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Real-time monitoring of laboratory experiments is essential for automating complex workflows and
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enhancing experimental efficiency. Accurate detection and classification of chemicals in varying

forms and states support a range of techniques, including liquid-liquid extraction, distillation, and
crystallization. However, challenges exist in the detection of chemical forms: some classes appear
visually similar, and the classification of the forms is often context-dependent. In this study, we adapt
the YOLO model into a multi-modal architecture that integrates scene images and task context for
object detection. With the help of Large Language Models (LLM), the developed method facilitates
reasoning about the experimental process and uses the reasoning result as the context guidance for

the detection model.

Experimental results show that by introducing context during training and

inference, the performance of the proposed model, YOLO-text, has improved among all classes, and

the model is able to make accurate predictions on visually similar areas. Compared to the baseline,
our model increases 4.8% overall mAP without context given and 7% with context. The proposed
framework can classify and localize substances with and without contextual suggestions, thereby
enhancing the adaptability and flexibility of the detection process.

1 Introduction

Al and robotics technologies provide automation solutions in self-
driving labs (SDLs) to facilitate autonomous experiment execu-
tionIHS, Computer vision (CV), as one of the automation tools,
has been applied to provide vision-based monitoring of the ex-
periment process, sending feedback to plan future actions and
make decisions®®. The aim of introducing CV systems to chem-
ical reactions in SDLs is to assist human operators in manual
experiment tracking, which can be labour-intensive and time-
consuming, and to standardize experiment analysis based on
the macroscopic vision-captured data. In this work, we propose
a real-time, context-aware chemical reaction monitoring frame-
work.

CV has found diverse applications in chemistry and materi-
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Fig. 1 An example of a single image can be labeled by different classes
under different chemistry contexts.

als science, including real-time reaction monitoring, detection
of physical states, materials characterization, anomaly identifica-
tion, and microscopic imaging?. These CV systems19%1U rely on
traditional image analysis techniques (e.g., edge detection, color
space transformation) or/and deep learning models, particularly
convolutional neural networks (CNNs). Deep learning models
use pixel-based inputs—typically images or video frames—and
are trained for classification, detection, or segmentation tasks.
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Fig. 2 The detection of chemicals can often be ambiguous due to the
similar visual features shared by different forms. Moreover, classification
may rely on context, which is influenced by the type and objective of the
experiment. Vial (a) illustrates the process of solid particles settling at
the bottom of the vial, whereas vial (b) depicts the aggregation of solids
within a heterogeneous liquid. Vial (c) demonstrates a heterogeneous
liquid with a non-uniform distribution, and vial (d) illustrates detection
from a commonly used chemistry reactor set, characterized by a non-
transparent yet uniformly distributed homogeneous liquid. Although the
liquids in vials (a) and (b) are visibly heterogeneous, the detection of
solids remains ambiguous. Similarly, the liquid classes in vials (c) and
(d) exhibit overlapping visual characteristics, complicating their differen-
tiation.

However, these models operate exclusively on pixel-based data
and lack any form of contextual awareness. They infer outputs by
learning statistical correlations in low-level visual features—such
as color, texture, edges, and spatial patterns—but do not incorpo-
rate information about the experimental protocol or materials in-
volved. In contrast, chemists interpret visual information through
contextual reasoning. Chemists’ understanding of the experimen-
tal setup, the type of process underway, and the intended out-
come plays a critical role in how visual scenes are classified. This
missing context introduces a key limitation that CV models mis-
classify or inconsistently localize visually similar images that arise
from fundamentally different chemical processes.

Dynamic physical processes (e.g., mixing, dissolution, melting,
separation, and evaporation) often generate transient, evolving
visual cues (e.g., turbidity, layering, or phase boundaries) that ap-
pear similar across different experimental setups. For example, a
cloudy suspension may arise from early-stage mixing, undissolved
solids, emulsified phases, or nucleating crystals, depending on the
chemical experiment. Prior work with the HeinSight computer vi-
sion models®Z13 demonstrated real-time monitoring and control
of such dynamic processes using object detection models like R-
CNN1% and YOLO!2 trained on custom datasets. HeinSight orga-
nizes physical observations into a taxonomy of phase states (e.g.,
solid, liquid, air) and tracks their interactions (e.g., solid-liquid,
liquid-liquid) over time to monitor process dynamics. This CV
system has enabled the automation of diverse workflows such as
crystallization, distillation, liquid-liquid extraction, solid-liquid
mixing, solubility testing, and drug formulation across multiple
platforms; from small-scale robotic systems to high-throughput
experimentation and EasyMax batch reactors. However, each de-
ployment required retraining the model on a new dataset spe-
cific to the experimental setup. These HeinSight models©/13/14
rely solely on pixel-based analysis, which limits their contextual
awareness and generalizability. As a result, they must be re-
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trained for new contexts, especially when identical images can
have different interpretations depending on the experiment. For
example, in Figure |1} the same image is labeled as two liquid
layers by HeinSight 3.0% (trained for liquid-liquid extraction) but
as a suspended solid in liquid by HeinSight 4.013 (trained for
solid-liquid mixing). Both classifications are correct within their
respective experimental contexts. Human annotators naturally
rely on experiment type and intent when labeling such data, but
this contextual information is lost during model training and in-
ference. Additionally, Figure [2| shows some ambiguous examples
where different mixtures appear. In this work, we extend Hein-
Sight by incorporating context into the model architecture, en-
abling it to differentiate experiment types and correctly classify
visually similar cues based on experimental intent and hoping to
resolve a general-purpose CV for chemistry.

Context-aware learning has been extensively studied as a solu-
tion to address ambiguity in tasks1®27, such as image classifica-
tion!8, This approach typically combines text, which provides
contextual information, with images that supply visual scenes.
The integration of these two inputs can occur either before or
after feature extraction, referred to as early fusion and late fu-
sion, respectivelyl?. The text serves as supplementary informa-
tion, aiding in reducing the ambiguity in image features. Stud-
ies such as2%"22 have demonstrated that incorporating text in-
puts—providing details like geographic location, object usage,
or scene descriptions— can significantly enhance performance in
challenging image classification tasks. In this work, we focus on
phase detection in chemical mixtures. We aim to achieve our pur-
pose by using experiment descriptions to set a context restriction
for the detection.

Vision-language models (VLMs) are a technique of multimodal
systems that integrate image and text representations to per-
form tasks such as zero-shot classification, captioning, and open-
vocabulary object detection. Models like CLIP23, GLIP24 Yolo-
world?? and Grounding-DINO22Z align visual and textual em-
beddings to retrieve or detect objects based on language prompts.
However, these systems are typically trained on large-scale
datasets from natural scenes, and their effectiveness in domain-
specific applications—such as chemical experimentation—is lim-
ited by a domain gap in both language and visual data. Moreover,
most VLMs use text as a search query to localize corresponding
visual elements, which differs from the context-guided classifica-
tion required in chemistry. Our approach builds on VLM principles
but reframes the role of text. In YOLO-text, textual input (e.g.,
experimental protocols) is used as a context signal rather than a
retrieval query. By attaching a context-aware learning block to
the YOLO detection head, our model fuses textual and visual fea-
tures during training and inference. This enables the model to
adjust its predictions based on the experiment’s intent, allowing
more accurate classification of visually similar inputs across dif-
ferent workflows. In this way, YOLO-text adapts the strengths
of VLMs to chemical CV tasks while addressing the limitations of
open-vocabulary approaches in scientific domains.

In this work, we present YOLO-text, a real-time, context-aware
vision-language model for detecting phase states in dynamic
chemical experiments. By integrating a pretrained large language
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Fig. 3 Some examples of images and their annotations from the dataset.
The background of each image was cropped during training.

model (LLM), YOLO-text incorporates textual input (e.g., exper-
imental protocols) to guide visual interpretation, particularly in
cases where identical visual cues lead to different classification
outcomes depending on the experimental context. YOLO-text
model includes five relevant physical phase classes commonly en-
countered in chemical workflows: gaseous headspace (“empty”
or “residue”), liquid (“homogeneous” clear or “heterogeneous”
cloudy) and “solid”. To enable context-aware detection, we intro-
duce a lightweight context-aware learning block that connects to
the YOLO backbone28 and optionally accepts text prompts as in-
put. This block fuses visual features extracted by the vision model
with textual cues before passing them to the detection head, form-
ing a unified image-text multimodal fusion model. This design
supports real-time inference while allowing flexible use of con-
text: the model can be trained and deployed with or without
textual input. YOLO-text employs a two-stage training strategy:
first, it aligns image and text representations into a shared em-
bedding space; then it learns to detect phase states under differ-
ent context conditions. We show that introducing context dra-
matically improves detection accuracy, especially for underrepre-
sented classes. For instance, mean average precision (mAP) for
the solid class improves from 27.3 to 54.9. Overall, YOLO-text
outperforms the standard YOLO model across all classes, with
total mAP increasing from 75.9 to 82.9 with context, and 80.7
without it. We demonstrate YOLO-text on four case studies each
involving visually similar images that require different classifica-
tions depending on the experiment type. YOLO-text lays the foun-
dation for context-aware classification in chemistry, enabling the
same image to be interpreted differently based on experimental
intent and marks a step toward building general-purpose com-
puter vision systems for chemical research.

2 Experimental

The following sections describe the design of the model architec-
ture and the dataset. The Dataset section outlines the challenges
encountered in constructing the training dataset and explains
the selection and annotation of five classes from visual data ob-
tained through various chemistry experimental techniques. The
Method section presents the components proposed and imple-
mented within the model architecture.
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(a) An illustration of the portion of data in the training dataset coming from

different chemistry experiment processes.
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(b) Data distribution for each class in the training and test sets. Light red
bars refer to the number of samples in the training set, while grey bars refer
to the samples in the test set. Overall, the data is split between the training

and test sets at a ratio of approximately 10:1.

Fig. 4 Two bar plots to illustrate the data distribution

2.1 Dataset

Data collection is conducted from real chemical experiments in
laboratory settings. The dataset includes experiments from var-
ious chemical techniques to ensure the diversity of each class.
However, certain classes, such as solid and residue, are inherently
less common. To address the challenges of small and imbalanced
data, the dataset annotation is designed to use a minimal num-
ber of classes that can effectively represent the material phases
typically observed in experiments. Therefore, the dataset is anno-
tated using five classes: empty layer, residue, solid, homogeneous
liquid, and heterogeneous liquid. The definitions for each class
are as follows:

* Empty: Air layer in the vessel.
* Residue: Solid particles sticking on the vessel window.

* Solid: Big solid chunks suspended in liquid and/or solid sed-
iments.

Journal Name, [year], [vol.], 1 |3


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5dd00346f

Digital Discovery Page 4 of 14

View Article Online
DOI: 10.1039/D5DD00346F

YOLO
detection

Case 1

Open Access Article. Published on 12 January 2026. Downloaded on 1/13/2026 3:14:09 AM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

|
|
1
Predictions are overlapped due to uncertainty ! Set context Ima.ge-context Get result
I | Query & fusion
!
s | e LM
You are a chemist conducting a
-l - 1 chemical experiment ... ' -
! !
1 1 Task defining
Case 1 l
1 m ! The definition of each class is: ... Expected states in
| 1 5
| 1 Please provide a prediction on what S}gg:i’(;ilztage' -YOLO'teXt
elements will be seen... g it
I I Homogeneous Liquid, Clear predictions |~—
1 1 Rule setting Solid"
Case 2 1 I | RULES TO YOUR RESPONSE:
1 u in p & Wrong p 1 >Do not create any new class.
>Do not add explanations in
1 E— 1 it Case 2 SN =
predictions. - |
1 .' m 1 e Expected states in YOLO-text 1.
' ! Rosidue 1
-I | ”t ) "Residue,
<start description> S ——1
1 1 An aqueous solution (1.5 mL) of 1 ge};z?geneous Liquid,
| || mMaxxxand 2 m xooc was stired. ¢ Clear predictions
continuously in a 4 mL vial. C t dicti
| [ Homo [ [ solia [ | | <end descrinti orrect predictions
' '

Fig. 5 Diagram illustrating the proposed framework for chemical reaction detection. The figure on the left shows two examples of failed detection

results from a vision-only detection model.

There is no Non-Maximum Suppression (NMS) used in detection, as it can mistakenly remove the

overlapped objects, such as a solid in a homogeneous liquid. The right of the figure shows the working procedure of our proposed method. According
to our method, a pre-trained LLM is used to reason the reaction phases from the provided experiment protocols. The LLM reasoning result is used
to set the context for YOLO-text, which outputs the final detection results on visual frames. Image and context are fused in YOLO-text, where the
predictions are adjusted based on the set context. Notably, while the input context aids the detection process, it does not solely determine the final
predictions. This ensures that the model can still generate predictions even in cases where context input is unavailable or incomplete from the LLM.

* Homogeneous liquid: transparent and liquid with uniform
composition.

* Heterogeneous liquid: not uniformly distributed liquid.

To give an insight into the dataset, we show several images
from the dataset with their annotations in Figure[3] It is important
to note that, in some cases, different classes can be inclusive. For
example, a homogeneous liquid may contain a solid, leading to
visual overlap between classes.

A total of 17 videos, along with the data used in HeinSight
3.07, were recorded from various experiments or different stages
of an extended reaction. The videos encompass four commonly
used techniques in chemistry experiments: liquid-liquid extrac-
tion (LLE), solid-liquid mixing, crystallization, and dissolution,
as well as scenarios involving empty vessels with a static or op-
erating stirring bar. Specifically, 828 images and 3 videos were
derived from the LLE process, 6 videos were recorded during the
solid-liquid mixing process, 2 videos captured the crystallization
process, and 2 videos documented the dissolution process. Fig-
ure [4al illustrates the portion of classes from the training set con-
tributed by different chemistry techniques.

Image data is extracted from recorded videos, where we first
separate 10 videos into the training set and 7 videos into the val-
idation and test set, and then extract image data with a certain
frame rate. In the end, there are 2841 images in the training set,
and 280 images in the test set. Figure [4b| shows the number of
samples of each class in the training and test sets.

Figure [2| is a glimpse of some difficult image examples in our
data set, where (a), (b), and (c) were directly collected from vials
and (d) was collected from EZ-Max experimental equipment. The
data shown in Figure[2] were recorded from different experiments
showing varied chemical layers with similar visual cues. For ex-

4 Journal Name, [year], [vol.], 1

ample, (c) and (d) are non-transparent liquids annotated as het-
erogeneous and homogeneous liquids, respectively. The visual
ambiguity might confuse the model during training, and make it
provide inaccurate predictions under different experimental con-
texts.

2.2 Method

In this section, we present a chemical reaction monitoring model,
as illustrated in Figure A pretrained large language model
(LLM) is employed to process the ongoing experiment protocol
and infer the expected classes. The expected detections generated
by the LLM are then passed to YOLO-text, which subsequently
predicts states based on the fusion of visual and contextual infor-
mation. To mitigate the uncertainty in LLM reasoning, YOLO-text
is trained to adapt to varying levels of contextual input, including
complete, incomplete, and absent class information.

We will start by introducing the architecture of YOLO-text. As
shown in Figure [6] the model takes images and offline words
(context) as input, making predictions based on vision features
and context. Then, a description of how we conduct prompt tun-
ing on the pretrained LLM to generate output that can be taken
as input by YOLO-text is provided.

2.2.1 Image features and word embeddings

Image feature extraction. The proposed model, YOLO-text, is
built upon YOLOVS. It retains the original vision feature extrac-
tion process established by YOLO2?, utilizing a Darknet backbone
as the image encoder to extract multi-scale features. These fea-
tures are subsequently processed by the Feature Pyramid Network
(FPN)2Y to enhance feature representation.

Word embeddings. Each word input to the text encoder is ini-
tially transformed into an embedding. At the start of training,
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Fig. 6 Architecture of the proposed context-aware learning block. The original YOLO backbone is used to extract vision features. The context-aware
learning block takes multi-scale image features and context information as input. The two modalities are fused as weighted embeddings and joint
embeddings, and then sent to the decision-making block. Lastly, the decision-making block selects the fused features and passes the features to

detection heads.

these word embeddings are initialized using pretrained global
word vectors®Y, The embeddings are stored in the PyTorch Em-
bedding layer and updated throughout the training process. To
handle varying input word counts, we define a fixed maximum
number m of acceptable inputs as the dimension of the text em-
bedding matrix. The input word indices W = {wy,w»,...,w, } must
satisfy n < m. Each input word w; is mapped to an embedding vec-
tor ¢; and stored in the embedding matrix E € RIV1*4, where |V|
is the vocabulary size and d is the embedding dimension:

e,=E[w], Vie{l,2,...,n}

The extracted embeddings are arranged into a fixed-dimension
tensor T € R™*? with padding as needed:

€l

€2

T = en

€no—prompt

L €no—prompt |
2.2.2 Context-aware learning block

The context-aware learning block is positioned before the detec-
tion heads, where it integrates textual and multi-scale image fea-
tures, enabling the fusion of these two modalities before pass-
ing them to the detection heads. Within this module, the text
features are initially projected into the same latent space as the

image features and then concatenated with the image features
to incorporate visual information. Both types of features are
subsequently processed through a self-attention module to en-
hance their individual representations. The context-aware learn-
ing block employs two types of fusion processes: weighted em-
bedding fusion and joint embedding fusion. The weighted em-
bedding fusion process aligns the two feature types by calculat-
ing their similarity using scaled dot-product cross-attention. The
resulting weighted embeddings are then merged through sum-
mation. Empirical analysis indicates that this approach improves
sensitivity to detailed pixel variations but may lead to an increase
in false positives. The joint embedding fusion process, in con-
trast, applies a concatenation operation to combine the features
globally, providing a more holistic fusion strategy.

Decision making. The decision-making function is inserted in
the context-aware learning block to weigh the embeddings pass-
ing to the detection heads. It will determine the portions of the
features from the two fusions and forward them to the detec-
tion heads for final predictions. Two decision-making approaches
have been implemented: a decision-making function and a con-
catenation operation. The following sections provide a detailed
explanation of each method.

Fy and F, are given as the two fused embeddings from the pre-
vious calculations, where F| refers to the weighted embedding
fusion and F; refers to the joint embedding fusion.

The first method, the decision-making function, comes from
the fusion mechanism proposed in??, where we combine the two
features by equation

F=w@F +(1-w)®hF, (€))

Journal Name, [year], [vol.], 1 |5
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w is the weight of different features, which is calculated by the
equation [2] ® represents the element-wise product.

w=0 (W X] +WX;) 2)

X; and X,, respectively, represent the pure image features and
word embeddings output from the self-attention modules; W; and
W, are two linear projection layers; o is the sigmoid function to
project the coefficients to the range between 0 and 1.

The second decision-making approach is to employ a convolu-
tional layer to learn how to select the features from two fusions.

F.=C(F,F,),F = Conv(F,) 3

As shown in Equation[3] the two features are initially combined
in the concatenation layer C to form the unified feature represen-
tation F,. The resulting F, is then passed through a convolutional
layer to be projected into the appropriate dimensional space.

2.2.3 LLM prompting

Prompt engineering is employed to guide and refine the outputs
of the LLM. The prompting process begins by assigning the LLM
a specific role and task: to perform general predictions by rea-
soning about the expected classes that may emerge during the
experimental stage, based on the provided experimental proto-
col. To ensure the LLM’s outputs are compatible with the pro-
posed model, the prompts also include explicit prediction rules
that constrain and structure the responses.

2.2.4 Mixup

The limited size of the training set increases the risk of over-
fitting during model training. To ensure that the input context
effectively guides the prediction, we introduce visual ambiguity
into the dataset. Specifically, the mixup data augmentation tech-
nique? is employed to achieve this goal. This technique com-
bines two batches of images at the pixel level, with a randomly
generated value A determining the mixing intensity for each oper-
ation. The data ¥ after mixing can be represented by the equation
E], where x; and x; are two image batches.

)?le,"l»(l*l)xj' 4@
y=Ayi+(1-21)y; 5)
L =AZL(PTy)+(1-1)Z(PTp) ©)

In addition, the labels ¥ will be mixed by the same mechanism
as equation

Table[Ilincludes several extensions of the mixed methods. The
image data are mixed by A, but the labels are selected as either
the batch with higher A or the union of two batches. Text sent
to context-aware uses the same strategy as the label. Loss func-
tion uses either the original formula or is weighted by A as equa-
tion [6] where P represents prediction result and T is the ground
truth, £ (P, Ty) is the original loss of batch A and .Z(P, T) is loss
for batch B. Additionally, other data augmentation techniques are

6 | Journal Name, [year], [vol.], 1
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applied during training to further diversify the dataset; these will
be discussed in detail in the next section.

Table 1 Mixup Augmentation Setting

Images Labels Text Loss
Mixed HighA HighA Original
Mixed Union  Union Original
Mixed Union  Union Eq
Mixed Union Union, A Eqlf

3 Results and Discussion

3.1 Experiments and results

Training Steps. A two-step training strategy is employed to
train YOLO-text. Before training, YOLO-text loads the pre-trained
YOLO weights into the vision backbone.

Context-aware training: In the first step, the entire model is
trained on the custom dataset, with all ground truth class names
provided as prompts during training. During evaluation, the class
names are also input as prompts for the test data. The expected
output is the class names and locations of the bounding boxes.
This step teaches the model the semantic meanings of each class
name and enables the model to provide predictions with hints
from the prompted class.

Vision-aware training: In the second step, the model is fine-
tuned either without class prompts or with a random subset of
class prompts. This step trains the model to adapt to varying
prompting scenarios, ensuring it can produce robust predictions
even when prompts are incomplete or absent.

Evaluation Metrics. We adopt Precision (P), mean Average Pre-
cision (mAP) and recall (R) as the metrics to evaluate the model
performance in the object detection task for each class. Especially
when the class area is difficult to detect, for example, the solid
class is always shown in various shapes and colors, the recall rate
is an essential factor in measuring the model’s reliability on those
objects.

Implementation Details. We train models using a linearly de-
creasing learning rate, with an initial value of 0.05 for text en-
coder and visual encoder training and an initial value of 0.005
for decision-making layers training. The decreasing rate is set as
0.001. Stochastic gradient descent (SGD) optimizer with a mo-
mentum of 0.9 and a weight decay of 0.005 is implemented. In
the context-aware learning block, we add dropout layers with a
ratio of 0.5 to prevent overfitting. The rest of the hyperparam-
eters are set as the system default, tunable for potentially better
results. As our training dataset is small, we load the pretrained
weights on the COCO dataset to the visual backbone and the de-
tection heads. Data augmentation is also implemented by the Al-
bumentations library=2. Specifically, we use data affine, flipping,
data bluy, noise, and color jitter augmentation with a probability
of 0.5. In the first training step, we introduce data mixup to in-
crease the ambiguity in the training data. Note that we disable
the mosaic augmentation during training, which is set to True by
default in the YOLO trainer. This is because we would like to keep
the relative positions between areas. Additionally, agnostic max
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non-suppression is also disabled, as there are existing situations
where one class is visually overlapping.

3.1.1 Model performance in image detection

Evaluation result after context-aware training step
Model performance is first evaluated with images in the test set.
Since YOLO-text is developed on the YOLOvV8 backbone, and
YOLO-world is regarded as a state-of-the-art YOLO-based VLM,
our model is compared against YOLOv8 and YOLO-world as base-
lines. The two baselines were trained with the same hyperparam-
eter settings as YOLO-text but with the learning rate adjusted to
prevent underfitting and overfitting. Additionally, the input text
prompt is sent to YOLO-world by default. Table[2]shows the mod-
els’ performance in each class. YOLO-text-wAdd only uses output
from weighted embedding fusion and directly passes the output
to the detection head, while YOLO-text-Joint uses the output from
joint embedding fusion. YOLO-text-D1 takes both weighted and
joint fused embeddings and uses a decision-making approach de-
scribed in the equation |1} YOLO-text, which uses the decision-
making approach defined in equation [3} is the selected model.
We notice that for the classes Heterogeneous liquid, Empty and
Residue, all architectures perform well in terms of mAP and re-
call. In contrast, YOLOvV8 shows relatively low mAP and recall
in the solid and homogeneous liquid classes. This is because the
number of solid samples in the training set is relatively small com-
pared to others (only about 700 samples), and both solid and ho-
mogeneous liquids in the test set contain different visual features
compared to the training set. We can see that using prompted
context in YOLO-text can help the model locate the correspond-
ing features. As a result, the proposed model can maintain or
slightly improve detection performance for the heterogeneous lig-
uid, empty, and residue classes (ranging from 1% to 6%) while
achieving significant improvements in detecting solids and homo-
geneous liquids, with increases of approximately 10% to 25%.
Additionally, the performance of YOLO-world on the test
set is evaluated. Overall, YOLO-world demonstrates strong
performance, achieving an mAP of 81.2. Notably, the mAPs for
the solid and homogeneous liquid classes are higher compared
to YOLO; however, the recall rates for these two classes are
significantly lower than those of other classes. This discrepancy
is likely due to YOLO-world’s training objective as a VLM, which
focuses on contrastively matching distinct pairs of text and
images rather than using text as contextual hints to enhance
classification and localization tasks. However, further research
and verification are required to confirm this hypothesis. Although
YOLO-World achieves a high mean Average Precision (mAP) in
the chemical detection task, it does not meet our requirements.
Specifically, our approach aims to use text prompts to (i) correct
incorrect detections, (ii) recover missed detections, and (iii)
preserve accurate detections. As YOLO-World aims to support
open-vocabulary detection, it performs detection based on a
specific text prompt, limiting its flexibility in addressing these
objectives.

Evaluation result after vision-aware training step
While providing all ground-truth labels as prompts can validate
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the model’s capabilities, this approach alone does not fully lever-
age its potential. The model is expected to generate accurate
predictions without prompts and dynamically adjust its outputs
based on input prompts, all while preserving correct detections.
Table [3] demonstrates the robustness of YOLO-text under various
prompting strategies, including no prompts, randomly selected
labels, and all labels. It highlights how different prompting strate-
gies used during training influence the model’s performance un-
der corresponding inference conditions. Following the context-
aware training, the model achieves the highest mAP when pro-
vided with all category names, with performance declining un-
der random or absent prompts. To address this, vision-aware
training is introduced, where the model is fine-tuned using di-
verse prompting conditions to better align with the task require-
ments. Compared to all results, the D2 method, which fine-tunes
all model layers when no valid prompt is available, is selected as
the most effective. It achieves the highest mAP of 80.7 in the no-
prompts scenario and maintains strong performance with an mAP
of 82.3 under random prompts.

Figure |7| provides examples illustrating the performance of
YOLO and YOLO-text on the test set. The figure consists of two
rows of images. The first row provides the prediction results from
YOLO that are wrongly detected and misdetected. The first two
images from the left show that the YOLO detects the stirring bar
at the bottom as the solid class, which has been removed from our
model’s prediction. The remaining images in the first row show
the wrong detections on ambiguous areas, which are corrected
by our model with the contexts provided during training. The
second row of images includes examples marked with red rect-
angles, indicating cases where category names were prompted
during inference to refine classification and detection. We notice
that even though our model has removed the wrong predictions
in the last image, it still fails to detect the individual liquid lay-
ers. This limitation highlights an area for further improvement in
future research.

3.1.2 Model performance in video detection

In this section, we present two case studies to demonstrate how
the model monitors the experimental process using video data
and to compare its performance under different contextual set-
tings.

Sedimentation process. This case demonstrates a sedimentation
process captured from a chemical lab instrument called EasyMax.
The experiment begins with a homogeneous solvent with solid
setteled at the bottom of the vessel. when the stirring bar is acti-
vated, the clear homogeneous liquid and solid is mixed together
to form a heterogeneous liquid. When the stirring bar stops, solid
particles within the heterogeneous solvent gradually settle at the
bottom of the vessel. Figure [8]illustrates the progression of Case
A, aligning visual scenes with a corresponding plot at the bot-
tom that shows the model’s detection results over time. The y-
axis of the plot represents the height of the predicted bounding
boxes, with different colors indicating different predicted classes.
At the start of the experiment (0—4 seconds), the prompt "homo,
residue" is provided to guide the model’s predictions. However,
the model mistakenly classifies the stirring bar as solid during this
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Table 2 Experimental results on our dataset. All grounded labels are prompted during our model training. The best performances are marked with
bold text. In the table, P refers to Precision, R refers to Recall, and mAP refers to mean average precision. Faster R-CNN uses ResNet50 as backbone.
D1 refers to the weighted function for decision-making. YOLO-text-wAdd uses output from weighted embedding fusion. YOLO-text-Joint uses the
output from joint embedding fusion. YOLO-text-D1 takes both weighted and joint fused embeddings and uses a decision-making approach described
in the equation YOLO—text uses the decision-making approach described in the equation
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overall Hetero Empty Residue Solid Homo
Methods

mAP mAP mAP mAP mAP mAP

mAP50 P R R R R R R

50:95 50:95 50:95 50:95 50:95 50:95
Faster R-CNN 37.4 60.1 66.8 51.5 59.0 63.9 67.2 82.3 29.1 57.0 10.4 17.0 12.6 16.8
YOLOVS8 75.9 84.3 88.8 81.7 96.1 96.4 90.8 94.6 83.8 94.1 27.3 37.0 76.6 8C "
YOLO-world 81.2 86.8 949 80.0 94.3 89.0 90.0 95.0 92.7 95.0 39.8 340 89.1 88.0
YOLO-text-wAdd  75.7 87.0 97.1 849 929 99.9 93.7 99.2 843 99.9 28.7 33.1 789 92.u
YOLO-text-Joint ~ 79.1 88.7 98.0 85.3 93.2 99.9 95.5 99.9 89.4 99.9 32.6 36.4 849 90 ¢
YOLO-text-D1 84.0 91.2 98.0 85.1 97.2 99.3 95.1 98.4 90.7 99.9 45.5 352 917 92.7
YOLO-text 85.0 97.6 969 96.7 97.8 99.9 93.3 99.9 89.4 99.9 549 93.8 899 89.2

Result from YOLO
Empty: 0.64 |[Fmpt: 094

Homo: 0.89 - ¢ | |

Ho@i I .__‘

‘O}id: 0.82

Homo:

olid: O

Fig. 7 Visualization examples illustrate how the proposed model corrects its predictions on ambiguous areas. The images in the first row are the
wrong predictions from YOLO-v8. The images in the second row marked with red rectangles show the result when the context is provided, while the
images without red edges are from the proposed model but without the context provided. The green star represents the correct prediction based on
annotations, while the red triangle indicates the wrong prediction. In the red-triangle-marked figure, the first image to the right has two separate
liquid layers at the bottom of the vial; however, the proposed model can only detect one. The first image to the right is taken fromB4, and the second

image to the right is taken from38,

stage. In the middle of the experiment, the prompt is updated to
"hetero, residue,” and from 10 seconds onward, "solid" is added
to enhance the model’s prediction accuracy. Figure [10[ compares
the results from YOLO and our proposed model under different
prompt settings. In Figure YOLO’s output shows that the
solvent is correctly identified in some frames during the initial
stage. However, in subsequent stages, while the model predicts

8 | Journal Name, [year], [vol.], 1

the appropriate classes, the bounding box locations remain unsta-
ble. Figuredisplays the predictions from our proposed model
without any prompts. In this case, the model tends to predict
all potential classes in ambiguous regions and incorrectly clas-
sifies residue as empty during the latter half of the experiment.
This issue is resolved in Figure where the prompt "residue"
is provided, leading to corrected predictions. Finally, Figure
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Table 3 Experimental results of the model training and testing with different prompting strategies. The best performances are marked with bold text.
D1 refers to the weighted function for decision-making, and D2 refers to the concatenation with a convolutional layer for decision-making.

Prompting during evaluation

Prompt strategies All labels Random labels No prompts
mAP50:95 mAP50 P R mAP50:95 mAP50 P R mAP50:95 mAP50 P R

?Sllj‘bels 84.0 921  98.0 851 75.0 861 811 832 285 341 380 27.6
’(*];lzlj‘bels 85.0 97.6 969 967 745 89.9 874 808 247 429 291 508
}(‘;I;)“m labels 81.7 90.3 951 826 813 89.7  89.0 79.7 77.7 854 687 722
E;‘;)dm labels 68.2 80.1 934 809 70.1 814 929 80.8 68.2 811 718 79.0
Finetune w/o 81.1 87.4 952 842 80.6 879 942 836 77.5 843 857 739
prompting (D1)
Finetune w/o 82.9 95.6 922 913 823 925  90.0 87.5 80.7 89.8 859 85.8
prompting (D2)
Finetune with 80.9 91.7 922 867 793 88.8 909 821 739 802  51.0 85
single labels (D1)
Finetune with 75.3 88.5 883 840 717 83.5 841 750 65.1 713 418 8206
single labels (D2)
Fintune with 83.3 941 917 913 821 91.2 935 843 68.6 76.1 434 86.2
random labels (D1)
Fint ith

e W 79.5 90.2 922 849 803 90.8  87.6 869 703 775 446 860

random labels (D2)

evaluates the model’s behavior when the prompt "hetero" is con-
sistently applied throughout the experiment. This setting tests
the model’s ability to adapt its predictions based on context and
resolve overlapping detections effectively.

Agglomeration process.During the process, the system begins
with a heterogeneous mixture of small solid particles suspended
in a liquid. The particles begin to agglomerate and form a layer
at the top of the solution with stirring, leaving behind a clear ho-
mogeneous liquid. Figure [9]illustrates the process. Through the
monitoring, "residue, hetero, solid" are prompted to the model.
The model is able to detect the agglomerate when it starts to form.
However, after the liquid turns transparent, the model again de-
tects the stirring bar as another solid object. Figure [11|compares
the prediction results from YOLO and our model. YOLO provides
two predictions on the liquid area in the first 300 seconds and
gives wrong predictions on the solid and semi-transparent solu-
tions. In our model, the overlapping prediction can be fixed by
context setting, which also leads the model to detect the gener-
ated solid.

3.2 Discussion

Data imbalance. Data quality is important in every computer vi-
sion task, especially when custom datasets need to be developed.
The number and diversity of the training data, as well as the rela-
tions between the training and the test set, will significantly influ-
ence the model’s performance on specific tasks. However, the re-

search field of computer vision for chemical lab automation lacks
large-scale public datasets capturing visual changes during real
chemistry experiments. The lack of sufficient data is our biggest
challenge. In section 2.1, we describe how to efficiently sepa-
rate data into training and test sets. We first extract frames from
all experiment videos that we have and then randomly separate
frames into training and test sets. The vanilla YOLO model can
provide very high mAP in each class under this data structure
due to the high similarity of the two sets. However, the model
performance will sharply decrease when testing on new experi-
ments. Therefore, we first separate the videos into training and
test sets, and then extract image frames to ensure the model’s re-
liability when encountering previously unseen experimental sce-
narios during inference. However, it is undeniable that the simi-
larity between the frames from the same video still exists in each
set, which could cause a dramatic drop in precision if the model
fails to detect in one specific case; this is what happened to the
"solid" detection in YOLO. The solid substance is naturally less
common in chemical experiments than the other categories, and
when we organize the dataset, the aim is to separate different
experiments, which also causes a decrease in the diversity of the
solid.

The data imbalance came from the inherent characteristics of
chemical experiments, which can lead to biased prediction perfor-
mance. To address this issue, we adopted a combination of data
augmentation and bias-reducing loss functions in model training.
Despite the application of various data augmentation techniques,
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Fig. 8 Sedimentation case: a demonstration of the reaction process
described in case A. The images match the detection plot from YOLO-
text. The X-axis shows the time in seconds, while the Y-axis is the
normalized height of the bounding boxes. The colors represent different
detected classes.

their effectiveness in enhancing the diversity of solid appearances
remains limited. This limitation motivates the incorporation of
contextual information into the model to better support the detec-
tion of previously unseen visual features. In addition, the dataset
includes experiments captured under different experimental se-
tups, which naturally contributes to increased training diversity
and further aids generalization.

Leveraging text prompts to refine visual detection. VLMs are
typically designed to perform open-vocabulary detection by us-
ing textual descriptions to localize prompt-relevant regions in an
image. In our case, the text helps to fix the prediction result in
the related area. The model keeps its ability to make predictions
based on visual cues when no contextual information is provided.
The LLM introduces contextual reasoning capabilities that allow
it to interpret experimental descriptions more flexibly and handle
complex procedures that may not be captured by direct keyword
matching. In addition, integrating an LLM makes the framework
more user-friendly. It shows great potential of integrating LLM to
assist visual detection, especially in ambiguous cases.

Model robustness in video detection. From the detection result
provided by case A in section 5.3, figure and figure we
can see that though the YOLO-text without prompts gives higher
mAP on images, it shows an unstable detection result compared
to YOLO in the video detection, which is worth studying in the fu-
ture work. Additionally, one experiment could have various reac-
tion stages that require different prompts. Figure 8] demonstrates
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Fig. 9 Agglomeration process: a demonstration of the reaction process
described in case B. The images match the detection plot from YOLO-
text. The X-axis shows the time in seconds, while the Y-axis is the
normalized height of the bounding boxes. The colors represent different
detected classes.

the detection results from YOLO-text with varying prompts pro-
vided at different experimental stages, representing a dynamic
prompting scenario. This implies the importance of acquiring on-
line reasoning results from the LLM, especially when the transi-
tion between different reaction stages is fast, and the fact that
YOLO-text is sensitive to prompts when facing ambiguous scenar-
ios.

4  Conclusions

We presented YOLO-text, a model that supports context-aware
learning for domain-specific detection tasks with scarce data. The
proposed model integrates with a pretrained LLM, which pro-
cesses experiment protocols as input and outputs the expected
chemical forms generated during the experiment. This LLM-
generated output provides contextual information to the detec-
tion model, enhancing its predictions during inference. The con-
textual information aims to assist model understand ambiguous
visual cues. Experimental results demonstrate that incorporat-
ing context during training improves the model’s performance,
particularly in detecting ambiguous areas and addressing imbal-
anced classes.

Future work will focus on two main areas. The first is to diver-
sify data collection to improve data quality. We believe a larger
and diverse dataset can generalize model performance on differ-
ent experience setups and chemical forms. The second area is
to improve the robustness of the model in real-time detection.
Insights from the experimental results presented in Figures 8 to

Page 10 of 14


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5dd00346f

Page 11 of 14

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

Open Access Article. Published on 12 January 2026. Downloaded on 1/13/2026 3:14:09 AM.

(cc)

Predictions Over Time

~ 1.01
A} Hetero
ko] Residue
= 0.8 Solid
@ Homo
K]
X
‘2 0.6 1
c
(<]
5 0.4 1
[
<
2
© 0.2
s}
2
J
0 0.0 A
0 2 4 6 8 10 12 14
Time
(a) Prediction result from YOLO
Predictions Over Time
~
Z‘ 1.01 Hetero
e Residue
2 0.8 | Solid
1%]
o] Homo
X
2 0.6 1
c
o
=
o 0.4
k7]
< " I[N
o A
5 0.2
B \
$ .| N
D ’ T T T T T T T T
0 2 4 6 8 10 12 14

Time

(c) Prediction result from YOLO-text with "residue" provided

Digital Discovery

View Article Online
DOI: 10.1039/D5DD00346F

Predictions Over Time

3 1.0 Hetero

S Empty

E‘ 0.8 1 Residue

0 Solid

K H

5 0.6 omo

=

o

5 0.4

[

< et (M

) 11 (i

§ 0.2+ \ ‘

t |

£ e

D O 0 1 T T : T T T T T T
0 2 4 6 8 10 12 14

Time

(b) Prediction result from YOLO-text with no prompt provided
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(d) Prediction result from YOLO-text with "residue, hetero" provided

Fig. 10 Comparison of sedimentation process detection results using YOLO and YOLO-text under different prompting conditions. Figure (a) presents
the detection results from YOLO, which exhibits incomplete predictions at both the beginning and end of the experiment. Figure (b) shows the output
from YOLO-text without prompts, demonstrating high sensitivity to scene changes. In Figures (c) and (d), YOLO-text is prompted with contextual
cues, leading to altered predictions based on the provided input. When given the prompt "residue," the model shows increased confidence in classifying
the upper area as residue. Similarly, when prompted with "hetero," it removes the "homo" class; however, this results in an incorrect prediction
relative to the annotation. The actual experiment process is shown in Figure

10 highlight the crucial role of providing appropriate and dy-
namic prompts in guiding the model’s visual understanding dur-
ing stage transitions. We plan to explore adaptive prompt gen-
eration mechanisms that can adjust to the experimental context
in real time. One possible way to improve real-time prediction
is to send video frames as feedback before the LLM and auto-
matically detect phase changes, then force the LLM to update the
reasoning result. Additionally, we plan to integrate a knowledge
reasoning module in YOLO-text to simplify the whole detection
into one step, enabling YOLO-text to directly react to experiment
descriptions. By achieving these goals, we aim to advance the ap-
plication of computer vision technologies in monitoring chemical
experiments for laboratory automation.
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(d) Prediction result from YOLO-text with "residue, hetero, solid" provided

11 Comparison of agglomeration detection results using YOLO and YOLO-text under different prompting strategies. Figure (a) shows the

detection results from YOLO, which exhibits unstable predictions throughout the experiment. Figure (b) presents the YOLO-text output without
prompts, showing improved performance by reducing incorrect detections of homo classes. In Figures (c) and (d), prompting with "residue" and
"hetero" stabilizes the boundary between the upper and lower regions. Additionally, when prompted with "solid," the model begins to interpret the
agglomerates as solid materials over the course of the experiment. The actual experiment process is shown in Figureﬁ
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The images used to train our model originate from a subset of the open-source HeinSight 2.0,
3.0, and 4.0 datasets 6,13,14. Each HeinSight version captures experiments of closely related
types. By combining data across these different experimental setups, we created a more diverse
dataset that highlights the need for context-aware modeling for generalizable models

for chemical experimentation. The dataset and code of data viewer are available through
Zenodo repository https://doi.org/10.5281/zenodo.17436705.
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