results reported from prior studies and employed a
differing dataset splitting strategy from past studies, making re-
ported comparisons not fully accurate (as we will discuss in more
detail later in this work).

To address these limitations, we introduce the ChemBERTa-
3 framework, an open source extensible platform for training
and benchmarking chemical foundation models. ChemBERTa-3
is fully integrated into the DeepChem library and ecosystem and
is able to leverage the extensive collection of models and bench-
marking infrastructure available in DeepChem15. To scale data-
parallel training to multiple GPUs, ChemBERTa-3 leverages Ray’s
distributed training infrastructure16 and provides tooling specif-
ically designed for efficient pretraining and fine-tuning of large-
scale chemical foundation models. This integration supports both
transformer-based and graph-based pretraining, allowing users
to seamlessly pretrain and fine-tune models within DeepChem’s
modular ecosystem. We also introduce benchmarking guidelines
and scripts to benchmark proposed chemical foundation model
architecture using datasets from the MoleculeNet suite14.

As our first core contribution, we leverage the ChemBERTa-3
framework to compare and contrast several model architectures
and their associated pretraining methods by systematically bench-
marking. In particular we investigate how transformer-based
methods compare to graph-based methods. Our experiments indi-
cate that while graph-based models and pretraining methodolo-
gies perform comparably to transformer-based models at small
scale, transformer-based approaches are considerably easier to
scale to large datasets. Our results suggest that further invest-
ment in scaling graph-based pretraining infrastructure may be
worthwhile.

As our second core contribution, we use ChemBERTa-3 infras-
tructure to train fully open-source MoLFormer architecture mod-
els on the Zinc20 dataset. We find that reproducing reported
past MoLFormer results is highly challenging due to several sub-
tleties in both benchmarking and model training. In particular, we
find that MoLFormer’s scaffold splitting algorithm is not equiva-
lent to the MoleculeNet/DeepChem scaffold splitting algorithm,
making earlier reported comparisons between MoLFormer and
ChemBERTa/ChemBERTa-2 models inaccurate. To prevent such
issues from arising in future work, ChemBERTa-3 proposes a stan-
dard benchmarking process for chemical foundation models using
the MoleculeNet suite, ensuring consistent evaluation protocols
and enabling more reliable comparisons across different model
architectures. This benchmarking infrastructure is easily extensi-
ble to new datasets, ensuring that the methodology can remain
relevant over time.

To test reproducibility, we train two separate large MoLFormer
models on Zinc20, using both an AWS-based Ray deployment
and on-premise high-performance computing infrastructure. We
find that both models are directly comparable, and demonstrate
that ChemBERTa-3 infrastructure can be meaningfully deployed
in very different computing contexts. In service of open science,
we open source the AWS-trained models (along with other small
models). We also open source all training code and configurations
used for these experiments.

Finally, our last core contribution in this work is a series of im-
provements and extensions to the open source DeepChem library
and ecosystem to facilitate foundation model development. We
introduce a new class into DeepChem, ModularTorchModel, that
streamlines the process of pretraining and fine-tuning models. We
also integrate several new model architectures into DeepChem
(discussed in section 3.2), along with support for training trans-
former models from the HuggingFace library. These updates
make DeepChem significantly more useful for foundation model
research. The released ChemBERTa-3 training and benchmarking
framework is powered by these underlying improvements to the
DeepChem library and ecosystem.

We anticipate that ChemBERTa-3 will provide foundational in-
frastructure for designing and training next-generation chemical
foundation models by facilitating both pre-training and bench-
marking of new large chemical foundation models. We also an-
ticipate that the lessons shared here, alongside the open-source
infrastructure, will serve as a basis for facilitating the construc-
tion of both scientific foundation models in other domains17,18

and for the construction of open source LLMs for scientific work.
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2 Related Work
The field of drug discovery has witnessed significant advance-
ments through the application of machine learning techniques19.
Traditional approaches often relied on handcrafted features and
shallow learning models, which limited their ability to capture
complex relationships within molecular data. The advent of deep
learning has transformed this landscape, enabling the develop-
ment of more sophisticated models that leverage large datasets
to learn sophisticated representations of the structure of chemical
space. A broad range of different approaches have been proposed
in recent years for molecular property prediction:

Graph-based architectures. Graph Neural Networks learn di-
rectly from molecular graphs (atoms as nodes, bonds as edges)
and naturally capture structural features of compounds. Mes-
sage Passing Neural Networks (MPNNs)20 are a variant of graph
convolutional networks that propagate messages between neigh-
boring atoms across molecular graphs to construct informative
graph representations. Directed MPNN (D-MPNN)21, a variant
of MPNN popularized by the Chemprop library, differs primarily
by associating messages with directed bonds rather than atoms,
thereby preventing redundant cyclic message paths (totters) and
leading to less noisy, more informative molecular embeddings.

Researchers have explored several unsupervised pre-training
methods for GNNs to improve generalization further, enabling
these models to learn from unlabeled data before fine-tuning on
labeled samples. Infograph 22 maximizes the mutual informa-
tion between the graph-level representation and the representa-
tions of substructures of different scales. Infomax3D 23 improves
GNNs for molecular property prediction by leveraging 3D molec-
ular data during pre-training. It maximizes the mutual informa-
tion (MI) between learned 3D representations and 2D molecular
graphs, enabling GNNs to infer implicit 3D geometric information
from 2D data.

Transformer architectures. While transformers are designed
for efficient processing of large-scale NLP corpora, they also prove
highly effective in capturing intricate structural and semantic pat-
terns from large, unlabeled molecular datasets. Our preceding
work introduced ChemBERTa 3 and ChemBERTa-24 based on the
RoBERTa24 transformer implementation in HuggingFace. Chem-
former7 is based on BART25 architecture. However, these models
were trained on relatively smaller datasets. Larger models like
MegaMolBART from NVIDIA trained on approximately 1.45 Bil-
lion molecules, and MoLFormer 5, trained on 1.1 Billion chem-
icals26, have recently become popular. While MoLFormer has
shown promising results, only a model version pre-trained on a
smaller dataset of 100M molecules has been open sourced. This
dataset combines 10% of Zinc and 10% of PubChem molecules
used for MoLFormer-XL training, the best model of the MoL-
Former suite. (This full model remains close sourced.)

Graph transformer architectures. GROVER 27 leverages self-
supervised learning at the node, edge, and graph levels to cap-
ture structural and semantic information from unlabeled molecu-
lar data. Instead of predicting node or edge types in isolation, it
masks local subgraphs and infers contextual properties, reducing
ambiguity. GROVER integrates Message Passing Networks within

a Transformer-style architecture to encode this complex informa-
tion effectively.

Efforts to combine GNNs and transformers aim to provide
a comprehensive molecular representation, capturing both the
molecular structure and the interactions and characteristics of in-
dividual atoms28.

Pretraining methodologies. In transformer-based models, the
masked language modeling (MLM) pretraining task, commonly
used for BERT-style architectures, is used to predict masked to-
kens in SMILES sequences 11. MLM masks 15% of the tokens
in each input string and trains the model to correctly identify
them. Multitask regression (MTR) pretraining is used to learn to
predict multiple molecular properties simultaneously. For graph
neural networks, learning to predict masked atom types or bond
connections enables the GNN to capture structural patterns in a
molecule’s topology, much like MLM does for sequences29. Mu-
tual information maximization (e.g., InfoGraph and Infomax3D)
aligns local substructure embeddings with global molecular em-
beddings, often leveraging 2D or 3D data to enrich the learned
representation without explicit labels 22.

Benchmarking frameworks. Evaluating different models
and pre-training methodologies requires robust and standardized
benchmarks to ensure meaningful comparisons and reproducibil-
ity. The MoleculeNet14 benchmark suite is a widely used col-
lection of datasets for this purpose, aggregating data on proper-
ties like solubility, toxicity, and bioactivity from multiple public
sources. While MoleculeNet has drawn criticism for data curation
issues30, it provides considerable ease-of-use and standardized
reproducible protocols which make it a powerful tool for directly
comparing different models and pretraining methodologies. De-
spite the variety of available models and pretraining methodolo-
gies, it remains unclear which approach is most effective across
different model architectures. Recognizing this gap, our work
evaluates multiple architectures and pretraining methodologies
on MoleculeNet benchmarks.

Beyond MoleculeNet, several modeling and benchmarking
frameworks have pushed the field forward. Chemprop31

demonstrated the practical effectiveness of directed message-
passing networks through an accessible platform supporting
small-molecule property prediction with uncertainty estimation.
Broader machine-learning ecosystems such as PyTDC32 and
TorchDrug33 have further expanded benchmarking infrastructure
by integrating multimodal biological data, geometric deep learn-
ing, generative models, and standardized evaluation pipelines.
Despite these advances, recent large-scale studies have raised
concerns about benchmarking rigor. For example, the compre-
hensive evaluations of pretrained molecular embedding mod-
els report minimal gains over classical fingerprints under con-
trolled statistical testing34, and ecotoxicology benchmarks show
strong in-distribution performance but substantial drops when
models are applied to new host species or unseen chemicals35.
These findings reinforce the need for standardized, architecture-
agnostic, and reproducible evaluation frameworks. ChemBERTa-
3 is designed to address this need by providing a unified and ex-
tensible benchmarking suite capable of systematically comparing
graph, transformer, and hybrid chemical foundation models un-

1–25 | 3

Page 3 of 26 Digital Discovery

D
ig

ita
lD

is
co

ve
ry

A
cc

ep
te

d
M

an
us

cr
ip

t

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

9 
Ja

nu
ar

y 
20

26
. D

ow
nl

oa
de

d 
on

 1
/2

0/
20

26
 1

0:
36

:2
4 

PM
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d 

L
ic

en
ce

.
View Article Online

DOI: 10.1039/D5DD00348B

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5dd00348b


der consistent protocols.

3 Methods
3.1 Base Framework: DeepChem
DeepChem15 is an open source Python library for machine learn-
ing and deep learning on molecular, biological and quantum
datasets. It is built on top of PyTorch36, and other popular
ML frameworks such as Scikit-learn37 and XGBoost38. It offers
tools to streamline model development, training, and evaluation.
DeepChem simplifies the application, benchmarking, and deploy-
ment of machine learning models by providing easy-to-use model
export and deployment APIs, making it easier to use ML in both
research and production environments. In addition to its core
functionality, DeepChem has been extended and integrated into
multiple larger frameworks, such as the ATOM Modeling Pipeline
(AMPL)39, which combines a diverse array of ML and molecular
featurization tools for drug discovery.

DeepChem was expanded with a suite of new infrastructure
to support the ChemBERTa-3 framework (Fig. 1 (a)). Cen-
tral to these contributions is the ModularTorchModel, which en-
ables flexible pretraining, and fine-tuning of graph-based archi-
tectures with support for intermediate-loss computation. A Hug-
gingFace DeepChem Wrapper was added to seamlessly integrate
models and tokenizers from the transformers ecosystem, while
new featurizers such as the RDKitConformerFeaturizer and Grover-
Featurizer introduced support for 3D conformers and GROVER’s
functional-group-aware graph representations. Multiple mod-
els were implemented using ModularTorchModel and HuggingFace
DeepChem Wrapper including ChemBERTa, InfoGraph, GROVER,
InfoMax3DModular, MoLFormer (Fig. 1 (b)), and DMPNN. Addi-
tional details can be found in Appendix 11.1.

3.2 The ChemBERTa-3 Framework
The ChemBERTa-3 infrastructure is designed as a scalable and ex-
tensible framework integrated within the open source DeepChem
ecosystem. It allows efficient pretraining and fine-tuning of
large-scale chemical foundation models, leveraging DeepChem’s
extensive molecular machine learning utilities. To effectively
handle large datasets and distributed training, we connected
ChemBERTa-3 with Ray, an open source framework designed to
simplify scaling AI and Python applications, particularly in ma-
chine learning16. Ray provides a compute layer for parallel pro-
cessing, enabling users to run distributed tasks. The ChemBERTa-
3 Ray infrastructure is illustrated in Fig. 2.

As part of this integration, we built a pipeline where Ray-
Dataset is implemented as a subclass of the DeepChem Dataset
superclass, by combining Ray’s ray.data.Dataset with DeepChem’s
data handling utilities. This allows datasets to be modified using
DeepChem featurizers, stored efficiently as NPZ files using _RayD-
cDatasink, and iterated over using iterbatches() for training. This
approach enables scalable data handling while maintaining com-
patibility with DeepChem’s modeling APIs.

The distributed data parallel (DDP) strategy is employed to effi-
ciently scale the LLM pretraining on multiple GPUs and machines.
It synchronizes gradients and model parameters, ensuring that all

processes remain in sync. Each process maintains its copy of the
model and performs forward and backward passes independently.
During backpropagation, DDP registers an ‘autograd hook’ that
triggers gradient synchronization, ensuring consistency across all
replicas before updating the model. This setup ensures efficient
resource utilization and enhances scalability, making it easier to
explore and optimize new molecules, materials, and designs.

The ChemBERTa-3 platform provides a unified benchmarking
framework for evaluating various models, including MoLFormer,
ChemBERTa, Infograph, Infomax3D, GROVER, DMPNN, Random
Forest (RF), and Graph Convolutional Networks (GCN). It stan-
dardizes scaffold split analysis, model training, and evaluation,
ensuring fair comparisons and reproducible results. By integrat-
ing diverse architectures within a consistent pipeline, our plat-
form facilitates rigorous benchmarking, enabling researchers to
assess model performance comprehensively and develop more ef-
fective molecular modeling approaches.

4 Datasets
4.1 Pre-training Dataset
ZINC2040 is a chemical library containing 1.4 billion compounds,
1.3 billion of which are purchasable, sourced from 310 catalogs
from 150 companies, specifically designed for virtual screening.

In our work, the model performance is benchmarked across
ZINC data sets of varying sizes to understand the impact of the
scale of the data on model accuracy and generalization. Addi-
tionally, MoLFormer-c3-550M and MoLFormer-c3-1.1B are pre-
trained on a combination of (50% ZINC20 + 50% Pubchem) and
(100% ZINC20 + 100% Pubchem) datasets, respectively. This
evaluation highlights the importance of training on large-scale
datasets, which tend to improve model performance on down-
stream tasks, but also provides insights into the diminishing re-
turns of adding more data at certain points.

4.2 Fine-tuning Datasets
The pre-trained models are fine-tuned on various regression and
classification tasks from MoleculeNet14, chosen to cover medic-
inal chemistry applications, including brain penetrability, toxic-
ity, solubility, and on-target inhibition. The datasets used in-
clude BACE, Clearance, Delaney, Lipophilicity, BBBP, ClinTox,
HIV, Tox21, and Sider.

4.2.1 DeepChem scaffold splits.

DeepChem’s implementation of ScaffoldSplitter follows the
Bemis-Murcko scaffold-based approach to split molecular
datasets41. It groups molecules based on their core scaffold
structures, ensuring structurally similar compounds remain to-
gether. The splitter prioritizes placing larger scaffold groups into
the training set before allocating smaller ones to validation and
test sets, promoting a more realistic evaluation of model general-
ization. For benchmarking using DeepChem splits, each dataset
was split into 80/10/10 train/validation/test sets using the scaf-
fold splitter. Table 3 compares the performance of models on the
classification dataset splits using DeepChem scaffold splitter.
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(a) (b)

Fig. 1 (a) ChemBERTa-3 Overview and (b) MolFormer model architecture used for open-sourced c3-MoLFormer models.

Fig. 2 This figure illustrates the ChemBERTa-3 architecture deployed
on Prithvi. The framework utilizes S3 storage service for data access
and submits jobs to a Ray Cluster, managed by the Ray Cluster Nodes
Controller. The cluster consists of multiple Ray Worker Nodes, each sub-
dividing tasks into Ray Sub Workers for efficient parallel processing. This
design leverages Ray’s distributed computing capabilities to enable scal-
able training and evaluation of ChemBERTa-3 models.

4.2.2 MoLFormer scaffold splits.

To ensure consistency in evaluating our benchmarking plat-
form with MoLFormer, we used the same scaffold splits from
the MolFormer manuscript to benchmark models trained using
ChemBERTa-3 architecture. Table 1 compares the performance of
models on the classification and regression dataset splits provided
by MoLFormer. As we discuss in the discussion section, MoL-
Former’s scaffold splitting algorithm appears to differ significantly
from DeepChem’s (The MoLFormer team has open source the
splits but not the splitting algorithm for their benchmark datasets
so we cannot confirm this directly.)

5 Experiments
5.1 Pretraining data collection
For the pretraining experiments, GCN, RF, and DMPNN were
trained on only the fine-tuning splits for baseline comparisons.
InfoGraph, InfoMax3D, and GROVER were pre-trained on only a
250K ZINC dataset and fine-tuned. ChemBERTa and MolFormer
models were pre-trained on progressively larger datasets and
then finetuned on the finetuning splits. ChemBERTa-10M and
ChemBERTa-100M were pretrained on 10M and 100M molecules
from ZINC2040, respectively. MolFormer-550M was pretrained
on 500M ZINC molecules + 50M PubChem molecules, and
MolFormer-1.1B used 1B ZINC molecules + 100M PubChem
molecules before fine-tuning. Graph convolutional models were
not pretrained on larger datasets due to the relative difficulty of
scaling graph-based pretraining. Our results indicate below that
transformer-based pretraining is broadly comparable to graph-
based pretraining at small scales, but it remains for future-work
to test graph-based pretraining at larger scales.

5.2 Training MoLFormer on the 1.1B dataset on AWS
We utilized 40 T4 GPUs from AWS, which were spot instances
chosen to reduce costs. However, these instances are susceptible
to preemption, leading to occasional interruptions and necessi-
tating multiple restarts. Each restart involved resuming from the
latest checkpoint. Since synchronous training was used, all GPUs
needed to resynchronize, further increasing costs in both time
and money. To address these challenges, we are exploring the
implementation of asynchronous training when restarting from
checkpoints. Pre-training the model took approximately 10 days
on 40 T4 GPUs.

5.3 Experiment Design
We fine-tuned several models including purely supervised base-
lines, graph-based pre-trained models, and transformer-based
pre-trained models on several datasets from MoleculeNet.
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For graph-based pretraining, we chose to benchmark GROVER,
InfoGraph, and InfoMax3D models. We chose GROVER as it
bridges a gap between transformer models and graph models.
We chose InfoGraph, to test its mutual-information based pre-
training methodology, and InfoMax3D, an extension of InfoGraph
captures 3D molecular information, to test the importance of spa-
tial dependencies and conformational variations in pretraining.
For transformer-based pretraining, we trained ChemBERTa and
MoLFormer models using the Chemberta-3 harness, leveraging
Ray during pre-training.

5.4 Hyperparameter Optimization.
We fine-tuned the models for up to 500 epochs with early stop-
ping based on validation loss, exploring train-time hyperparame-
ters like learning rate and batch size. For regression tasks, labels
were normalized to zero mean and unit standard deviation.

The MoLformer(1.1B)5 results are directly taken from the
MoLFormer paper, trained on ≈1.1 B molecules (100% Pub-
Chem + 100% Zinc). Our MoLFormer model, trained using the
ChemBERTa-3 infrastructure, performs comparably on the three
classification datasets (BACE, BBBP, Tox21) but slightly underper-
forms on other classification and regression tasks, possibly due to
insufficient hyperparameter optimization. Additional details for
hyperparameter optimization can be found in section 11.3 in Ap-
pendix.

5.5 AWS Deployment of ChemBERTa-3 on Prithvi
To efficiently pre-train and fine-tune ChemBERTa-3 models at
scale, we leverage Prithvi, an open-core commercial suite built
on top of DeepChem. Prithvi provides tools for fine-tuning and
deploying scientific foundation models. In this work, we use it
primarily as a testing environment for ChemBERTa-3 pretraining
and evaluation.

We run training on AWS spot instances to reduce computa-
tional costs. Although these instances can be preempted at any
time, frequent checkpointing allows us to resume from the most
recent stable state. Over multiple runs, the cost savings from spot
instances typically outweigh the overhead of handling potential
interruptions.

5.6 Deploying ChemBERTa-3 on HPC Infrastructure
To further verify reproducibility, the software framework was
tested on a local HPC cluster using 16 4th generation AMD EPYC
nodes, with 4 AMD MI300A APUs per node. The AMPL39 soft-
ware environment and the Ray multi-node multi-GPU training
framework was used for training new models. The MoLFormer
architecture was selected for comparison with 5 replicate training
runs to measure variability between training runs. After training
from scratch with identical conditions to the cloud-based train-
ing (including the same 1.1B chemical training set), foundation
models were fine-tuned on the labeled tasks to report average
accuracy and standard deviation. Each training run took approxi-
mately four days. This model is referred to as the Molfomer local
HPC trained model (MoLFormer-LHPC).

6 Results
This section presents the performance of ChemBERTa and MoL-
Former models across a variety of molecular property prediction
benchmarks. We first compare the models against established
graph-based and fingerprint baselines (Tables 1 and 3), and then
analyze how performance scales with pretraining dataset size (Ta-
bles 2 and 4). All classification tasks report ROC–AUC (↑= better)
and regression tasks report RMSE (↓= better). Results are aver-
aged across three runs unless otherwise noted; the “±” symbol
indicates the range across runs. Detailed results are provided in
Sections 11.4 and 11.5 in Appendix.

6.1 Comparison with Baseline Models
Tables 1 and 3 compare transformer architectures (ChemBERTa,
c3-MoLFormer, and MoLFormer-LHPC) with conventional and
graph-based baselines (RF, GCN, DMPNN, Infograph, Infomax3D,
Grover) under both the MoLFormer and DeepChem scaffold
splits.

6.1.1 Classification Performance

Under the MoLFormer scaffold split (Table 1), transformer mod-
els clearly outperform graph models, while all pretrained models
fail to outperform base line Random Forest (RF) models on three
of the six classification tasks. Summarizing the first and second
ranked model performance for each task (green=top ranked, yel-
low=second rank in Table 1):

• The RF baseline is the top ranked model on three of the six
classification tasks, BACE (0.884), HIV (0.803) and SIDER
(0.711).

• Chemberta-MLM is top ranked on two classification tasks,
BBBP (0.961) and CLINTOX (0.992).

• MoLFormer (reference-only) model is top ranked on only
one classification task, TOX21 (0.847), but second ranked
on four of the remaining five tasks.

• Surprisingly, c3-MoLFormer-1.1B under performs across all
six tasks compared to the published MolFormer results, with
second rank on one task only, Tox21 (0.830) and no top
rank.

• There are no top ranked graph models and only one second
ranked graph model: Grover-250K, SIDER (0.699).

Under the DeepChem scaffold split (Table 3), absolute AUC val-
ues decrease due to stricter scaffold separation, but relative per-
formance remains similar.

• Now, a transformer-based model is the first or second ranked
model across all classification tasks except SIDER. With
the MoLFormer-LHPC having the top rank in four tasks -
BACE (0.887), BBBP (0.908), TOX21 (0.791) and CLINTOX
(0.993).

• RF continues strong performance with top rank in the re-
maining two classification tasks, HIV (0.794) and SIDER
(0.630).
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• ChemBERTa-MLM-100M remains strong and stable (average
0.76 AUC) compared to graph-based baselines on average.

6.1.2 Regression Performance

For regression datasets (lower is better; RMSE, Tables 1 and 3),
transformer models again outperform traditional baselines.

• On the MoLFormer splits, the MoLFormer (reference-only)
model is the top ranked model across the four tasks and
the open-source c3-MoLFormer-1.1B model is second ranked
across all tasks but with a significantly higher RMSE.

• On the DeepChem splits, transformer models are the top
ranked model in 4 of 5 tasks but DMPNN is the top-ranked
model for LIPO and second ranked model for CLEARANCE
presenting a better baseline than Random Forest for regres-
sion.

• For DeepChem splits the top transformer model is mixed,
with ChemBERTa-MLM-100M being top ranked in two tasks
(FREESOLV, BACE), c3-MoLFormer-1.1B top ranked in one
task (ESOL) and second rank in three tasks (FREESOLV,
LIPO and BACE) and MoLFormer-LHPC top ranked in one
task (CLEARANCE) and second rank in one task (ESOL).

In summary, transformer architectures yield the most accurate
and stable results across both scaffold split strategies. Among
them, ChemBERTa-MLM-100M delivers high efficiency and strong
performance without billion-scale pretraining, while MoLFormer-
LHPC achieves the best overall accuracy when computational re-
sources permit.

6.2 Effect of Pretraining Dataset Scale
Tables 2 and 4 investigate how scaling the pretraining corpus
influences downstream performance for ChemBERTa and MoL-
Former models.

6.2.1 MoLFormer Scaffold Split Trends

As shown in Table 2, increasing the pretraining dataset from 10 M
to 100 M molecules yields consistent but modest improvements
for both model families.

• ChemBERTa improves across most datasets (e.g., BACE
0.849 → 0.859, TOX21 0.797 → 0.803, HIV 0.695 → 0.789).

• c3-MoLFormer also benefits up to 100 M (BACE
0.829 → 0.852, HIV 0.747 → 0.793) but performance
plateaus or slightly declines at larger scales (550 M–1.1 B).

6.2.2 Deepchem Scaffold Split Trends

Under the stricter DeepChem split (Table 4), absolute scores are
lower but scaling behavior remains consistent.

• ChemBERTa-MLM-100M outperforms its 10M variant on
BACE (0.773 → 0.781) and HIV (0.725 → 0.747) though
the improvement now is less consistent.

• c3-MoLFormer exhibits improvements up to 100 M (e.g.,
BACE 0.776 → 0.809) before plateauing.

• The MoLFormer-LHPC generally surpassed all others (e.g.,
BACE 0.887, BBBP 0.908, CLINTOX 0.993).

7 Discussion
In the following sections, we discuss various takeaways from our
experiments.

7.1 Impact of Dataset Splitting on Evaluation Metrics
The choice of dataset splits is critical when benchmarking models.
Scaffold splitting does not necessarily represent a single uniform
algorithm; we find in particular that splits used by DeepChem
and MoLFormer are not directly comparable. The discrepancy
between different scaffold splitting methodologies represents a
significant source of complexity and effort in benchmarking. We
struggled for several months to reconcile ChemBERTa-3 results
with MoLFormer results until we realized that MoLFormer scaf-
fold splits differed from DeepChem’s scaffold splits.

To better understand how different splits affect evaluation,
we compared the Minimum Tanimoto Distance (MTD) distribu-
tions produced by DeepChem’s scaffold split with those produced
by the MoLFormer-provided splits across multiple classification
datasets. This analysis shows a consistent trend: DeepChem’s
scaffold splits lead to higher MTD values, which indicates that
test molecules are structurally more dissimilar from the training
set. In contrast, the MoLFormer splits produce lower MTD values,
which reflects greater scaffold overlap between training, valida-
tion, and test sets.

This difference has clear implications for model evaluation.
Because the MoLFormer splits contain more structurally similar
compounds across partitions, models typically obtain higher ROC
AUC scores under this setting. These higher scores likely reflect
an easier prediction scenario rather than improved generaliza-
tion. DeepChem’s scaffold splits, in comparison, create a more
challenging and often more realistic evaluation condition because
models must generalize to compounds with novel scaffolds.

To illustrate this effect, Figure 7 in the Appendix presents his-
tograms of the MTD distributions for each dataset and split. These
visualizations highlight how strongly the choice of splitting al-
gorithm influences the structural separation between splits and
therefore the difficulty of the evaluation task.

Additionally, in the original study5, the MoLFormer model was
evaluated on MoLFormer scaffold split, while baseline results
were taken from prior literature which were based on different
splits. By re-running all models under the same evaluation setup,
we find that the performance differences between MoLFormer
and baseline models such as GCN and DMPNN are more mod-
est than those originally indicated. Directly comparing results
across papers can lead to misleading comparisons, because differ-
ent scaffold splits can cause large variations in scores. To mitigate
these challenges and improve reproducibility, we recommend
adopting DeepChem/ChemBERTa-3 as a standardized framework
for future benchmarking and model development studies.
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Table 1 The table compares baseline models (RF, GCN, DMPNN), graph-pre-training models (Infograph, Infomax3D, Grover) and transformer models
(ChemBERTa-MLM-100 M, MoLFormer) on molecular property prediction. MoLFormer (paper) report results from MoLFormer publication. The upper
block reports ROC-AUC scores (higher is better) for six classification datasets (BACE, BBBP, TOX21, HIV, SIDER, CLINTOX) using MoLFormer
scaffold splits. The lower block reports RMSE (lower is better) for four regression datasets (ESOL, Lipophilicity and FreeSolv, and MAE for QM9).
c3-MoLFormer is our MoLFormer re-implementation trained with ChemBERTa-3 infrastructure; Infograph/Infomax3D/Grover were pre-trained on 250K
SMILES from the ZINC dataset due to scalability issues with larger pretrained datasets. c3-MoLFormer comes close to matching MolFormer paper
results on most classification tasks and slightly underperforms MoLFormer on multiple datasets, possibly due to insufficient fine-tuning. NOTE: We
performed three runs for each dataset; the “±” shows the range of values and is not a confidence interval. Due to the high expense of running QM9,
triplicate runs were not performed for this dataset. (green=top ranked, yellow=second rank)

Classification Datasets (Higher is better)
Dataset BACE↑ BBBP↑ TOX21↑ HIV↑ SIDER↑ CLINTOX↑
Tasks 1 1 12 1 27 2
Random Forest 0.884±0.004 0.926±0.002 0.803±0.004 0.829±0.009 0.711±0.004 0.916±0.011
GCN 0.824±0.004 0.898±0.005 0.810±0.004 0.768±0.013 0.603±0.012 0.838±0.068
DMPNN 0.878±0.001 0.930±0.002 0.824±0.002 0.812±0.020 0.633±0.009 0.890±0.001
Infograph-250K 0.840±0.010 0.898±0.013 0.793±0.007 0.785±0.001 0.652±0.016 0.785±0.044
Infomax3D-250K 0.787±0.033 0.904±0.012 0.781±0.003 0.680±0.023 0.575±0.005 0.906±0.006
Grover-250K 0.652±0.321 0.710±0.322 0.789±0.001 0.678±0.243 0.699±0.007 0.882±0.013
Chemberta-MLM-100M 0.859±0.009 0.961±0.003 0.803±0.002 0.789±0.004 0.618±0.018 0.992±0.002
c3-MoLFormer-1.1B 0.848±0.015 0.900±0.015 0.830±0.004 0.715±0.101 0.640±0.008 0.846±0.028
MoLFomer (paper) 0.882 0.937 0.847 0.822 0.690 0.948

Regression Datasets (Lower is better)
Dataset QM9↓ ESOL↓ FREESOLV↓ LIPO↓
Tasks 12 1 1 1
Random Forest 14.827 1.154±0.008 2.209±0.028 0.722±0.001
GCN 42.6490 1.219±0.094 4.368±0.269 0.735±0.005
DMPNN 8.9352 0.699±0.022 1.229±0.044 0.577±0.017
Infograph-250K 9.061 0.792±0.044 1.757±0.363 0.697±0.011
Infomax3D-250K 11.6102 0.767±0.057 1.353±0.041 0.569±0.012
Grover-250K 256.7014 3.761±0.079 5.383±0.028 1.082±0.073
Chemberta-MLM-100M 35.2644 0.682±0.089 1.399±0.051 0.615±0.007
c3-MoLFormer-1.1B 4.0019 0.651±0.034 1.052±0.026 0.556±0.004
MoLFormer (paper) 1.598 0.279 0.231 0.529

Table 2 This table compares ChemBERTa and MoLFormer models pretrained on ZINC and PubChem datasets of varying sizes on various classifi-
cation datasets and reports ROC AUC scores (Higher is better). We use MoLFormer scaffold splits. We have pretrained ChemBERTa models on
the ZINC 10M and 100M dataset. Larger pre-training datasets appear to lead to slight improvements in downstream performance, but with diminishing
returns. The scaling effect is not consistent; note the Chemberta-MLM-100M model outperforms the scores reported by MoLFormer 1.1B on BBBP
and CLINTOX datasets. NOTE: We performed three runs for each dataset; the “±” shows the range of values and is not a confidence interval.

Dataset BACE↑ BBBP↑ TOX21↑ HIV↑ SIDER↑ CLINTOX↑
Tasks 1 1 12 1 27 2
Chemberta-MLM-10M 0.849±0.014 0.956±0.005 0.797±0.009 0.695±0.018 0.611±0.005 0.991±0.001
Chemberta-MLM-100M 0.859±0.009 0.961±0.003 0.803±0.002 0.789±0.004 0.618±0.018 0.992±0.002
c3-MoLFormer-10M 0.829±0.003 0.899±0.006 0.829±0.005 0.747±0.019 0.617±0.011 0.854±0.035
c3-MoLFormer-100M 0.852±0.013 0.899±0.022 0.829±0.006 0.793±0.005 0.625±0.030 0.836±0.029
c3-MoLFormer-550M 0.844±0.015 0.915±0.012 0.840±0.004 0.750±0.062 0.610±0.045 0.839±0.010
c3-MoLFormer-1.1B 0.848±0.015 0.900±0.015 0.830±0.004 0.715±0.101 0.640±0.008 0.846±0.028
MoLFomer (paper) 0.882 0.937 0.847 0.822 0.690 0.948

7.2 Graph versus Transformer Pretraining
We investigated various graph based pretraining approaches
alongside transformer based pretraining approaches. In general,
graph based approaches were considerably harder to scale, pos-
sibly due to the lower level of community investment in graph-
pretraining infrastructure. For example, Grover featurization took
up large amounts of disk space (100 GB for a 1M dataset) which
made scaling difficult. Other graph models posed other scaling
challenges. For this reason, we only pretrained models on graph

based approaches on a 250K subset of ZINC20. Broadly, graph-
based approaches at this scale appeared broadly comparable to
transformer-based approaches (see Table 1). Given the engineer-
ing challenges of scaling graph-based approaches, we chose to fo-
cus on transformer based approaches for larger pretraining scales
in this work. However, the strong performance of graph-based ap-
proaches at smaller scales suggests that it may be worth investing
in further graph-based training infrastructure since these models
may exhibit strong performance at large scales comparable to that
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Table 3 The tables compare different baseline models (RF, GCN, DMPNN, Infograph, Infomax3D, and Grover) to the transformer architecture models,
ChemBERTa and MoLFormer, on various classification datasets, in block 1 and regression datasets, in block 2 and report ROC-AUC scores (Higher
is better) and RMSE (Lower is better) respectively. We used the DeepChem scaffold splitter to split the datasets provided by MoleculeNet. Here,
c3-MoLFormer indicates that the MoLFormer model is trained using ChemBERTa-3 infrastructure and MoLFormer-LHPC is trained using the HPC
clusters. (green=top ranked, yellow=second rank)

Classification Datasets (Higher is better)
Dataset BACE ↑ BBBP ↑ TOX21 ↑ HIV ↑ SIDER ↑ CLINTOX ↑
Tasks 1 1 12 1 27 2
Random Forest 0.866±0.004 0.694±0.013 0.674±0.007 0.794±0.007 0.630±0.002 0.689±0.011
GCN 0.778±0.008 0.642±0.011 0.710±0.005 0.759±0.007 0.613±0.010 0.870±0.020
DMPNN 0.626±0.004 0.661±0.001 0.706±0.001 0.752±0.007 0.524±0.029 0.642±0.005
Infograph-250K 0.739±0.019 0.639±0.054 0.684±0.010 0.755±0.007 0.627±0.010 0.845±0.004
Infomax3D-250K 0.658±0.008 0.624±0.020 0.645±0.006 0.704±0.056 0.588±0.010 0.860±0.023
Grover-250K 0.825±0.006 0.674±0.006 0.692±0.003 0.759±0.002 0.619±0.010 0.642±0.020
ChemBERTa-MLM-100M 0.781±0.019 0.700±0.027 0.718±0.011 0.740±0.013 0.611±0.002 0.979±0.022
c3-MoLFormer-1.1B 0.819±0.018 0.735±0.019 0.723±0.012 0.762±0.005 0.618±0.005 0.839±0.013
MoLFormer-LHPC 0.887±0.004 0.908±0.013 0.791±0.014 0.750±0.003 0.622±0.007 0.993±0.004

Regression Datasets (Lower is better)
Dataset ESOL↓ FREESOLV ↓ LIPO ↓ BACE ↓ CLEARANCE ↓
Random Forest 1.697±0.005 1.138±0.017 0.963±0.003 1.249±0.011 51.683±0.402
GCN 1.002±0.034 0.624±0.031 0.879±0.071 1.259±0.028 54.599±1.984
DMPNN 1.068±0.033 0.596±0.033 0.690±0.015 1.146±0.100 50.974±0.542
Infograph-250K 1.410±0.196 0.988±0.063 0.898±0.012 1.440±0.137 92.646±22.630
Infomax3D-250K 1.467±0.013 0.623±0.024 0.787±0.022 1.440±0.174 58.270±0.642
Grover-250K 1.845±0.037 1.038±0.008 0.816±0.027 1.563±0.058 64.452±0.287
ChemBERTa-MLM-100M 0.920±0.011 0.536±0.016 0.758±0.013 1.011±0.038 51.582±3.079
c3-MoLFormer-1.1B 0.829±0.019 0.572±0.023 0.728±0.016 1.094±0.126 52.058±2.767
MoLFormer-LHPC 0.848±0.031 0.683±0.040 0.895±0.080 1.201±0.100 45.74±2.637

Table 4 This table compares the ChemBERTa and MoLFormer models pretrained on ZINC and PubChem datasets of varying sizes on various classi-
fication datasets and reports ROC AUC scores (Higher is better). We used DeepChem scaffold splits and pretrained ChemBERTa models on the
ZINC 10M and 100M dataset.

Dataset BACE ↑ BBBP↑ TOX21↑ HIV↑ SIDER↑ CLINTOX↑
Tasks 1 1 12 1 27 2
ChemBERTa-MLM-10M 0.773±0.010 0.715±0.006 0.713±0.014 0.725±0.017 0.616±0.010 0.983±0.010
ChemBERTa-MLM-100M 0.781±0.019 0.700±0.027 0.718±0.011 0.747±0.009 0.629±0.023 0.979±0.022
c3-MoLFormer-10M 0.776±0.031 0.715±0.021 0.718±0.003 0.711±0.014 0.618±0.005 0.847±0.024
c3-MoLFormer-100M 0.809±0.019 0.730±0.016 0.729±0.005 0.747±0.017 0.631±0.009 0.854±0.036
c3-MoLFormer-550M 0.812±0.017 0.742±0.020 0.726±0.002 0.659±0.140 0.594±0.007 0.856±0.020
c3-MoLFormer-1.1B 0.819±0.018 0.735±0.019 0.723±0.012 0.762±0.005 0.618±0.005 0.839±0.013
MoLFormer-LHPC 0.887±0.004 0.908±0.013 0.791±0.014 0.750±0.003 0.622±0.007 0.993±0.004

of transformer architectures.

7.3 Scaling Challenges
When scaling to larger datasets with a linear learning rate sched-
uler that includes a warmup phase, configuring the initial learn-
ing rate becomes challenging. Setting it too high before the
warmup completes often leads to a spike in the loss, causing the
model parameters to converge prematurely to a local minimum,
as shown in Figure 3. To address this, we opted to restart the
training from the most recent stable checkpoint upon spikes, en-
suring smoother convergence. We suggest this strategy as a useful
stability trick for future efforts.

7.4 Lack of Performance Gains with Increasing Training
Dataset Size

Scaling the pretraining data from 10M to 1.1B SMILES led to
marginal improvements in downstream performance, showing di-
minishing returns. We hypothesize that the current pretraining
objective does not fully capture the intrinsic chemical properties
required for effective representation learning. More chemically
informed objectives, such as those leveraging functional groups
or 3D molecular representations, may be beneficial.

Moreover, there are other areas within our pretraining setup
that could be improved. One aspect may be the lack of SMILES
canonicalization, which allows multiple syntactic variants of the
same molecule to appear in the corpus. However, our experi-
ments with canonicalization on a limited subset of the pretrain-
ing data did not yield any noticeable improvement. Additionally,
MLM pretraining tends to favor prediction of frequent atom to-
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Fig. 3 This graph depicts the loss curve over training iterations, high-
lighting a sudden spike in loss that occurred during a training run. Such
anomalies often arise from high learning rates or data irregularities, par-
ticularly when using a linear learning rate scheduler with a warmup
phase. To mitigate this issue, checkpointing at regular intervals and
restarting from the last stable checkpoint were used to recover from
spikes.

kens (e.g., “C”), encouraging shortcut learning rather than chem-
ically meaningful representations42.

7.5 Handling Numerical Issues in Training
During the training process of the model, numerical instability
was occasionally encountered, manifesting as NaN values in the
loss. This issue was attributed to gradient explosion and sensi-
tivity to the learning rate. To address this, a two-phase training
strategy was implemented. Initially, the model was pre-trained
on a smaller dataset with a very low learning rate to stabilize the
initial weights and establish a robust starting point. Subsequently,
training was conducted on the larger dataset with the actual
learning rate, leveraging the pre-trained weights. Through this
approach, instability was mitigated, convergence was improved,
and resource utilization was made more efficient.

7.6 Difficulty of Hyperparameter Optimization
We found that several models were very difficult to tune and
required extensive hyperparameter optimization. For example,
c3-MoLFormer required considerable tuning before it approached
earlier reported MoLFormer results. Given the limitations of our
compute budget, it is possible c3-MoLFormer and other models
may perform better with additional optimization. We open source
all our code and models in the hopes that community feedback
and efforts will be able to correct any potential optimization is-
sues despite our best-faith efforts. We list all best hyperparame-
ters in Tables 7, 8, 9, 10, 11, 12, 13and 14, and list costs for all
model training in Table 6.

7.6.1 Training Stability and Variance

In our evaluation of large-scale models such as MoLFormer, we
observed notable variance in performance across runs, even un-
der identical hyperparameters and data splits. This instability
persisted despite controlled training conditions and is likely at-
tributable to the sensitivity of large models to initialization and
other stochastic factors. To account for this, we ran all bench-

mark experiments using three different random seeds per config-
uration. We report the mean and standard deviation across these
runs to provide a more reliable estimate of model performance
and highlight the reproducibility challenges inherent in training
large models.

8 Conclusion
In this paper, we introduced ChemBERTa-3, an open source train-
ing framework integrated into DeepChem. The framework sup-
ports training of transformer-based and graph-based models. We
benchmarked multiple architectures including ChemBERTa, MoL-
Former, GROVER, InfoGraph, and InfoMax3D on molecular prop-
erty prediction tasks from the MoleculeNet dataset. We system-
atically evaluated several pretraining methodologies to compare
their performance across different model types.

Additionally, we contributed new tools to DeepChem, including
the ModularTorchModel class and the HuggingFaceModel wrapper
to improve model pretraining and fine-tuning. Our experiments
identified transformer-based architectures as particularly scalable
and effective, especially when trained on large-scale datasets. We
also observed that scaffold split choices can cause substantial vari-
ability in reported performance, making cross-paper comparisons
unreliable. To support more consistent and reproducible eval-
uation, we recommend adopting DeepChem/ChemBERTa-3 as a
standardized benchmarking framework.

9 Future Work
Due to the rapid growth in the chemical foundation model lit-
erature, we have not been able to benchmark every notable
chemical foundation model release on the ChemBERTa-3 frame-
work. Notably, ChemFormer and MegaMolBART remain to be
added to benchmarks. We hope that our open release will in-
centivize broader community adoption, especially of our stan-
dardized benchmarking pipeline, and also incentivize open source
community contributions for new chemical foundation models.

10 Ethics
While these models are made openly available to advance re-
search and innovation, it is important to acknowledge potential
misuse. Specifically, the ability to design molecules with high
precision could be exploited to create harmful or dangerous sub-
stances. Researchers are encouraged to adhere to ethical guide-
lines to mitigate such risks.

Conflicts of Interest
There are no conflicts to declare.

Data Availability
All code for ChemBERTa-3 model pretrain-
ing and fine-tuning is available on GitHub at
https://github.com/deepforestsci/chemberta3, with code,
pretraining datasets (public S3 URLs) and fine-tuning datasets
archived on Zenodo under DOI: 10.5281/zenodo.18235841.
Pretrained MoLFormer and ChemBERTa models are re-
leased on Hugging Face through the DeepChem organization
(https://huggingface.co/DeepChem).
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11 Appendix
11.1 Contributions to DeepChem in detail
We added several new pieces of infrastructure to DeepChem to support the

ChemBERTa-3 framework and model pre-training.

ModularTorchModel. The ModularTorchModel class is designed to simplify the

process of building, pretraining, and fine-tuning both transformer and graph-based

models. It allows users to define their model components as modular building blocks

that can be easily connected to construct complex architectures. Unlike conventional

DeepChem models such as TorchModel that compute loss solely from the final output,

ModularTorchModel enables loss computation from intermediate network values, of-

fering greater flexibility in optimization. While it integrates with HuggingFace for

transformer-based pretraining, ModularTorchModel also fully supports custom graph

pretraining implementations.

The existing TorchModel class in DeepChem provides an interface for training Py-

Torch models using DeepChem datasets. As shown in Fig. 4, the ModularTorchModel

class is built upon the TorchModel class to provide flexibility in defining individual

model components and their respective losses, which aids in fine-tuning specific

components of the model for downstream tasks.

Fig. 5 shows an example usage that illustrates the build, pre-training, and fine-

tuning of a model using ModularTorchModel and its raw code can be found in sec-

tion 11.7.

Fig. 4 Schematic representation of the ModularTorchModel framework
in DeepChem, demonstrating its workflow for pretraining and fine-tuning
tasks. The ModularTorchModel extends the existing TorchModel class.

HuggingFace Deepchem Wrapper. The HuggingFaceModel class in DeepChem

acts as a wrapper to integrate HuggingFace 43 models from the ‘transformers’ library

into the DeepChem framework. This allows users to train, predict, and evaluate

HuggingFace models using DeepChem’s API, enabling direct comparisons between

models from the two ecosystems. The wrapper also has a ‘tokenizer’ which tokenizes

raw SMILES strings into tokens to be used by downstream models, leveraging the

efficient tokenization and data handling utilities from the ‘transformers’ library, such

as random masking of tokens for masked language model training.

RDKitConformer Featurizer. The RDKitConformerFeaturizer was added to

DeepChem to generate 3D molecular representations for use in the Info-

Max3DModular model. The conformer featurizer is an adaptation from RDKit 44,

which featurizes an RDKit mol object as a GraphData object with 3D coordinates.

The ETKDGv2 45 algorithm is used to generate 3D coordinates for the molecule. It is

a conformation generation methodology that combines experimental torsion-angle

preferences with knowledge-based terms and distance geometry to generate accu-

rate 3D molecular structures.

ChemBERTa. 3 The original ChemBERTa model was pretrained using Masked

Language Modeling (MLM). ChemBERTa-2 extended this approach by adding multi-

task regression (MTR) pretraining on a larger dataset. At its core, Chemberta uses a

byte-pair encoding (BPE) tokenizer, trained on the PubChem10M dataset using 60k

tokens.

For MTR, the RDKitDescriptorFeaturizer in DeepChem was used to compute a set

of 200 molecular properties for each compound in our training dataset. Because

these tasks have very different scales and ranges, the labels are mean-normalized

for each task before training.

While ChemBERTa and ChemBERTa-2 primarily released pretrained models via

HuggingFace, ChemBERTa-3 (discussed in detail in section 3.2) also has a released

standalone github repository, fully integrated into the DeepChem ecosystem, that

allows researchers to easily pretrain and fine-tune models themselves. ChemBERTa-

3 also releases trained models on HuggingFace for ease of access.

InfoGraph. 22 The DeepChem implementation of InfographModel learns graph

representations through unsupervised contrastive learning by maximizing the mu-

tual information between global graph embeddings and substructure embeddings. It

is built upon the ModularTorchModel class to facilitate transfer learning. The model

randomly samples pairs of graphs and substructures, and then maximizes their mu-

tual information by minimizing their distance in a learned embedding space. The

model can be used for downstream tasks such as graph classification and molecular

property prediction. It utilizes the MolGraphConvFeaturizer in DeepChem for data

preprocessing, and the pre-trained model can be fine-tuned on both regression and

classification datasets.

GROVER. 27 GROVER implementation in DeepChem utilizes the newly intro-

duced GroverFeaturizer, which processes molecules from SMILES strings or RDKit

objects to generate a molecular graph for message passing, functional group fea-

tures for pretraining, and additional features for fine-tuning. Users can also specify

an additional featurizer to extract extra molecular properties, enhancing transfer

learning capabilities. As a ModularTorchModel, GROVERModel supports flexible fine-

tuning and transfer learning.

Infomax3d. 23 InfoMax3DModular, implemented in DeepChem, is a Modular-

TorchModel that uses a 2D model (PNA) and a 3D model (Net3D) to maximize the

mutual information between their representations, enabling the 2D model to be used

for downstream tasks without requiring 3D coordinates. As mentioned before, it uti-

lizes the RDKitConformerFeaturizer, which converts RDKit molecular structures into

GraphData objects with 3D coordinates stored in the node_pos_features attribute.

The ETKDGv2 46 algorithm is employed to generate these 3D conformers.

In our benchmark, we use InfoMax3DModular to compare the impact of incor-

porating 3D structural data versus relying solely on 2D representations, helping us

evaluate the significance of 3D information in molecular property prediction tasks.

MoLFormer. 5 The DeepChem implementation of MolFormer uses the Hugging-

Face DeepChem Wrapper to wrap the ‘ibm/MoLFormer-XL-both-10pct‘ pre-trained

model readily available in the HuggingFace transformers library. It uses the

‘ibm/MoLFormer-XL-both-10pct‘ tokenizer.

DMPNN. 21 DMPNN (Directed Message Passing Neural Network) implementa-

tion of DeepChem consists of a message-passing phase, where an encoder updates

atom hidden states based on neighbor information, and a read-out phase, where

a feed-forward network predicts molecular properties. The DMPNNFeaturizer in

DeepChem extracts rich molecular representations for the DMPNN by encoding both

atoms (nodes) and bonds (edges). Atom features (length 133) include properties

like atomic number, degree, charge, chirality, hybridization, and aromaticity, while

bond features (length 14) capture bond type, ring membership, conjugation, and

stereo configuration. The DMPNN implementation in DeepChem is based on the

Chemprop library but is adapted to interoperate with the DeepChem ecosystem 21.

Figure 6 illustrates overall architectures of each model. Table 5 provides a com-

parison of model architectures, feature / tokenization strategies, types of featuriza-

tion, pretraining methods, and the corresponding DeepChem class implementations

used in this study.
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Table 5 Comparison of model architectures, featurizer/tokenizer, types of featurization used, and the corresponding pretraining method employed.

Models Featurizer/Tokenizers Featurization Pretraining Method DeepChem Classname
ChemBERTa-MLM Roberta Tokenizer SMILES Masked Language Model dc.models.Chemberta
ChemBERTa-MTR RDKitDescriptors SMILES Multi-Task Pretraining dc.models.Chemberta
Infograph MolGraphConv Graph Mutual Information dc.models.InfoGraphModel

Maximization
Grover GroverFeaturizer Graph Self-supervised Message dc.models.GroverModel

Passing Transformer
Infomax3D RDKitConformer Graph Mutual Information dc.models.InfoMax3DModular

Maximization
MoLFormer MoLFormer Tokenizer SMILES Masked Language Model dc.models.MoLFormer
DMPNN DMPNNFeaturizer Graph - dc.models.DMPNNModel

Fig. 5 Example code illustrating the build, pre-training, and fine-tuning of a model using ModularTorchModel in DeepChem.
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Fig. 6 The figure compares the key components and workflows of model architectures evaluated in this study: MoLFormer, ChemBERTa, InfoGraph,
InfoMax3D, DMPNN and GROVER.
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11.2 Costs of Model Pre-training and Benchmarking
Training and benchmarking large-scale model architectures, is both computationally expensive and time-consuming. These costs present a significant challenge to repro-

ducibility, as rerunning experiments or comparing models under consistent settings requires substantial GPU resources. Even after pretraining, fine-tuning and evaluating

across multiple tasks can be resource-intensive, making it difficult to perform large-scale, systematic benchmarks. Table 6 summarizes the costs of pretraining MolFormer

models using AWS T4 GPU instances. Benchmarking took around 287 GPU hours. We have used T4 (1 GPU, g4dn.2xlarge) spot instance for benchmarking.

Table 6 MoLFormer model pre-training and benchmarking costs.

Models Cost ($) Date Trained Time Taken
(hours) AWS Region Instance Configuration Instance Type

MoLFormer 1.1B 4000 2025-01-16 260 us-east-2 g4dn.12xlarge Spot
MoLFormer 550M 2400 2024-12-02 150 us-east-2 g4dn.12xlarge Spot
MoLFormer 250M 1000 2024-11-18 70 us-east-2 g4dn.12xlarge Spot
Benchmarking 150 2025-04-01 200 us-east-2 g4dn.2xlarge Dedicated

11.3 Additional Hyperparameter Tuning Details
Grid hyperparameter search is employed to tune pre-trained models on fine-tuning datasets. We use DeepChem’s ‘GridHyperparamOpt‘ class, which performs an exhaustive

search over a specified hyperparameter space. This approach iteratively evaluates all parameter combinations without parallelization, allowing flexible optimization of selected

parameters.

A hyperparameter sweep was performed for the fine-tuning strategy using limited grid search where we randomly picked certain number of variations for each task. The

search space for each of the models are listed in the Tables 7, 8, 9, 10, 11, 12, 13 and 14.. The best model with the lowest validation loss was picked for further analysis.

Table 7 Best hyperparameters for c3-MoLFormer model. "Class." and "Reg." in Dataset Type column refers to classification and regression respectively.
NOTE: We performed three runs for each dataset; the “±” shows the range of values and is not a confidence interval.

Model Dataset Dataset
Type

No. of
Tasks

Best Parameters Score
(RMSE/ROC AUC)Learning Rate Batch Size Epochs

BACE Class. 1 3.00E-05 32 100 0.848±0.015
BBBP Class. 1 3.00E-05 32 150 0.900±0.015
TOX21 Class. 12 3.00E-05 32 50 0.830±0.004
HIV Class. 1 3.00E-05 32 50 0.715±0.101

c3-MolFormer SIDER Class. 27 1.00E-06 16 213 0.640±0.008
CLINTOX Class. 2 2.00E-05 32 100 0.846±0.028
ESOL Reg. 1 3.00E-05 128 200 0.651±0.034
FREESOLV Reg. 1 3.00E-05 128 150 1.052±0.026
LIPO Reg. 1 3.00E-05 32 150 0.556±0.004

Table 8 Best hyperparameters for DMPNN model. The score column reports RMSE for regression and ROC AUC for classification tasks. NOTE: We
performed three runs for each dataset; the “±” shows the range of values and is not a confidence interval.

Model Dataset Dataset
Type

No. of
Tasks

Best Parameters
Score

Batch Size ffn_dropout_p enc_dropout_p Epochs
BACE Class. 1 128 0.2 0.2 100 0.878 ±0.001
BBBP Class. 1 128 0.2 0.2 100 0.930 ±0.002
TOX21 Class. 12 128 0.2 0.2 100 0.824 ±0.002
HIV Class. 1 128 0.2 0.2 100 0.812 ±0.020

DMPNN SIDER Class. 27 128 0.2 0.2 100 0.633 ±0.009
CLINTOX Class. 2 128 0.2 0.2 100 0.890 ±0.001
ESOL Reg. 1 64 0.2 0.2 100 0.699 ±0.022
FREESOLV Reg. 1 128 0.2 0.2 100 1.229 ±0.044
LIPO Reg. 1 128 0.2 0.2 100 0.577 ±0.017
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Table 9 Best hyperparameters for Infograph model. "Class." and "Reg. in the dataset type column refer to classification and regression, respectively.
num_features and edge_features represent the number of input node and edge features, respectively. embedding_dim is the embedding size,
and num_gc_layers refers to the number of graph convolutional layers used. num_features value for all the datasets was reported to be 30, and
embedding_dim value for the datasets was reported to be 11. NOTE: We performed three runs for each dataset; the “±” shows the range of values
and is not a confidence interval.

Model Dataset Dataset
Type

No. of
Tasks

Best Parameters Score
(RMSE/ROC AUC)Learning Rate Batch Size num_gc_layers Epochs

BACE Class. 1 0.001 128 4 100 0.840 ±0.010
BBBP Class. 1 0.001 128 4 100 0.898 ±0.013
TOX21 Class. 12 0.001 128 4 100 0.793 ±0.007
HIV Class. 1 0.001 128 4 100 0.785 ±0.001

Infograph SIDER Class. 27 0.001 128 4 100 0.652 ±0.016
CLINTOX Class. 2 0.001 128 4 100 0.785 ±0.044
ESOL Reg. 1 0.001 128 4 100 0.792 ±0.044
FREESOLV Reg. 1 0.001 128 4 100 1.757±0.363
LIPO Reg. 1 0.001 128 4 100 0.697 ±0.011

Table 10 Best hyperparameters for ChemBerta model. NOTE: We performed three runs for each dataset; the “±” shows the range of values and is not
a confidence interval.

Model Dataset Dataset
Type

No. of
Tasks

Best Parameters Score
(RMSE/ROC AUC)Learning Rate Batch Size Epochs

BACE Class. 1 3.00E-05 32 100 0.859±0.009
BBBP Class. 1 3.00E-05 32 100 0.961±0.003
TOX21 Class. 12 3.00E-05 32 100 0.803±0.002
HIV Class. 1 3.00E-05 16 50 0.789±0.004

ChemBerta SIDER Class. 27 3.00E-05 16 50 0.618±0.018
CLINTOX Class. 2 3.00E-05 32 100 0.992±0.002
ESOL Reg. 1 3.00E-05 32 100 0.682±0.089
FREESOLV Reg. 1 3.00E-05 128 100 1.399±0.051
LIPO Reg. 1 3.00E-05 128 100 0.615±0.007

Table 11 Best hyperparameters for Infomax3D model. The score column reports RMSE for regression and ROC AUC for classification tasks. NOTE:
We performed three runs for each dataset; the “±” shows the range of values and is not a confidence interval.

Model Dataset Dataset
Type

No. of
Tasks

Best Parameters
Score

Learning Rate Batch Size hidden_dim target_dim Epochs
BACE Class. 1 0.001 64 64 10 100 0.787±0.033
BBBP Class. 1 0.001 64 64 10 100 0.904±0.012
TOX21 Class. 12 0.001 64 64 10 100 0.781±0.003
HIV Class. 1 0.001 128 64 10 50 0.680±0.023

Infomax3D SIDER Class. 27 0.001 64 64 10 100 0.575±0.005
CLINTOX Class. 2 0.001 64 64 10 100 0.906±0.006
ESOL Reg. 1 0.001 32 64 10 500 0.767±0.057
FREESOLV Reg. 1 0.001 32 64 10 500 1.353±0.041
LIPO Reg. 1 0.001 32 64 10 500 0.569±0.012

Table 12 Best hyperparameters for GROVER model. NOTE: We performed three runs for each dataset; the “±” shows the range of values and is not a
confidence interval.

Model Dataset Dataset
Type

No. of
Tasks

Best Parameters Score
(RMSE/ROC AUC)hidden size Batch Size Epochs

BACE Class. 1 128 128 100 0.652 ±0.321
BBBP Class. 1 128 128 500 0.710 ±0.322
TOX21 Class. 12 128 100 100 0.789 ±0.001
HIV Class. 1 128 128 100 0.678 ±0.243

GROVER SIDER Class. 27 128 100 500 0.699±0.007
CLINTOX Class. 2 128 100 500 0.882±0.013
ESOL Reg. 1 128 128 100 3.761 ±0.079
FREESOLV Reg. 1 128 128 100 5.383 ±0.028
LIPO Reg. 1 128 128 500 1.082±0.073
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Table 13 Best hyperparameters for GCN model. NOTE: We performed three runs for each dataset; the “±” shows the range of values and is not a
confidence interval.

Model Dataset Dataset
Type

No. of
Tasks

Best Parameters Score
(RMSE/ROC AUC)hidden size Batch Size Epochs

BACE Class. 1 128 128 100 0.824±0.004
BBBP Class. 1 128 128 100 0.898±0.005
TOX21 Class. 12 128 128 100 0.810±0.004
HIV Class. 1 128 128 100 0.768±0.013

GCN SIDER Class. 27 128 128 100 0.603±0.012
CLINTOX Class. 2 128 128 100 0.838±0.068
ESOL Reg. 1 128 128 500 1.219±0.094
FREESOLV Reg. 1 128 128 500 4.368±0.269
LIPO Reg. 1 128 128 100 0.735±0.005

Table 14 Best hyperparameters for Random Forest model. NOTE: We performed three runs for each dataset; the “±” shows the range of values and
is not a confidence interval.

Model Dataset Dataset
Type

No. of
Tasks

Best Parameters Score
(RMSE/ROC AUC)n-estimators min samples split criterion bootstrap

BACE Class. 1 100 20 gini True 0.884 ±0.004
BBBP Class. 1 100 20 gini True 0.926 ±0.002
TOX21 Class. 12 100 32 gini False 0.803 ±0.004
HIV Class. 1 100 20 gini True 0.829 ±0.009

RF SIDER Class. 27 100 32 gini False 0.711 ±0.004
CLINTOX Class. 2 100 16 entropy False 0.916 ±0.011
ESOL Reg. 1 100 2 squared_error True 1.154 ±0.008
FREESOLV Reg. 1 100 2 squared_error True 2.209 ±0.028
LIPO Reg. 1 100 2 squared_error True 0.722 ±0.001
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11.4 Expanded Benchmark Results for molformer scaffold splits

Table 15 Performance of baseline models (RF, GCN, DMPNN), graph-pre-trained mdels (Infograph, Infomax3D, Grover) and transformer models
(ChemBERTa-MLM-100 M, MoLFormer) across three independent runs using molformer scaffold splits. For classification tasks (BACE, BBBP,
TOX21, HIV, SIDER, CLINTOX) we report ROC AUC score (higher is better); for regression tasks (ESOL, FREESOLV, LIPO) we report RMSE (lower is
better). Due to the high expense of running QM9, triplicate runs were not performed for this dataset.

Classification Datasets (Higher is better)

Dataset Tasks
BACE 1↑ BBBP 1↑ TOX21 12↑

Run1 Run2 Run3 Run1 Run2 Run3 Run1 Run2 Run3
Random Forest 0.889 0.880 0.883 0.923 0.929 0.926 0.801 0.808 0.799
GCN 0.820 0.821 0.830 0.903 0.891 0.899 0.810 0.815 0.806
DMPNN 0.877 0.879 0.877 0.927 0.931 0.932 0.827 0.825 0.821
Infograph-250K 0.826 0.847 0.847 0.906 0.879 0.908 0.787 0.802 0.788
Infomax3D-250K 0.815 0.806 0.741 0.910 0.887 0.916 0.777 0.784 0.782
Grover-250K 0.883 0.880 0.878 0.937 0.936 0.939 0.788 0.791 0.788
Chemberta-MLM-100M 0.847 0.861 0.869 0.957 0.965 0.960 0.805 0.802 0.802
c3-MoLFormer-1.1B 0.869 0.833 0.843 0.917 0.902 0.881 0.831 0.824 0.835

Classification Datasets (Higher is better)

Dataset Tasks
HIV 1↑ SIDER 27↑ CLINTOX 2↑

Run1 Run2 Run3 Run1 Run2 Run3 Run1 Run2 Run3
Random Forest 0.839 0.832 0.817 0.712 0.706 0.716 0.925 0.901 0.924
GCN 0.766 0.754 0.786 0.588 0.618 0.602 0.746 0.863 0.907
DMPNN 0.812 0.836 0.787 0.621 0.643 0.635 0.890 0.889 0.892
Infograph-250K 0.784 0.784 0.787 0.634 0.673 0.651 0.839 0.730 0.786
Infomax3D-250K 0.707 0.684 0.650 0.573 0.570 0.582 0.905 0.899 0.914
Grover-250K 0.849 0.851 0.852 0.690 0.707 0.699 0.883 0.865 0.897
Chemberta-MLM-100M 0.794 0.785 0.789 0.626 0.594 0.636 0.995 0.989 0.992
c3-MoLFormer-1.1B 0.573 0.773 0.799 0.629 0.640 0.650 0.824 0.828 0.886

Regression Datasets (Lower is better)

Dataset Tasks
ESOL 1↓ FREESOLV 1↓ LIPO 1↓

Run1 Run2 Run3 Run1 Run2 Run3 Run1 Run2 Run3
Random Forest 1.165 1.147 1.149 2.247 2.183 2.196 0.721 0.719 0.723
GCN 1.103 1.221 1.333 4.463 4.000 4.641 0.741 0.736 0.729
DMPNN 0.669 0.707 0.721 1.213 1.184 1.289 0.568 0.601 0.562
Infograph-250K 0.767 0.756 0.855 1.766 1.308 2.198 0.692 0.688 0.712
Infomax3D-250K 0.847 0.725 0.728 1.304 1.404 1.351 0.552 0.574 0.581
Grover-250K 3.690 3.871 3.723 5.391 5.346 5.410 1.025 1.184 1.036
Chemberta-MLM-100M 0.610 0.808 0.628 1.364 1.472 1.363 0.614 0.606 0.625
c3-MoLFormer-1.1B 0.699 0.622 0.632 1.075 1.065 1.015 0.555 0.553 0.561
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Table 16 Performance of ChemBERTa and MoLFormer models, each pretrained on ZINC and PubChem datasets of varying sizes, on classification
datasets, across three independent runs using molformer scaffold splits. ROC-AUC scores (higher is better) is reported for all classification tasks
(BACE, BBBP, TOX21, HIV, SIDER, CLINTOX).

Dataset Tasks
BACE 1↑ BBBP 1↑ TOX21 12↑

Run1 Run2 Run3 Run1 Run2 Run3 Run1 Run2 Run3
Chemberta-MLM-10M 0.869 0.839 0.841 0.963 0.952 0.954 0.806 0.785 0.800
Chemberta-MLM-100M 0.847 0.861 0.869 0.957 0.965 0.960 0.805 0.802 0.802
c3-MoLFormer-10M 0.829 0.824 0.832 0.907 0.892 0.899 0.829 0.824 0.836
c3-MoLFormer-100M 0.835 0.856 0.865 0.915 0.916 0.868 0.832 0.835 0.820
c3-MoLFormer-550M 0.843 0.826 0.863 0.899 0.927 0.918 0.838 0.838 0.846
c3-MoLFormer-1.1B 0.869 0.833 0.843 0.917 0.902 0.881 0.831 0.824 0.835

Dataset Tasks
HIV 1↑ SIDER 27↑ CLINTOX 2↑

Run1 Run2 Run3 Run1 Run2 Run3 Run1 Run2 Run3
Chemberta-MLM-10M 0.719 0.690 0.676 0.607 0.607 0.618 0.991 0.989 0.992
Chemberta-MLM-100M 0.794 0.785 0.789 0.626 0.594 0.636 0.995 0.989 0.992
c3-MoLFormer-10M 0.754 0.766 0.721 0.605 0.632 0.613 0.807 0.868 0.889
c3-MoLFormer-100M 0.796 0.786 0.797 0.611 0.597 0.667 0.876 0.823 0.810
c3-MoLFormer-550M 0.663 0.782 0.805 0.642 0.643 0.546 0.826 0.845 0.849
c3-MoLFormer-1.1B 0.573 0.773 0.799 0.629 0.640 0.650 0.824 0.828 0.886

Table 17 This table compares the baseline models(RF, GCN, DMPNN), graph-pre-trained models (Infograph, Infomax3D, Grover) and transformer
models (ChemBERTa-MLM-100 M, MoLFormer) on the QM9 dataset using the molformer scaffold splits. We report MAE (↓) for regression tasks
(lower is better). We did not conduct triplicate runs or hyperparameter optimization for the QM9 dataset splits due to their substantial size, extended
computational time required, and limited available resources.

Measure
MoLForm (paper)

1.1B
c3-MoLForm

1.1B GCN
Infograph

250K DMPNN Infomax3D
250K

Grover
250K

Chemberta
100M RF

alpha 0.3327 0.6776 3.9494 0.6734 1.9431 2.4708 66.4236 1.2493 3.9187
cv 0.1447 0.6872 2.1584 0.5082 0.8730 0.9473 40.9454 0.3762 1.5656
G 0.3362 7.1345 17.1677 3.3537 11.3968 13.1874 506.3905 3.8939 18.4361
gap 0.0038 0.0070 0.0125 0.0112 0.0066 0.0072 0.0829 0.00959 0.0079
H 0.2522 0.3900 256.2621 4.4229 11.1296 13.8275 453.8291 3.8955 18.3009
homo 0.0029 0.0039 0.0085 0.0096 0.0048 0.0040 0.0101 0.0075 0.0066
lumo 0.0027 0.0057 0.0086 0.0138 0.0047 0.0047 0.0898 0.00649 0.0071
mu 0.3616 0.6231 0.5910 0.5950 0.5079 0.4893 0.8779 0.7633 0.5595
r2 17.0620 26.2624 177.5807 83.6650 64.7802 81.4212 1210.7322 355.1189 98.4651
u0 0.3211 5.1925 25.2800 9.1437 6.1491 13.6337 605.3215 54.9064 18.3840
U 0.2522 7.0372 28.764 6.3261 10.4231 13.3267 213.4233 2.9415 18.2680
ZPVE 0.0003 0.0017 0.0053 0.0048 0.0036 0.0028 0.2906 0.004 0.0100
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11.5 Expanded Benchmark Results for DeepChem scaffold splits

Table 18 Performance of ChemBERTa and MoLFormer models, each pretrained on ZINC and PubChem datasets of varying sizes, on classification
regression datasets, across three independent runs using DeepChem scaffold splits. ROC-AUC scores (higher is better) is reported for all classifica-
tion tasks (BACE, BBBP, TOX21, HIV and SIDER) and RMSE (lower is better) is reported for all regression tasks (ESOL, FREESOLV and LIPO

Classification Datasets (Higher is better)

Dataset Tasks
BACE 1↑ BBBP 1↑ TOX21 12↑

Run1 Run2 Run3 Run1 Run2 Run3 Run1 Run2 Run3
ChemBERTa-MLM-10M 0.763 0.770 0.787 0.709 0.724 0.712 0.733 0.704 0.703
ChemBERTa-MLM-100M 0.803 0.756 0.784 0.663 0.728 0.709 0.704 0.721 0.730
c3-MoLFormer-10M 0.738 0.778 0.814 0.701 0.744 0.699 0.722 0.716 0.715
c3-MoLFormer-100M 0.832 0.785 0.813 0.750 0.729 0.711 0.725 0.736 0.728
c3-MoLFormer-550M 0.791 0.812 0.832 0.769 0.721 0.739 0.727 0.729 0.723
c3-MoLFormer-1.1B 0.821 0.839 0.796 0.739 0.709 0.756 0.729 0.707 0.735

Classification Datasets (Higher is better)

Dataset Tasks
HIV 1↑ SIDER 27↑ CLINTOX 2↑

Run1 Run2 Run3 Run1 Run2 Run3 Run1 Run2 Run3
ChemBERTa-MLM-10M 0.713 0.713 0.749 0.617 0.626 0.603 0.970 0.993 0.986
ChemBERTa-MLM-100M 0.757 0.736 0.748 0.612 0.613 0.662 0.948 0.992 0.996
c3-MoLFormer-10M 0.717 0.692 0.725 0.623 0.611 0.621 0.880 0.824 0.837
c3-MoLFormer-100M 0.771 0.731 0.741 0.635 0.639 0.618 0.806 0.895 0.860
c3-MoLFormer-550M 0.742 0.748 0.461 0.603 0.592 0.588 0.835 0.853 0.882
c3-MoLFormer-1.1B 0.756 0.761 0.768 0.621 0.622 0.611 0.854 0.841 0.823
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Table 19 Performance of baseline models (RF, GCN, DMPNN), graph-pre-trained mdels (Infograph, Infomax3D, Grover) and transformer models
(ChemBERTa-MLM-100 M, MoLFormer) across three independent runs using DeepChem scaffold splits. For classification tasks (BACE, BBBP,
TOX21, HIV and SIDER) we report ROC AUC score (higher is better); for regression tasks (ESOL, FREESOLV, LIPO) we report RMSE (lower is
better). Due to the high expense of running QM9, triplicate runs were not performed for this dataset.

Classification Datasets (Higher is better)

Dataset Tasks
BACE 1↑ BBBP 1↑ TOX21 12↑

Run1 Run2 Run3 Run1 Run2 Run3 Run1 Run2 Run3
Random Forest 0.870 0.866 0.861 0.702 0.676 0.704 0.675 0.666 0.682
GCN 0.789 0.773 0.771 0.639 0.657 0.630 0.710 0.716 0.704
DMPNN 0.627 0.631 0.621 0.661 0.661 0.663 0.705 0.706 0.706
Infograph-250K 0.739 0.762 0.716 0.705 0.572 0.640 0.692 0.669 0.691
Infomax3D-250K 0.648 0.666 0.660 0.653 0.612 0.608 0.653 0.645 0.639
Grover-250K 0.817 0.825 0.833 0.681 0.668 0.671 0.688 0.696 0.692
ChemBERTa-MLM-100M 0.803 0.756 0.784 0.663 0.728 0.709 0.704 0.721 0.730
c3-MoLFormer-1.1B 0.821 0.839 0.796 0.739 0.709 0.756 0.729 0.707 0.735
MoLFormer-LHPC 0.891 0.881 0.888 0.889 0.914 0.919 0.771 0.800 0.800

Classification Datasets (Higher is better)

Dataset Tasks
HIV 1↑ SIDER 27↑ CLINTOX 2↑

Run1 Run2 Run3 Run1 Run2 Run3 Run1 Run2 Run3
Random Forest 0.803 0.793 0.785 0.632 0.628 0.631 0.699 0.674 0.694
GCN 0.752 0.756 0.769 0.617 0.623 0.600 0.866 0.896 0.848
DMPNN 0.759 0.742 0.756 0.539 0.549 0.484 0.648 0.643 0.635
Infograph-250K 0.746 0.763 0.755 0.614 0.639 0.628 0.839 0.849 0.846
Infomax3D-250K 0.742 0.746 0.625 0.596 0.573 0.594 0.892 0.848 0.841
Grover-250K 0.757 0.761 0.761 0.616 0.632 0.609 0.631 0.624 0.670
ChemBERTa-MLM-100M 0.758 0.736 0.727 0.612 0.613 0.609 0.948 0.992 0.996
c3-MoLFormer-1.1B 0.756 0.761 0.768 0.621 0.622 0.611 0.854 0.841 0.823
MoLFormer-LHPC 0.746 0.753 0.751 0.629 0.612 0.623 0.987 0.993 0.997

Regression Datasets (Lower is better)

Dataset Tasks
ESOL 1↓ FREESOLV 1↓ LIPO 1↓

Run1 Run2 Run3 Run1 Run2 Run3 Run1 Run2 Run3
Random Forest 1.705 1.692 1.695 1.119 1.134 1.159 0.965 0.959 0.965
GCN 0.954 1.015 1.035 0.662 0.586 0.623 0.806 0.856 0.975
DMPNN 1.069 1.107 1.026 0.570 0.576 0.643 0.682 0.678 0.711
Infograph-250K 1.193 1.668 1.369 0.919 1.071 0.972 0.887 0.916 0.891
Infomax3D-250K 1.462 1.485 1.455 0.615 0.597 0.655 0.757 0.792 0.811
Grover-250K 1.796 1.885 1.853 1.049 1.038 1.028 0.798 0.796 0.855
ChemBERTa-MLM-100M 0.905 0.924 0.932 0.542 0.551 0.514 0.760 0.772 0.742
c3-MoLFormer-1.1B 0.439 0.446 0.392 0.552 0.559 0.604 0.594 0.587 0.597
MoLFormer-LHPC 0.804 0.871 0.869 0.627 0.700 0.720 0.967 0.783 0.933

Regression Datasets (Lower is better)

Dataset Tasks
BACE 1↓ CLEARANCE 1↓

Run1 Run2 Run3 Run1 Run2 Run3
Random Forest 1.234 1.251 1.262 51.123 51.876 52.049
GCN 1.225 1.295 1.256 57.149 52.311 54.336
DMPNN 1.073 1.287 1.078 50.438 51.717 50.768
Infograph-250K 1.426 1.281 1.615 124.305 72.759 80.873
Infomax3D-250K 1.685 1.335 1.301 57.658 57.997 59.158
Grover-250K 1.484 1.619 1.585 64.744 64.061 64.551
ChemBERTa-MLM-100M 1.037 0.958 1.039 47.618 52.002 55.126
c3-MoLFormer-1.1B 1.066 1.261 0.956 48.793 51.823 55.559
MoLFormer-LHPC 1.334 1.160 1.10 49.412 43.950 43.852
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11.6 Extended Comparison Analysis of Splits

Fig. 7 Histograms of Minimum Tanimoto Distance (MTD) distributions comparing validation and test sets across multiple MoleculeNet classification
datasets: BACE, SIDER, HIV, BBBP, CLINTOX and TOX21.
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11.7 Sample Code for ModularTorchModel

import torch

import numpy as np

import deepchem as dc

from types import MethodType

from deepchem . models . torch_models . modular import ModularTorchModel

# Def ined example parameters

n_samples = 6

n_fea t = 3

n_hidden = 2

n_tasks = 6

p t_ t a s k s = 3

# De f in e P r e t r a i n i n g Data

X_pre t ra in = np . random . rand ( n_samples , n_ fea t )

y_p re t r a in = np . zeros (( n_samples , p t _ t a s k s ) ) . as type (np . f l oa t32 )

da ta se t_p t = dc . data . NumpyDataset ( X_pretra in , y_p re t r a in )

# De f in e F ine tun ing Data

X_f inetune = np . random . rand ( n_samples , n_ fea t )

y_ f ine tune = np . zeros (( n_samples , n_tasks ) ) . as type (np . f l oa t32 )

d a t a s e t _ f t = dc . data . NumpyDataset ( X_f inetune , y_ f ine tune )

# P r e t r a i n model

def example_pt_ loss_func ( s e l f , inputs , l abe l s , weights ) :

return ( torch . nn . f u n c t i o n a l . mse_loss ( s e l f . model ( input s ) , l a b e l s [0]) * weights [ 0 ] ) . mean()

pretrain_components = { ’ l i n e a r 1 ’ : to rch . nn . L inear ( n_feat , n_hidden ) ,

’ l i n e a r 2 ’ : to rch . nn . L inear ( n_hidden , n_hidden ) ,

’ a c t i v a t i o n ’ : to rch . nn . ReLU () ,

’ head ’ : torch . nn . L inear ( n_hidden , p t _ t a s k s )}

pretra in_model = torch . nn . Sequent ia l ( pretrain_components [ ’ l i n e a r 1 ’ ] ,

pretrain_components [ ’ a c t i v a t i o n ’ ] ,

pretrain_components [ ’ l i n e a r 2 ’ ] ,

pretrain_components [ ’ a c t i v a t i o n ’ ] ,

pretrain_components [ ’ head ’ ])

pretrain_modular_model = ModularTorchModel ( pretrain_model , pretrain_components )

pretrain_modular_model . l o s s _ func = MethodType( example_pt_loss_func , pretrain_modular_model )

# Train the pre t ra in_mode l

p t _ l o s s = pretrain_modular_model . f i t ( datase t_pt , nb_epoch=10)

# Fine tune model

def example_ f t_ los s_ func ( s e l f , inputs , l abe l s , weights ) :

return ( torch . nn . f u n c t i o n a l . l 1 _ l o s s ( s e l f . model ( input s ) , l a b e l s [0]) * weights [ 0 ] ) . mean()

f inetune_components = { ’ l i n e a r 1 ’ : to rch . nn . L inear ( n_feat , n_hidden ) ,

’ a c t i v a t i o n ’ : to rch . nn . ReLU () ,

’ head ’ : torch . nn . L inear ( n_hidden , n_tasks )}

f inetune_model = torch . nn . Sequent ia l ( f inetune_components [ ’ l i n e a r 1 ’ ] ,

f inetune_components [ ’ a c t i v a t i o n ’ ] ,

f inetune_components [ ’ head ’ ])

finetune_modular_model = ModularTorchModel ( f inetune_model , f inetune_components )

finetune_modular_model . l o s s _ func = MethodType( example_ f t_ loss_ func , finetune_modular_model )
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# Func t ion to r e l oad model on load_ f rom_pre t ra ined

def example_build_model ( s e l f ) :

s e l f . model = torch . nn . Sequent ia l (* s e l f . components . va lues ( ) )

finetune_modular_model . build_model = MethodType( example_build_model , f inetune_modular_model )

# Load " l i n e a r 1 " component we igh t s from p r e t r a i n e d model

f inetune_modular_model . load_from_pretra ined ( pretrain_modular_model , components=[ ’ l i n e a r 1 ’ ] )

# Fine tune the model

f t _ l o s s = finetune_modular_model . f i t ( d a t a s e t _ f t , nb_epoch=10)
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Data Availability
All code for ChemBERTa-3 model pretraining and fine-tuning is available on GitHub at 
https://github.com/deepforestsci/chemberta3, with code, pretraining datasets (publics S3 URLs) 
and fine-tuning datasets archived on Zenodo under DOI: 10.5281/zenodo.18235841. Pretrained 
MoLFormer and ChemBERTa models are released on Hugging Face through the DeepChem 
organization (https://huggingface.co/DeepChem).
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