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candidate reactions for self-healing polymer
applications

Maxime Ferrer, * Bowen Deng, Javier E. Alfonso-Ramos and Thijs Stuyver *

Plastics are essential in modern society, but their susceptibility to damage limits their lifespan and

performance, and results in unsustainable waste production. Self-healing polymers based on thermally

reversible Diels–Alder (DA) reactions offer a potential solution by enabling heating controlled repair

through bond-breaking and reformation. However, discovering new suitable DA monomer combinations

has largely relied on intuition and trial-and-error so far. Here, we present a hierarchical workflow that

integrates machine learning (ML) with automated reaction profile calculations to efficiently screen DA

reactions for self-healing polymer applications. Using our in-house TS-tools software, we generate high-

throughput profiles at the semi-empirical xTB level. Refining only a small fraction with DFT, we are able

to train a robust ML model that predicts reaction characteristics with excellent accuracy. Adding

a graph-based ML model to the workflow for pre-screening enables expansion to reaction spaces of

hundreds of thousands of reactions, at a marginal cost. We first leverage our models to screen

a comprehensive reaction space of synthetic diene–dienophile pairs, and subsequently use them to

mine a database of commercially available natural products. Overall, this hybrid ML-computational

chemistry approach enables data-efficient discovery of thermally responsive DA reactions, advancing the

rational design of self-healing polymers with tunable properties.
Introduction

Plastics, and polymers more broadly, are essential in modern
society, with applications spanning, among others, (bio)medi-
cine,1,2 (micro)electronics,3,4 and industrial sectors such as the
food or aerospace industries.5,6 Their widespread use is largely
due to their low density, high durability, and cost-effectiveness.
However, their susceptibility to mechanical damage oentimes
limits their lifespan and performance.7 Unlike biological
materials, polymers lack intrinsic self-healing capabilities,
meaning that fractures or microcracks can signicantly
compromise their durability. As a result, huge amounts of
plastic waste are generated every year, posing signicant envi-
ronmental and sustainability challenges. In response, the past
three decades have seen growing interest in self-healing/
recyclable materials as a promising strategy to enhance the
longevity and sustainability of polymer-based systems.8–10

Self-healing materials can be classied into two main cate-
gories: autonomous and stimuli-responsive systems.7 As the
name suggests, autonomous systems comprise materials that
release a healing agent automatically upon detection of
mechanical damage, i.e., no external intervention is
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y the Royal Society of Chemistry
required.11,12 In contrast, stimuli-responsive materials require
an external factor to initiate the healing process.13,14 These
systems typically rely on bond-breaking and bond-(re)forming
mechanisms, which require well-characterized, reversible
reactions that can be efficiently controlled through external
stimuli, such as temperature variations. Given its practicality
and broad applicability, thermal activation is particularly
advantageous, making heat-induced reversible reactions
a highly attractive approach for self-healing plastics.7,15

Because of their inherently tunable thermodynamic and
kinetic properties, Diels–Alder (DA) reactions in particular have
been extensively investigated as a potential candidate for the
development of thermally responsive self-healing polymers.16,17

The DA reaction is classied as a [4 + 2] cycloaddition reaction.18,19

It describes the concerted reaction between two unsaturated
molecules, referred to as diene and dienophile (Fig. 1).

What makes the DA reaction particularly appealing for self-
healing material applications is that the carbon–carbon bonds
formed during the reaction are generally weaker than the other
bonds within the system.21–23 These weaker and more exible
bonds are generally the rst to be affected by mechanical
deformation, i.e., when stress is applied. However, for reversible
DA reactions, these bonds can be re-formed, enabling the
restoration of the polymer network.

Up to this point, the development of self-healing polymers
has remained, by and large, a serendipitous process, whereby
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Fig. 1 Schematic representation of a prototypical self-healing poly-
mer system based on a DA moiety.20 The wavy bonds indicate the
attachment points to the polymer backbone; TS stands for transition
state.
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new suitable DA monomer combinations are discovered
primarily through intuition, in combination with a trial-and-
error approach. To enable rational design, relationships
between monomer chemical structure and macroscopic prop-
erties of the plastic need to be established. While the reaction
characteristics of the DA monomers do not exclusively deter-
mine the properties of the resulting self-healing polymer (e.g.,
the backbone, as well as the stoichiometric ratios, and their
respective roles in determining the glass transition tempera-
ture, also play a major role),21 they clearly are essential design
parameters that can be used to lter out unfavorable combi-
nations, and identify promising ones for further investigation.

From a reactivity standpoint, a suitable DA reaction for
thermally responsive self-healing applications must be (slightly)
exothermic, or more precisely, must yield a product that is
thermally unstable. At room temperature, the equilibrium
should lie toward the product side, yet heating the system must
allow the reaction to reverse—regenerating the precursors via
the retro-DA reaction. This implies that the entropic contribu-
tion to the free energy must be sufficient to counteract the
enthalpic drive toward product formation at elevated tempera-
tures. Beyond thermodynamics, kinetics also play a crucial role:
the forward and reverse activation barriers determine the rate
and temperature at which free monomers can be (re)generated
at the site of damage, as well as the conditions under which
repolymerization—and thus self-healing—can occur.

It should be noted that the ability to ne-tune the healing
temperature through reaction barrier modulation is highly
desirable, as ideal operating temperatures are strongly depen-
dent on the use case of the specic self-healing plastic. For
daily-life applications, e.g., so robotics, low-temperature
healing may be preferable from a safety perspective,24 whereas
plastics that may get exposed to more extreme conditions, e.g.,
in aerospace applications, will ideally be more robust, i.e., they
should be able to retain their full integrity up to a higher
temperature.25

In principle, the reactive properties of a given diene–di-
enophile pair can be simulated with the help of quantum
chemical methods, such as Density Functional Theory
Digital Discovery
(DFT).21,26,27 However, locating transition states (TS) on potential
energy surfaces (PES) is a non-trivial task, and achieving accu-
rate results that align with experimental observations necessi-
tates the use of high-level computational methods, which incur
a signicant computational cost. As such, traditional DFT
studies on DA reactivity have focused primarily on a limited
number of model reactions, from which qualitative trends are
extracted.21 Systematic exploration of DA reaction libraries,
especially in the context of self-healing polymers, has conse-
quently largely remained out of reach.

The advent of machine learning (ML) has made the
screening of large chemical reaction spaces feasible in prin-
ciple, and this has recently enabled the development of proto-
cols for high-throughput reaction discovery.28 In general terms,
two main families of ML models for reactivity prediction can be
distinguished: graph-based and geometry-based ones. The
former are extremely fast, as they can generate predictions
based on a simple reaction SMILES input, focusing only on
connectivity, without the need for any conformational
search.29–31 This means that predictions can be performed in
milliseconds. While graph-based models can typically reach
accuracies up to a couple of kcal mol−1, they can, in principle,
be outperformed by models that operate on geometries.32–34

Given enough training data, the latter can reach accuracies
close to, or even below, chemical accuracy (±1 kcal mol−1) with
respect to the reference method, though at a signicant
computational cost, since accurate geometries need to be
determined as input rst.35

Effectively applying ML to explore chemical reaction spaces
relies heavily on the availability of high-quality training data.
Training data is typically generated with the help of DFT as well,
and hence, the same issues as mentioned above are still
encountered. Most reactivity screening studies in the literature
so far indicate that several thousand reaction proles are
usually needed to build an accurate model, which corresponds
to several million CPU hours of compute time.36–46

Here, we propose a synergistic reaction screening approach,
combining hierarchical ML-based reaction ltering with robust,
and ultra-fast, reaction prole computation, facilitated by our in-
house developed soware tool for TS and reaction prole
computation, TS-tools47 (see Fig. 2). Focusing on a synthetically
realistic reaction space of DA reactions, we demonstrate how the
TS-tools package can be used to compute tens of thousands of
reaction proles at semi-empirical GFN2-xTB level of theory
(hereaer referred to as xTB), on the y, at a rate of over 100
reactions per hour on a single 72 CPU core workstation. Rening
a small fraction of the so-generated reaction proles at – a thor-
oughly benchmarked – DFT level subsequently enables the
training of an (in-house designed) deep learningmodel, operating
on the TS-tools generated xTB proles (Fig. 4). The resulting
model – DeepReaction – can reproduce the DFT quality reaction
characteristics at near chemical accuracy.

Finally, we demonstrate how a rapid (yet less accurate and
robust) secondary graph-based ML model can subsequently be
used to expand the reaction search space beyond its original limits
at marginal additional cost, by identifying promising patches of
reaction space through reaction SMILES analysis, which can
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 2 A schematic representation of the proposed hierarchical workflow for data-efficient DA reaction screening for self-healing polymer
applications.
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subsequently be rened and validated with more expensive
methods.

By combining different model architectures, leveraging their
respective strengths, into a hierarchical model, we obtain an
extremely data-efficient QM-augmented ML workow28 for DA
reaction discovery, that can potentially be expanded towards the
discovery of other types of reactions as well.

Methodology
Denition of the initial chemical reaction space

Starting from a recent review by Briou et al.,48 an initial synthetic
dataset (Fig. 3A and B) was constructed by combinatorially
Fig. 3 Schematic overview of the chemical space explored. The dienes
symmetric to limit the number of possible diastereoisomers. (C) SAScore c
the activation free energies of the reactions studied at xTB level of theory.
plot between the activation free energy and the reaction free energy. Al

© 2025 The Author(s). Published by the Royal Society of Chemistry
matching previously experimentally considered diene and di-
enophile scaffolds with common substituents extracted from the
SciFinder database using the scaffolds as substructure queries.49

Only neutral, non-isotopically labeled, and commercially avail-
able compounds were considered, focusing exclusively on the
most common and chemically reasonable substituents. This
resulted in a total of 136 distinct dienes. For the dienophiles, 8
reactive scaffolds, derived from previous experiments, were
considered (Fig. 3B). By symmetrically decorating these with
common substituents, 53 unique dienophiles were obtained.

To underscore the realism of the diene and dienophile
libraries generated in this manner, synthetic accessibility (SA)
(A) are allowed to be asymmetric, while the dienophiles (B) are kept
omputed for the considered dienes and dienophiles. (D) Distribution of
(E) Distribution of the reaction free energies at xTB level. (F) Correlation
l the energies reported are in kcal mol−1.
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scores were computed for all compounds, and as can be
observed from (Fig. 3C), most fall in the range 1–4, and none
exhibit scores above 6, indicating that they should be readily
synthesizable.

By systematically combining components, we generated
7208 unique diene–dienophile pairs. Considering all potential
regio- and stereoisomers, this led to a total of 28 560 unique
reaction SMILES.37,50
Dataset generation and benchmarking performance

To construct an initial xTB level-of-theory51 dataset of activation
and reaction (Gibbs free) energies for the reactions present in
the chemical reaction space outlined in Fig. 2, a fully automated
workow based on the TS-tools47 package was developed. TS-
tools is an in-house developed Python package facilitating the
localization of transition states (TS) based on textual reaction
SMILES inputs.47 An in-depth discussion of the code, with
particular attention to some custom additions introduced
within the context of this study, primarily aiming to correctly
capture the stereochemistry of DA reactions, can be found in
Section S1 of the SI.

As indicated in the Introduction, at xTB level-of-theory, TS-
tools can process reactions at an almost negligible computa-
tional cost: 23 327 reaction proles were successfully computed
(success rate of more than 81%) on a single 72 CPU core
workstation in 9 days, totaling less than 15 000 CPU hours in
overall compute time, i.e., less than 1 h per reaction prole.
Benchmarking the xTB results against both high-level compu-
tational, as well as experimental, datasets (consisting of 19 and
100 activation energy values, respectively) reveals – as expected
for semi-empirical calculations – signicant quantitative
disagreement for the barrier heights. More specically, the MAE
for the experimental dataset amounts to 9.11 kcal mol−1 and
13.83 kcal mol−1 for the computational benchmarking dataset.
Nevertheless, it is important to note that the main reactivity
Fig. 4 A schematic overview of the geometry-based model for reaction
(xTB level) geometries of reactants, products, and TSs, as well as the x
embedded separately by passing it through DimeNet++, after which the
yield a final representation of the xTB reaction profile information. This
(FFNN) and mapped to the targets, i.e., the DFT level DG‡ and DrG.

Digital Discovery
trends are nicely recovered (R2 of 0.80 and 0.89 for the respective
datasets), implying that the xTB labels nonetheless have
signicant predictive value.

Next to the xTB dataset covering all the reactions present in
the full reaction space, we also computed a DFT renement on
a subset of 1580 reactions, which were sampled based on
a diversity criterion (see Section S4 and Fig. S6 of the SI for
additional details).28,52 We used the M06-2X functional53 (in
combination with the def2-TZVP basis set54) in our calcula-
tions,55,56 both because of its robust performance on the
experimental and computational benchmarking datasets (R2 of
0.90 and 0.97 respectively – though with an apparent tendency
to slightly overestimate the barriers systematically cf. Sections
S2.1 and S2.2), and because M06-2X performs exceptionally well
in most kinetics benchmarking studies, particularly those on
cycloaddition reactions.21,57 Overall, all DFT renements took
close to 200 000 CPU hours in total, implying that rening xTB
reaction proles across the entire reaction space would have
cost on the order of 3 000 000 CPU hours.
Geometry-based model for accurate prediction of reaction
characteristics

The geometry-based model, which we decided to call Deep-
Reaction, leverages all information available from the xTB-
generated reaction proles and makes use of a DimeNet++
module for structural embedding.58 The full architecture is di-
splayed in Fig. 4. In short, the model takes ve inputs: (xTB
level) geometries of reactants, products, and TSs, as well as the
xTB level activation (DG‡) and reaction (DrG) energy. Each
geometry is embedded separately by passing it through Di-
meNet++, aer which these embeddings are concatenated,
together with both DG‡ and DrG to yield a nal representation of
the xTB reaction prole information. This representation is
then passed through a feed-forward neural network (FFNN) and
mapped to the targets, i.e., the DFT level DG‡ and DrG.
characteristics prediction, DeepReaction. The model takes five inputs:
TB level activation (DG‡) and reaction (DrG) energy. Each geometry is
se embeddings are concatenated, together with both DG‡ and DrG to
representation is then passed through a feed-forward neural network

© 2025 The Author(s). Published by the Royal Society of Chemistry
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A limited hyperparameter search was performed for this
model; see SI Section S6 for details, as well as an overview of the
nal hyperparameters selected. A 10-fold cross-validation was
used to estimate the performance of the model, with an 80/10/
10 split for the training, validation, and test sets, in each fold.
To avoid data leakage, all reactions involving a given diene–di-
enophile pair were kept grouped in a single subset in every fold.
Graph-based ltering model

To facilitate preliminary ltering of DA reactions and enable
straightforward expansion of the search space (see Fig. 2), we
decided to make use of the ChemProp model architecture.29

Taking atom-mapped reaction SMILES strings as input,
ChemProp generates Condensed Graphs of Reaction (CGR)59

that are passed through a directed message-passing neural
network. This graph-based model was set up as a multi-target
model that outputs both predicted activation and reaction
energies.

In the rst instance, the model was trained on the small,
DFT-level dataset. Additionally, we also trained a second version
of the model on the larger 23 327 reaction dataset, where the
(close to) DFT-quality labels, outputted by the geometry-based
model, were used as the target. Details regarding hyper-
parameter search and selection can be found in Section S7 of
the SI. The nal performance of the model was again evaluated
through 10-fold cross-validation, and similar precautions to
avoid data leakage as for the geometry-based model were taken.
Results and discussion
Initial data analysis

Fig. 3D and E depict the distribution of the DG‡ and DrG for the
23 327 xTB level reaction proles. Corresponding plots for the
1580 DFT-rened reactions can be found in Fig. S5 in the SI;
similar distributions are obtained at both levels of theory, albeit
with a shied mean. In panel F, the correlation between the
activation and reaction free energy is presented. With an R2

value of 0.59, it is clear that the Bell–Evans–Polanyi principle60,61

is only partially recovered across the considered reaction space
(for the DFT rened reactions, the R2 value amounts to 0.58).
The lack of a strong correlation suggests that kinetics and
thermodynamics can be tuned fairly independently for DA
reactions. As such, it should be possible to identify reactions
that are thermoreversible and initiate self-healing over a broad
temperature range within the designed chemical reaction
space.

Another interesting preliminary observation is that
computed reaction entropies, DS

�
rxn, i.e., the entropy differences

(under standard conditions) between reactants and product, are
distributed in a very narrow range at both xTB and DFT level of
theory. This implies that fairly little control can be exerted over
the entropy through molecular modulation across the dened
reaction space. This is signicant, since reaction entropy is one
of the main determinants of whether a reaction will be ther-
moreversible or not, as it indicates the susceptibility of DrG
towards temperature changes.
© 2025 The Author(s). Published by the Royal Society of Chemistry
Of course, the reaction entropy in an actual polymer envi-
ronment will not be exactly the same as in the gas-phase envi-
ronment assumed in our DFT simulations, and neither will this
quantity stay perfectly constant across typical temperature
ranges associated with self-healing plastics. Nonetheless, one
can use the average DS

�
rxn to dene a very crude rule-of-thumb to

distinguish DA reactions that stand a reasonable chance of
being thermoreversible from those that are highly unlikely to
exhibit this behavior. A detailed discussion is provided in
Section S5 of the SI. Our back-of-the-envelope analysis suggests
that, focusing on temperature changes below 200 °C, reactions
that are exothermic by more than 15–20 kcal mol−1 ought to
stand no realistic chance of being thermoreversible.

In the remainder of our analysis, this rule-of-thumb will be
used as a guiding principle to gauge what fraction of the DA
reactions screened are of potential interest for self-healing
polymer applications.

Predicting DFT quality reaction characteristics across the
search space

Trained on the 1580 DFT quality reaction proles only, Deep-
Reaction, i.e., our geometry-based model, achieves an accuracy,
expressed in terms of MAE, of 1.19 kcal mol−1 for theDG‡ target,
and 1.72 kcal mol−1 for DrG. The corresponding root-mean-
square errors (RMSE) amount to 1.73 and 2.33 kcal mol−1. To
put this result in perspective, we also tested EquiReact, a state-
of-the-art equivariant neural network for reactivity prediction,
developed by van Gerwen and co-workers,62 on the same small
dataset, and achieved MAEs of 3.20 and 4.09 kcal mol−1,
respectively (the corresponding RMSEs amount to 4.26 and
5.15 kcal mol−1; see Section S6 in the SI). The graph-based
model architecture ChemProp, in its turn, reaches an inter-
mediate accuracy; 2.21 and 2.60 kcal mol−1, respectively, in
terms of MAE, and 3.03 and 3.78 kcal mol−1 in terms of RMSE
(cf. Section S7).29

The underlying reason for the signicantly superior accuracy
of our model is the fact that we also provide the crude TS
geometry, as well as the xTB level targets, as model inputs (see
Section S6 for a concise ablation study). Generating these inputs
doesn't come for free, of course, but since our in-house devel-
oped TS-tools code enables computation of full xTB-level reac-
tion proles at a cost of less than 1 CPU hour per reaction, we
considered this a relatively small price to pay for the markedly
enhanced accuracy. Especially when keeping in mind that
computing an additional DFT quality training point – to expand
the dataset and hence improve model accuracy of EquiReact/
ChemProp – is two to three orders of magnitude more expen-
sive on average (vide supra).

With our accurate geometry-based model, we predicted DFT
quality DG‡ and DrG across our designated reaction space. In
Fig. 5A, summarizing plots of the resulting data distribution are
provided.

Validating chemical concepts across the reaction space

Now that accurate (predicted) reaction proles are available for
all reactions in the search space, the validity of some chemical
Digital Discovery
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Fig. 5 (A) Bell–Evans–Polanyi plot for the synthetic reaction space, based on the energies predicted by our geometry-based model. (B)
Representation of the activation free energies predicted as a scatter plot of the normalized dienophile electrophilicity and normalized diene
nucleophilicity. (C) Confusionmatrix for the heuristic rule that (i) endo-pathways tend to be kinetically preferred, and (ii) exo-pathways tend to be
thermodynamically preferred. Diene-dienophile combinations for which the geometry-based model indicated that the energy difference
between the endo- and exo-stereoisomeric paths amounts to less than 1 kcal mol−1 were excluded from the analysis.
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concepts across this reaction class can be evaluated. From
Fig. 5A, one can already conclude that adherence to the Bell–
Evans–Polanyi principle is only moderate, in line with the
results presented for the xTB data in Fig. 3F.

Interestingly, we observe that reaction asynchronicity is
a major driver of the observed deviations from the Bell–Evans–
Polanyi principle, in line with previous, qualitative, observa-
tions.63 Indeed, focusing exclusively on the most synchronous
reactions, i.e., those for which the bond distance ratio for the
formed bonds in the TS is conned between 0.95 and 1.05, the
correlation between DG‡ and DrG improves markedly, achieving
an R2 of 0.70 (Fig. S12 in the SI).

Additionally, we took a closer look at the predictive power of
conceptual DFT reactivity descriptors (M06-2X/def2-TZVP).64–66

In Fig. 5B, a colormap of DG‡ as a function of the dienophile

electrophilicity (u ¼ m2

2h
; m = (3LUMO + 3HOMO)/2; h = (3LUMO −

3HOMO)/2) and diene nucleophilicity (N = 3HOMO − 3HOMO,ref; the
reference being tetracyanoethylene21,67) is plotted. From this
plot, one can observe, in line with previous observations derived
from a handful of model reactions,21 that the electrophilicity of
the dienophile appears to be correlated with the height of the
reaction barrier. In contrast, no clear correlation is observed
between the nucleophilicity of the diene and the activation
barrier.

Interestingly, for DrG, diametrically opposite conclusions
can be drawn (cf. Fig. S13 in the SI for the corresponding plot).
For this quantity, an (inverse) correlation with the nucleophi-
licity of the diene is observed, and no clear relationship with the
dienophile electrophilicity emerges. In line with the conclu-
sions from the Bell–Evans–Polanyi plot, we nd that the reac-
tions with the lowest barrier, i.e., those in the upper right corner
of Fig. 5B, are oen times slightly endothermic, and many
promising reactions that have optimal reactive properties for
self-healing polymer applications correspond to diene–di-
enophile combinations that do not exhibit maximized nucleo-
and electrophilicity values, respectively. This underscores the
Digital Discovery
merit of our ML based approach to identify suitable reactant
combinations.

Finally, we also aimed to validate the rule of thumb that the
formation of endo-stereomers tends to be kinetically preferred
(due to favorable through-space orbital interactions between
the approaching reactants), whereas the formation of exo-
stereomers tends to be thermodynamically preferred (due to
more favorable steric interactions in the product). In Fig. 5C,
a confusion matrix is shown in which every diene–dienophile
pair is classied based on these two criteria, i.e., whether the
reaction pathway with the lowest activation energy is endo
ðDG‡

endo\DG‡
exoÞ, and whether the most exothermic pathway is

exo (DrGexo < DrGendo). It can be observed that this heuristic rule
has only moderate predictive power: both criteria are fullled
a mere 42% of the time; 6% of diene–dienophile combinations
violate both criteria. Note that the confusion matrix obtained
for the entire search space, based on the predicted values,
matches almost perfectly the matrix obtained exclusively for the
subset explicitly computed at the DFT level (Fig. S14).
Identifying plausible reactions for self-healing polymer
applications

The predictions generated using our geometry-based model
indicate that a large fraction of the search space, 12 480 reac-
tions in total, exhibits a DrG between 0 and −20 kcal mol−1. The
corresponding distribution of DG‡ is shown in Fig. 6A. Clearly,
the range of activation free energies is broad, with the bulk of
them falling between 30 and 40 kcal mol−1. To zoom in on the
discovery of diene–dienophile pairs that could result in poly-
mers that self-heal at relatively low temperatures, we imposed
an initial cut-off at 30 kcal mol−1. This corresponds to the
computed DG‡ of the furane–maleimide pair, the diene–di-
enophile pair for which self-healing properties were rst
observed, and for which the retro-DA reaction was triggered at
around 150 °C.20,21 2892 reactions are below this threshold,
corresponding to 1160 unique diene–dienophile pairs, repre-
senting 16% of the total search space.
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 6 (A) Distribution of the predicted activation energies (DG‡) for the reactions which satisfy −20 < DrG < 0 kcal mol−1. (B) Schematic
representation of the different filters applied to select the most relevant pairs. (C) Some representative examples of diene–dienophile pairs that
have a predicted DrG between −10 and 0 kcal mol−1 and a predicted DG‡ lower than 30 kcal mol−1. All the energies reported are in kcal mol−1.
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Rening 100 randomly sampled examples from the set of
retained reactions at DFT level conrms the excellent perfor-
mance of our model, even when applied to reactions towards
the edge of the training data distribution: for DG‡, an MAE of
1.36 kcal mol−1 and an RMSE of 2.04 kcal mol−1 is obtained
between computed and predicted values; for DrG, an MAE of
2.06 kcal mol−1 and an RMSE of 2.80 kcal mol−1 is achieved.

Reducing the activation energy cut-off threshold rapidly
reduces the number of retained reactions: at 25 kcal mol−1, the
number of reactions is reduced to 1357 (corresponding to 551
pairs); at 20 kcal mol−1, only 476 reactions, i.e., 209 pairs, are
retained. This indicates that only a tiny fraction of the reaction
search space involves diene–dienophile pairs that could give
rise to polymers able to self-heal at relatively low temperatures.

To increase the odds of synthetic feasibility further, we
subsequently applied an additional round of ltering to the
reactions that fell within the suitable activation and reaction
energy windows. Specically, we removed dienes or dienophiles
that could plausibly undergo ketone–enol tautomerism, that
contained potentially hydrolysable motifs, or that exhibited
competitive intramolecular DA reactions (see Fig. 6B; cf. Section
S.5.3 for more information). We emphasize that these lters
were applied in a deliberately conservative manner: in practice,
the extent of tautomerization or hydrolytic instability is to some
extent context- and substitution-dependent, and not all of the
excluded motifs would necessarily be problematic under
experimental conditions. However, by discarding the gray-zone
cases, we ensured that the remaining subset represents a strin-
gent lower bound of reactions that are unlikely to pose issues in
a synthetic setting. Aer this ltering step, 1288 reactions
survive; a sample of these promising candidate reactions is
shown in Fig. 6C.
Setting up a fast graph-based ltering model

As indicated above, training the graph-based ChemProp archi-
tecture directly on the 1580 reaction DFT-level dataset results in
an (interpolative) MAE of 2.21 and 2.60 kcal mol−1 for DG‡ and
DrG, respectively. This is signicantly worse than the perfor-
mance achieved by our geometry-based model discussed above,
and still relatively far from chemical accuracy. Nonetheless, this
© 2025 The Author(s). Published by the Royal Society of Chemistry
model can be expected to robustly recover meaningful trends
(R2 = 0.89 and 0.94 for DG‡ and DrG, respectively), and hence be
employed, in principle, to screen previously uncharted territory
– adjacent to the current search space – to identify reactions that
could be of interest (vide infra).

An alternative version of this model was developed as well,
where the more expansive 23 327 reaction dataset, with (close
to) DFT quality labels predicted by the DeepReaction model,
was used for training. On this extended dataset, the model
achieves an (interpolation) accuracy of 1.05 and 1.40 kcal mol−1,
respectively. This result suggests that the graph-based Chem-
Prop model can, in principle, reach accuracies similar to the
ones of our geometry-based model, despite not having access to
the geometric details of the reaction pathways. The main
difference between the model architectures, however, lies in the
data efficiency: ChemProp needs around an order of magnitude
more – computationally expensive – reference data to reach
a similar accuracy as DeepReaction (see Fig. S15 in the SI for the
respective learning curves).

It is important to underscore that, in practice, the second
version of the ChemProp model developed is not necessarily
going to be more accurate than the rst one, since the labels for
the former inherently contain noise due to the prediction error
of DeepReaction. At the same time, one might expect the latter
to exhibit a better generalization potential, as it is trained on
a broader reaction space. To test whether dataset expansion
based on predicted labels can indeed be a viable tactic to
increase model robustness, we will compare the performance of
both ChemProp versions in the nal sections below.
Expanding the covered chemical reaction space

As a rst test of our envisioned hierarchical approach, where
a graph-based model is used for pre-screening, aer which
a geometry-based model helps to ne-tune the predictions in
regions of interest (cf. Fig. 2), we explicitly enumerated a new DA
reaction space, adjacent to the one previously considered. 15
889 reactions were generated, by exhaustively combining 87
new dienes with the previously considered dienophiles (see
Fig. 7A for an overview of the new dienes probed).
Digital Discovery
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Fig. 7 (A) The 87 dienes included in the expansion of the chemical reaction space. (B) Representative examples of reactions found to be
reversible by the DeepReactionmodel in the expansion of the chemical space. (C) Representative examples of reactions found to be reversible by
the DeepReaction model in the ZINC NP database. In bold the bonds involved in the reaction. The energies reported are in kcal mol−1 and they
were computed at the M06-2X/def2-TZVP level.
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Since the original synthetic reaction space, enumerated and
analyzed before, contained fairly few diene–dienophile pairs
that could potentially give rise to polymers that self-heal at mild
temperatures, we focus in the rst instance on discoveringmore
of those. As such, we applied (the rst version of) our ChemProp
model, and selected all the reactions in the newly generated
space predicted to be exothermic by up to 20 kcal mol−1, and to
exhibit barriers below 25 kcal mol−1. For the resulting 197
reactions, a geometry-based validation, followed by DFT
conrmation, was performed. Comparing the computed labels
with the ones predicted by the different models, immediately
reveals that the accuracies of all models deteriorate notably –

which is not entirely surprising, as we are now unequivocally
extrapolating well beyond the original training domain (cf.
Section S12 of the SI). For DeepReaction, the deterioration in
performance is limited in absolute terms (MAE and RMSE for
DG‡ amount to 1.9 and 2.5 kcal mol−1, respectively; for DrG, 2.8
and 3.6 kcal mol−1 are obtained). The ChemPropmodels, on the
other hand, become markedly less reliable in extrapolation
mode (MAEs for both targets fall in a range between 4 and
5.5 kcal mol−1).

It is nonetheless noteworthy that the second version of the
ChemProp model, i.e., the one trained on all 23 327 labelled
data points, fares signicantly better than the rst version. For
DrG, the improvement in MAE amounts to 1 kcal mol−1, for DG‡

0.5 kcal mol−1. The superior performance of the second version
is however most accentuated in terms of the correlation coeffi-
cient between predicted and computed DG‡: whereas the rst
model fails to capture any ne-grained trend and simply clus-
ters the barriers for all selected reactions around 20 kcal mol−1

(R2 = 0.03), the second ChemProp model does manage to
differentiate between relatively high- and low-barriers within
the selection window reasonably well (R2 = 0.48).

These observations nicely conrm our expectation regarding
the relative generalization potential of these models, and
demonstrate – at least for this rst test case – that the gains
from expanding the training set size trump the uncertainty
induced by using (noisy) DeepReaction predicted labels.

In total, 107 reactions were validated with DFT to adhere to
the criteria indicated above. Some representative examples are
shown in Fig. 7B. Clearly, we can expand the pool of plausible
Digital Discovery
thermoreversible DA reactions with low barriers with our hier-
archical approach, and this at a marginal computational cost.
Further expansion towards bio-based reactants

From a sustainability perspective, it would be particularly
appealing if (self-healing) plastics could be synthesized starting
from bio-based building blocks. As such, as a nal application,
we also aimed to mine ZINC NP,68,69 a database containing 76
615 commercially available natural products, for suitable DA
reactions for self-healing polymer applications. A full overview
of the ltering steps taken to obtain a list of plausible dienes
and dienophiles can be found in Section S12 of the SI. In total,
84 potential dienes and 423 potential dienophiles are identied,
which leads to 308 261 DA reactions in total. We emphasize
that, in the present context, ‘natural products' are primarily
used to probe chemical diversity, not to imply direct feasibility
as biomass-derived feedstocks; economic and production-scale
considerations are a separate matter that would require further
scrutiny.

As a rst step, we applied the same strategy as above, i.e., the
rst ChemProp model was used to pre-select promising reac-
tions, aer which DeepReaction validations, and DFT conr-
mations, were performed (see Section S12 in the SI for a detailed
discussion). Similar trends are obtained as before, i.e., Deep-
Reaction retains its robustness the best, still reproducing the
DFT labels with reasonable accuracy, and the second ChemProp
model signicantly outperforms the rst one. Particularly
noteworthy here is the extremely poor extrapolation perfor-
mance of the rst ChemProp version: for DG‡, its MAE amounts
to a whopping 11 kcal mol−1 (almost 4 kcal mol−1 worse than
the second version); for DrG, the MAE amounts to a slightly less
dramatic 5.3 kcal mol−1 (which is still almost 1 kcal mol−1

worse than the second model).
Based on these results, we decided to perform the nal pre-

screening of the ZINC NP database with the second ChemProp
model. Across the enumerated reaction space, 4245 reactions
are identied as potentially suitable. Grouping these reactions
by diene–dienophile pair, and selecting for each pair the reac-
tion with the lowest predicted activation energy, 1277 reactions
were selected for xTB reaction prole computation, followed by
DeepReaction renement. Based on these nal predictions, the
© 2025 The Author(s). Published by the Royal Society of Chemistry
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32 most promising reactions were selected for a nal DFT
validation. Gratifyingly, all these reactions are computed to
adhere to the rst criterion listed above, i.e., DrG between −20
and 0 kcal mol−1; the second criteria, i.e. DG‡ < 30 kcal mol−1, is
respected by 28 of them, with the highest computed barrier
amounting to 32.95 kcal mol−1 (see Fig. 7C for some repre-
sentative examples of validated reactions).

It is noteworthy that even for the reactions, emerging as the
most promising from our analysis, the computed barriers are all
clustered within the 25–30 kcal mol−1 window. This suggests
that the potential to discover purely bio-based reactions for
ultra-low temperature self-healing plastics may be limited, and
that synthetic reaction spaces like the ones outlined above
provide more opportunities to identify DA reactions with
optimal reactive properties.

Nonetheless, the analysis above clearly demonstrates that, in
general, our hierarchical workow also enables identication of
promising bio-based candidate reactions for self-healing poly-
mer applications, even though we did not set up our models
explicitly for this purpose. Due to the limited generalization
ability of ChemProp, plenty of “false positive” reactions tend to
survive the initial ltering step this time around, but the
secondary ltering with our geometry-based model readily
identies those, so that computational resources can be focused
on DFT validation of the reactions that are the most likely to
have desirable properties.
Conclusion

In this study, we have presented a hierarchical, data-efficient
workow to efficiently discover suitable DA reactions for self-
healing polymer applications. Leveraging our in-house TS-
tools soware to rapidly generate reaction proles, we built
two complementary ML models: a rapid, yet less accurate,
graph-based model, and a slower, but more precise, geometry-
based one. We demonstrated how the former can be used to
crudely screen extensive chemical reaction spaces, consisting of
hundreds of thousands, or even millions, of individual reac-
tions on-the-y, while the latter facilitates a more ne-grained,
DFT-quality validation. Interestingly, we observe that using the
latter model to generate synthetic training data for the former
improves model robustness and accuracy, opening an inter-
esting avenue to reduce the cost of training data generation in
chemical reaction discovery/screening studies. We demon-
strated the capabilities and accuracy of our approach by
screening on the one hand a comprehensive synthetic reaction
space, covering most of the building blocks previously consid-
ered within the context of DA reactivity for self-healing polymer
applications, and on the other hand, mining a larger database
of commercially available natural products, ZINC NP. We
discovered a broad range of suitable reactions across both
databases, at negligible computational cost. All the identied
candidate DA reactions, as well as all the models and datasets
generated as part of this study, have been made publicly avail-
able and will hopefully inspire the development of new self-
healing plastics, tailored to specic applications.
© 2025 The Author(s). Published by the Royal Society of Chemistry
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