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A key goal of modern materials science is accelerating the pace of materials discovery. Self-driving labs, or

systems that select experiments using machine learning and then execute them using automation, are

designed to fulfil this promise by performing experiments faster, more intelligently, more reliably, and

with richer metadata than conventional means. This review summarizes progress in understanding the

degree to which SDLs accelerate learning by quantifying how much they reduce the number of

experiments required for a given goal. The review begins by summarizing the theory underlying two key

metrics, namely acceleration factor AF and enhancement factor EF, which quantify how much faster and

better an algorithm is relative to a reference strategy. Next, we provide a comprehensive review of the

literature, which reveals a wide range of AFs with a median of 6, and that tends to increase with the

dimensionality of the space, reflecting an interesting blessing of dimensionality. In contrast, reported EF

values vary by over two orders of magnitude, although they consistently peak at 10–20 experiments per

dimension. To understand these results, we perform a series of simulated Bayesian optimization

campaigns that reveal how EF depends upon the statistical properties of the parameter space while AF

depends on its complexity. Collectively, these results reinforce the motivation for using SDLs by

revealing their value across a wide range of material parameter spaces and provide a common language

for quantifying and understanding this acceleration.
1. Introduction

The pace of research progress is in sharp focus due to pressing
societal needs demanding the discovery of new materials.1 The
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eld of autonomous experimentation (AE) is addressing this
challenge by developing automated systems that increase the
rate and reliability of experiments while also developing algo-
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goals.2–4 The combination of these elements is termed a self-
driving lab (SDL) (Fig. 1A), in which experiments are algorith-
mically selected and performed without human intervention.5

Such systems have rapidly expanded from the rst SDL for
materials research less than a decade ago to now being common
across materials, nanoscience, additive manufacturing, and
chemistry.6–13 The vanguard of this eld has moved from
demonstrations of these systems to using them for materials
discoveries that have been forthcoming in areas such as
lasing,14 mechanics,15 and battery materials.16

While SDLs are increasingly common, their value proposi-
tion has yet to be fully articulated, and different denitions and
metrics have been proposed. Several of their virtues can be
easily quantied and appreciated, such as how automation can
allow additional experiments to be performed per unit time.17,18
Fig. 1 (A) Schematic of the workflow of a self-driving lab (SDL). (B)
Representative performance convergence plot, also known as a horse
race plot, illustrating enhancement factor EF and acceleration factor
AF. EF quantifies relative performance after a fixed number of exper-
iments, while AF quantifies the reduction in the number of experiments
required to reach a target performance. Both metrics are defined
relative to a reference strategy, such as sampling the space uniformly
at random.

Digital Discovery
Amore subtle metric is howmuch they accelerate research, with
reports ranging from 2× to 1000×.17 One reason for this chal-
lenge is that quantifying the acceleration of research progress
requires comparing the advanced strategy to some reference
strategy, oen necessitating additional experiments that do not
directly contribute to the domain science being explored.
Nevertheless, studies have established and explored different
metrics that quantify the degree to which AE improves research
outcomes. Two metrics that stand out are acceleration factor AF
and enhancement factor EF that describe how much faster or
better one process is relative to another (Fig. 1B).19,20 These
metrics are compatible with experimental campaigns as they do
not require the parameter space to be fully explored or the
optimum to be known. However, comparisons are not always
possible because the values of these metrics are not always re-
ported, they depend on the benchmark approach, and they
depend sensitively on the details of the space being explored in
a manner that has not been explored for materials.

In this paper, we review the existing experimental results
that benchmark the acceleration inherent to SDLs and provide
insight into how to interpret these metrics. We begin by
dening EF and AF while providing the theoretical foundation
for how these should behave in a typical active learning
campaign. Next, we summarize the efforts in the community to
provide experimental benchmarking. Finally, we perform basic
simulations that provide context for interpreting EF in different
parameter spaces. This review should help interpret accelera-
tion values reported, provide guidance for the most impactful
circumstances in which to apply active learning, and suggest
future work in curating high-quality materials datasets for
rening algorithms with direct application to materials science.

2. Theory

The canonical task for a materials or chemistry SDL is to run
a campaign to optimize a measurable property y that depends
on a set of parameters~x: Here, y can be a scalar or a vector with
the latter being the purview of multi-objective optimization.
Like the majority of benchmarking, we consider scalar objec-
tives for simplicity and adopt the language of maximization,
although the same logic applies to minimization tasks. The
input parameter space has a nite dimensionality d, and the
variables can represent compositions, processing conditions,
other conditions of the experiment, or even latent variables
found using unsupervised learning. With these denitions, the
goal of the campaign is to identify the conditions
~x* ¼ arg maxðyð~xÞÞ: Aer experiment number n in the
campaign, the progress towards this goal can be quantied by
considering how close the current observed maximum
y*ðnÞ ¼ maxðyð~xnÞÞn is to the true maximum y* ¼ maxðyð~xÞÞ:
Interestingly, if the campaign proceeds by selecting experi-
ments uniformly at random across~x; this average progress has
a closed-form solution that depends upon the cumulative
distribution function Fy(y).19 Specically, the average perfor-
mance aer n experiments corresponds to the performance at
which there is a 50% chance that no larger value has been
observed, or
© 2025 The Author(s). Published by the Royal Society of Chemistry
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1

2
¼ Fy

�
y*randðnÞ

�n
; (1)

where y*randðnÞ is the expected maximum performance from
random sampling (i.e. we take an ensemble-median of the
maximum of n samples drawn uniformly at random). At n = 1,
y1 = median(y) and yn approaches y*(n) as n / N. This simple
analysis illustrates that the convergence of a simple decision-
making policy depends intimately on the details of the param-
eter space.

While it is reasonable to derive closed-form solutions for ex-
pected convergence when the property space is known, for real
materials systems, y is unknowable except through experiment.
The nature of continuous variables and the presence of noise in
measurements mean that ground truth will never be completely
known. This makes it impossible to predict how fast convergence
is expected or even when the process has fully converged. Thus,
benchmarking learning using an SDL involves completing two
campaigns, an active learning (AL) campaign designed to test the
learning algorithm along with a reference campaign guided by
a standard method. From a benchmarking perspective, the most
relevant data available are the best performance observed in the
rst n experiments, dened as y*ALðnÞ for the AL campaign and
y*refðnÞ for the reference campaign. There are two main ways of
comparing these sets of data.19,20 The rst metric is the acceler-
ation factor (AF) that is dened as the ratio of n needed to achieve
a given performance yAF, namely,

AFðyAFÞ ¼ nref

nAL

; (2)

where nAL is the smallest n for which y*ALðnÞ$ yAF while nref
satises the same condition for the reference campaign. Larger
values of AF indicate a more efficient AL process. The second
metric is the enhancement factor (EF) that is dened as the
improvement in performance aer a given number of experi-
ments, namely

EFðnÞ ¼ y*ALðnÞ
y*refðnÞ

: (3)

EF presents an interesting limit when considering bench-
marking using random sampling. Specically, the very best
outcome of an active learning campaign would be y* while the
worst median performance possible using random sampling
would be median(y), which is y*rand at n = 1. This leads us to
dene the contrast C of the property space as,

C ¼ y*

medianðyÞ ; (4)

which denes the best possible EF that could be found when
studying that property space. Between the two metrics EF and
AF, EF is oen more convenient to compute as it is dened vs. n
and thus can be calculated at all points for reference and
benchmark campaigns that have the same number of
experiments.

The choice to dene progress in terms of the maximum
experimentally observed value rather than the maximum value
predicted by a surrogate model deserves further discussion.
Ultimately, these values will converge as a campaign progresses
© 2025 The Author(s). Published by the Royal Society of Chemistry
due to most optimization algorithms naturally including
exploitative steps. However, the surrogate model may differ
greatly from experiment especially early in the campaign. Thus,
in order to condently assess progress using the surrogate
model, one would have to perform an experiment using the
parameters that correspond to the maximum value predicted by
the surrogate model. This is readily accessible for analytical
functions but would double the experimental budget for
experimental campaigns. If such validations are desired, an
algorithm can mix in purely exploitative steps, but these should
count as experiments in the experimental budget.

3. Literature survey

As a goal of the SDL eld is accelerating progress, much work has
been dedicated to benchmarking the acceleration of these
systems. To comprehensively consider the literature that
benchmarks active learning, we began with a broad literature
search (Fig. 2). We searched the Scopus database using the
keywords “Bayesian optimization” combined with “benchmark.”
As the eld of optimization research extends far beyond its
overlap with materials or SDLs, this search yielded considerable
results with 4245 publications matching these keywords
(Fig. 2A). The keyword “Bayesian optimization” was chosen due
to its prevalent adoption for active learning in the eld of
material science while the term active learning is widely used for
an unrelated method in education. Most studies outside mate-
rials science utilized analytical functions or look-up tables that
are designed to be challenging to optimize and thus provide
insight into comparisons between learning approaches. While
this broad survey is useful for evaluating active learning strate-
gies, our focus is to evaluate benchmarking using actual experi-
mental materials datasets. To narrow down the search to those
that involved benchmarking using self-driving labs, we con-
ducted a search with the broad term “self-driving lab”, resulting
in 111 studies. Aer examining each study, only 40% of these
articles reported direct efforts to benchmark performance. These
data are provided at https://doi.org/10.5281/zenodo.17287854.

While “Bayesian optimization” was used as a keyword in the
initial Scopus search, this literature analysis includes all SDL
papers that report benchmarking including those that do not
use BO. That said, almost all SDL studies used BO. Reinforce-
ment learning21 and genetic algorithms22,23 have also been used
and their results are included in this analysis.

Having narrowed down the eld to a targeted set of papers
considering experimental materials data, we set out to more
fully compare this subset of the literature. The reviewed litera-
ture spans a diverse range of material domains, including
electrochemistry,19,24–28 bulk materials discovery,23,24,29–35 spec-
troscopy and imaging,24,36 mechanics,37–41 nanoparticle and
quantum dot synthesis,21,42–46 and solar cell or device
optimization.22,24,32–34,47 This diversity underscores the breadth
of SDL applications and highlights the variety of experimental
contexts in which AF and EF are reported. This breadth of
methods makes establishing reproducible results very impor-
tant. Indeed, reproducibility is a key challenge in SDLs and
efforts promote reproducibility have employed computer
Digital Discovery
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Fig. 2 Trends in SDL benchmarking studies: (A) Summary of the Bayesian optimization benchmarking studies. The pie chart details the studies
that involve SDLs. (B) Sunburst diagram depicting benchmarking results from SDL studies. The inner ring depicts the benchmarking type
(experimental, retrospective, and computational), the middle ring describes the reported metric, and the outer ring depicts the reference
campaign (random sampling, Latin hypercube sampling - LHS, grid-based sampling, human-directed sampling, or algorithmic to reflect
a different active learning process than Bayesian optimization). (C) Bar chart showing the number of SDL benchmarking studies that utilize each
type of reference used for comparison.
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science abstractions,48 novel programming languages,49 and
knowledge graph-based approaches.50 That said, the stochastic
nature of active learning can lead to campaigns having different
values of AF or EF even when performed in the same lab. Thus,
while important, experimental benchmarking may not be the
ideal method for evaluating reproducibility, at least on the basis
of individual campaigns.
3.1 The source of the data

Benchmarking can be categorized by the source of the data,
which falls into three categories.19–27,29–40,42–46,51–61 Experimental
benchmarking are studies that complete at least two indepen-
dent campaigns of experiments comparing an AL strategy to
a reference strategy using unique physical experiments. This is
the most informative class of benchmarking as it captures both
statistical and systematic sources of experimental variability.
However, this may be impractical, as it requires additional
experiments that can be resource-intensive or beyond the scope
of a materials study. A more attainable category of bench-
marking is retrospective, where tables of previously completed
experiments are used as ground truth for simulated campaigns.
This approach has the advantages of being faster and less
resource-intensive while also featuring known optima.
However, decision-making policies are forced to become
discrete to align with the existing data, the parameter space is
vastly constricted, and noise becomes embedded into the
Digital Discovery
system. Nevertheless, this approach is popular as a method to
tune hyperparameters and compare algorithms. Computational
benchmarking comprises running a campaign that queries an
analytical function or computational model. This process can
be fast, inexpensive, and the optima can be known for analytical
functions. As such, these are extremely common in materials
science and the broader optimization community for bench-
marking AL algorithms. Here, we choose not to include
benchmarking based on purely analytical functions and instead
focus on studies that use data relevant to materials experi-
ments, as these will provide the most direct articulation of the
acceleration inherent to SDLs in materials research.

Retrospective analysis is the most common type of SDL
benchmarking (Fig. 2B). For instance, Rohr et al. used a dataset
of 2121 catalyst compositions collected using high-throughput
experimentation spanning a six-dimensional electrocatalytic
metal oxide space to benchmark various sequential learning
models evaluated such as Gaussian process (GP), random forest
(RF), and least-squares estimation (LE).19 The analysis, which
was conducted over 1000 learning cycles, revealed up to a 20-
fold reduction in the number of experiments required to nd
top-performing oxygen evolution reaction catalysts, comparing
GP to random sampling. The study also evaluated the effect of
exploration-exploitation tuning and dataset type on model
performance. Similarly, Liu et al. developed an SDL to optimize
the open-air perovskite solar cell manufacturing process and
© 2025 The Author(s). Published by the Royal Society of Chemistry
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benchmarked its BO framework using a regression model
trained on experimental data.34 They ran 300 iteration steps
comparing standard BO and BO with knowledge constraint
against Latin hypercube sampling (LHS), factorial sampling
with progressive grid subdivision (FS-PGS), and one-variable-at-
a-time sampling (OVATS). The BO methods consistently out-
performed the others, showing up to a 10-fold enhancement in
power conversion efficiency relative to LHS and FS-PGS.

Experimental benchmarks, while less common, are the most
representative of real-world variability and experimental
constraints. For example, Liu et al. had a limited budget of less
than 100 process conditions, which limited experimental
benchmarking to only standard BO vs. LHS.34 Within 85 process
conditions, BO identied four times as many high-performing
perovskite lms as LHS. As a separate example, Wu et al.
benchmarked the efficiency of a BO-guided gold tetrapod
nanoparticle synthesis against random search over an experi-
mental run of 30 iterations. The BO algorithm utilized in this
work, Gryffin, uses a Bayesian neural network to construct
a kernel regression surrogate model. The algorithm was
benchmarked based on four hierarchical objectives related to
the plasmonic response of the particles. While random
sampling occasionally satised three of the objectives, it failed
to meet the nal objective within the experimental budget. One
note about experimental benchmarking is that campaigns used
for benchmarking oen do not consider the experiments per-
formed to establish the bounds of the parameter space or
develop the SDLmore generally. While this may be a substantial
amount of work, it encourages researchers to use SDLs for
prolonged campaigns to amortize this overhead.

Computational analyses, although sampled more selectively
in this review due to our focus on benchmarking strategies that
use experimental data, remain a valuable tool for comparing
algorithmic strategies. Jiang et al. developed a chemical
synthesis robot, AI-EDISON, for gold and silver nanoparticle
synthesis with the goal of optimizing their optical properties.44

As part of their workow, they benchmarked AI-EDISON against
random search in a simulated chemical space using PyDScat-
GPU, a simulation tool based on discrete dipole
approximation-based simulations. During a campaign with 200
steps, the algorithm outperformed random search by the 27th
step, identifying samples from nine of ten spectral classes and
completing all ten by the 78th step. In terms of mean tness,
which measures the similarity of a sample's spectrum to the
target, AI-EDISON reached the performance achieved by 200
random steps in just 25 iterations guided by the algorithm.
Annevelink et al. likewise developed a framework for electro-
chemical systems, AutoMAT, with input generation from atomic
descriptors to continuum device simulations such as
PyBaMM.25 Compared to random search, AutoMAT found top-
performing Li-metal electrolytes and nitrogen reduction reac-
tion catalysts in 3 and 15 times fewer iterations respectively.
3.2 The nature of the reference campaign

A central consideration when benchmarking learning is
deciding how to select experiments for the reference campaign.
© 2025 The Author(s). Published by the Royal Society of Chemistry
We highlight the four most used reference methods. Random
sampling involves choosing each experiment uniformly at
random in the parameter space. Random sampling is simple to
implement and will converge in a predictable manner, as
described by eqn (1). Furthermore, the total number of experi-
ments does not have to be chosen prior to the campaign, which
facilitates analysis and data reuse. Grid-based sampling
involves dividing the parameter space into uniformly spaced
intervals. It is easy to implement and will provide a balanced
view across parameter space, but at the cost of needing to
specify the total number of experiments a priori. Latin hyper-
cube sampling (LHS) combines the even distribution of grid
sampling with the perturbations of random sampling to provide
a balanced picture of parameter space while using any number
of points. This is generally the preferred method for obtaining
data when performing initial training campaigns. Like grid
sampling, an LHS campaign cannot be stopped early without
having a biased data distribution and relying on evenly
distributed samples may over-sample at regions while poten-
tially missing areas with sharp transitions. Human-directed
sampling is the non-SDL state of the art and provides a useful
comparison when evaluating whether the algorithm is
providing value. However, human-directed sampling is time-
consuming and introduces variability and bias from indi-
vidual decision-making. All four of these methods have been
explored for benchmarking (Fig. 2C).

Across the reviewed SDL papers, which include 42 unique
studies and 63 reported benchmarks, the most fundamental
and widely adopted baseline is random sampling. MacLeod
et al. evaluated their SDL, Ada, for multi-objective optimization
of palladium lm synthesis, balancing conductivity and
annealing temperature.22 In a simulated campaign using
a model built from experimental data, Ada's q-expected hyper-
volume improvement (q-EHVI) strategy achieved twice the
hypervolume of random sampling within 25 steps and reached
a hypervolume achieved by 10 000 random samples in just 100
steps. Similarly, Bai et al. developed a platform to explore the
copper antimony sulde (Cu–Sb–S) compositional space for
photo-electrocatalytic hydrogen evolution. In this experimental
benchmarking study, the Bayesian optimizer revealed a Cu–Sb–
S composition that exhibited 2.3 times greater catalytic activity
than results from random sampling.

Many SDL studies compare performance between algo-
rithms, which frequently includes variants of BO (e.g., differing
surrogate models, acquisition functions, or kernels),52 as well as
hybridized approaches involving evolutionary algorithms,22,23 or
reinforcement learning.21 For instance, Ziomek et al. proposed
a length scale balancing GP-UCB (LB-GP-UCB), a BO variant
with an upper condence bound (UCB) acquisition function
that aggregates multiple GPs with different length scales to
address the challenge of unknown kernel hyperparameters.41

They retrospectively benchmarked the performance of LB-GP-
UCB against adaptive GP-UCB (A-GP-UCB),62 maximum likeli-
hood estimation (MLE),63 and Markov chain Monte Carlo
(MCMC)64 using the crossed barrel37 and silver nanoparticle65

datasets. For both datasets, LB-GP-UCB consistently found the
Digital Discovery
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Fig. 3 Acceleration factor (AF) vs. input parameter space dimension-
ality d across benchmarking SDL studies, with corresponding AF
frequency.
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optimal solution with fewer experiments, specically requiring
40% fewer trials than MLE and MCMC.

A relatively small number of studies reported performance
relative to LHS and grid-based sampling. Gongora et al. devel-
oped the Bayesian experimental autonomous researcher (BEAR)
to optimize the toughness of crossed barrel structures.37,60 They
benchmarked its performance against grid sampling, where the
4D design space was discretized into 600 points, each tested in
triplicate. The BEAR running on a BO framework with an ex-
pected improvement (EI) acquisition function discovered
higher-performing structures with 18 times fewer experiments.
Also, Bateni et al. developed an SDL, Smart Dope, for space
exploration and optimization of lead halide perovskite (LHP)
quantum dots (QDs).42 Using LHS, 150 initial experiments were
conducted across the nine-dimensional space to generate
training data for closed-loop optimization. Smart Dope, also
running BO with an expected improvement acquisition func-
tion, achieved a photoluminescence quantum yield (PLQY) of
158% aer just four closed-loop iterations, exceeding the 151%
maximum obtained by LHS. This suggests that LHS and grid-
based sampling's xed intervals may over-represent at
regions while missing sharp transitions.

Human-directed sampling, where expert researchers select
experimental conditions based on intuition and domain
knowledge, also appears in the reviewed SDL literature, and it
provides a useful comparison between SDLs and conventional
experimentation. Nakayama et al. benchmarked BO against
human-directed sampling using a one-dimensional model of
synthesis temperature optimization.51 Human experts required
13–14 trials to nd the global optimum, while BO required only
ten steps with the appropriate acquisition function and hyper-
parameters. The search efficiency of BO demonstrated in this
simple 1D case is expected to grow in higher-dimensional
spaces where human intuition is more limited. Sheilds et al.
benchmarked the performance of BO against 50 expert chem-
ists using high-throughput experimental data covering a ten-
dimensional parameter space for optimizing the yield of
direct arylation of imidazoles.59 To reduce bias, the perfor-
mance was averaged across the 50 human participants and 50
runs of the Bayesian optimizer, each conducted over 100 steps.
While humans achieved 15% higher yield in the rst ve
experiments, by the 15th experiment, the average performance
of the optimizer surpassed that of the humans. BO consistently
achieved >99% yield within the experimental budget, and
within the rst 50 experiments, it discovered the global
optimum that none of the experts found.

It should be noted that, as the eld matures, future workmay
focus more on comparing advanced strategies to one another
rather than comparing advanced algorithms to comparatively
inefficient benchmarking approaches such as random
sampling. While this is a valuable pursuit and highly relevant to
accelerating materials discovery, it may make it challenging to
compare the values reported by different studies. Fortunately,
metrics such as AF and EF can be applied in a multiplicative
fashion if compared at specic y or n, respectively. Thus, it may
be possible to relate such advanced comparisons back to
random sampling, which has the advantage of being
Digital Discovery
a deterministic function of the cumulative distribution function
of a property space.

3.3 Meta analysis of reported benchmarking

To visualize the reported SDL benchmarking, we extracted AF
from studies spanning a range of d (Fig. 3). Overall, the reported
AF spanned a wide range, from 1.3 to 100, highlighting the
variability in how effectively active learning accelerates research
across different experimental domains. The median reported
AF was 6. Interestingly, AF appeared to increase with increasing
d, suggesting that the “curse of dimensionality” was managed
more effectively by active learning than by random sampling.
From a learning efficiency perspective, this suggests a “blessing
of dimensionality” in which higher-dimensional spaces provide
more incentive to use advanced learning algorithms. A
summary of the AF values is provided in Table 1. To provide
some notable examples, at the low end, an AF of 1.3 was
observed in a 1D temperature-dependent synthesis optimiza-
tion task, where the number of iterations required for BO to
locate the global maximum was compared to that required by
a human researcher.51 At the high end, a multi-objective
Bayesian optimization campaign for metallic thin-lm
synthesis in a 4D parameter space achieved an AF of 100
when benchmarked against random sampling.22

While AF is simple to report, it is subtle to interpret as it
depends on the chosen performance threshold. Typically, this
threshold corresponds either to a value dened by the
researcher or the highest performance achieved during the
campaign.22,32 In contrast, EF is easy to calculate at each
experiment, and it does not rely on a performance value,
making it useful for tracking learning progress.

In order to visualize EF progression over the course of SDL
campaigns, we extracted EF from reported performance trajec-
tories (Fig. 4). We limited this analysis to studies that bench-
marked against random sampling since this can serve as
a common baseline. To enable comparison across studies with
different d, we divided experiment number n by d. We focused
specically on experimental and retrospective benchmarking
studies, as these are grounded in real experimental data.
Examining the computed EF values, a consistent pattern
emerges in which EF initially grows with n/d, reaches a peak,
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Table 1 Summary of reported AF from SDL benchmarking studies

Case Source AF Type Dimension Comparison Objective

1 Bateni et al.42 37.5 Experimental 9 GP-EI vs. LHS Photoluminescence
quantum yield

2 Cakan et al.32 2.5 Experimental 3 GP-EI vs. grid Film photothermal
stability

3 Fatehi et al.28 20 Experimental 4 GP-EI & GP-UCB vs. random search Catalyst activity
4 Gongora et al.37 18 Experimental 4 GP-EI vs. grid (best grid performance

as reference)
Structure toughness

5 Gongora et al.37 56.25 Experimental 4 GP-EI vs. grid (best BO performance
within a time budget as reference)

Structure toughness

6 Gongora et al.38 10 Experimental 4 GP-EI (FEA informed) vs. GP-EI
(uninformative prior)

Structure toughness

7 Wu et al.45 10 Experimental 7 Gryffin algorithm (BO based on
kernel density estimation) vs. random
search

Nanoparticle plasmonic
response

8 Borg et al.29 2 Retrospective 3 RF-EI & RF-EV (expected value) vs.
random search (identifying single
target material)

Band gap of inorganics

9 Borg et al.29 4 Retrospective 3 RF-EI & RF-EV vs. random search
(identifying ve target materials)

Band gap of inorganics

10 Dave et al.26 1.3 Retrospective 3 Random search vs. human Electrolyte ionic
conductivity

11 Dave et al.26 6 Retrospective 3 GP-MLE vs. random search Electrolyte ionic
conductivity

12 Guay-Hottin et al.52 1.42 Retrospective 4 a-pBO (GP-EI with dynamic
hyperparameter tuning) vs. standard
GP-EI

Structure toughness

13 Langner et al.33 33 Retrospective 4 Bayesian neural network (BNN) vs.
grid

Film photostability

14 Liang et al.20 2 Retrospective 4 GP-ARD (automatic relevance
detection)-LCB vs. random search

Structure toughness

15 Liang et al.20 8 Retrospective 4 RF-LCB (lower condence bound) vs.
random search

Structure toughness

16 Liang et al.20 4 Retrospective 4 GP-LCB (lower condence bound) vs.
random search

Structure toughness

17 Liu et al.34 61 Retrospective 6 Standard BO & knowledge-
constrained BO vs. LHS

Film power conversion
efficiency

18 Lookman et al.31 3 Retrospective 7 GP-EI vs. random search Material electrostrain
19 Low et al.23 5 Retrospective 8 qNEHVI (q-noisy expected

hypervolume improvement) vs. U-
NSGA-III (unied non-dominated
sorting genetic algorithm III)

Concrete slump &
compressive
strength

20 Low et al.23 20 Retrospective 4 qNEHVI vs. U-NSGA-III Film conductivity &
annealing temperature

21 MacLeod et al.22 100 Retrospective 4 qEHVI (q-expected hypervolume
improvement) vs. random search

Film conductivity &
annealing temperature

22 Rohr et al.19 10 Retrospective 6 RF-UCB & GP-UCB vs. random search Catalyst activity
23 Rohr et al.19 5 Retrospective 6 LE (linear ensemble) vs. random

search
Catalyst activity

24 Ros et al.35 5 Retrospective 6 GP-EI-Thompson sampling & vs.
random search

Drug solubility

25 Thelen et al.27 5 Retrospective 4 GP-EI & GP-PI (probability of
improvement) vs. random search

Battery cycle life

26 Thelen et al.27 2 Retrospective 4 GP-UCB vs. random search Battery cycle life
27 Ament et al.24 25 Computational 3 GP-IGU (integrated gradient

uncertainty) vs. random search
Phase boundary
mapping

28 Annevelink et al.25 3 Computational 5 AutoMat-FUELS (forests with
uncertainty estimates for learning
sequentially) vs. random search

Catalyst activity

29 Annevelink et al.25 15 Computational 10 AutoMat-FUELS vs. random search Battery cycle life
30 Jiang et al.44 7.41 Computational 5 Quality diversity (QD) algorithm vs.

random search
Nanoparticle extinction
spectra

© 2025 The Author(s). Published by the Royal Society of Chemistry Digital Discovery
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Table 1 (Contd. )

Case Source AF Type Dimension Comparison Objective

31 Lei et al.60 8 Computational 10 BART (Bayesian additive regression
trees) & BMARS (Bayesian
multivariate adaptive regression
splines) vs. standard BO

Crystal stacking fault
energy

32 Lookman et al.31 2 Computational 6 GP-EI vs. RF + EI LED quantum efficiency
33 Nakayama et al.51 1.3 Computational 1 GP-EI vs. human Synthesis temperature
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and then gradually declines. This indicates that the benet
from active learning is most important early in a campaign,
where the algorithm can make rapid progress towards the
chosen goal. At higher numbers of experiments, the di-
minishing marginal gains of active learning combined with the
continual progress of random sampling mean that the benet
of active learning becomes less important. In other words, if
enough of the parameter space will be sampled, the order in
which it is sampled is not important. Interestingly, this peak in
EF occurs at ∼10 to 20 experiments per dimension, which
provides a useful reference point for the SDL community when
planning campaigns. It is worth emphasizing that while EF
measured for the SDLs did peak, it was not reported to be worse
than random sampling at large numbers of experiments. In
order to fully capture the acceleration inherent to SDLs, it would
be useful to use multi-delity learning or early stopping criteria
chosen using simulations.66,67

While the number of experiments at which EF peaked was
relatively consistent, the peak value of EF varied substantially
between studies. However, the difference in magnitude is
largely due to two separate metrics both being described as EF.
Studies shown as solid lines dene EF based upon the
enhancement in the property, as we dene in Section 2. These
studies all have magnitudes in range 1 to 2. The analysis in
Section 2 reveals that the maximum attainable value for EF
computed in this way is C, which depends on the property
Fig. 4 EF vs. experiment number n normalized by input parameter
space dimensionality d, extracted from performance-over-iteration
data (relative to random sampling) in experimental and retrospective
benchmarking SDL studies. Solid lines show EF based on measured
property values and dashed lines show EF based on the number of
high-performing candidates found.

Digital Discovery
space. For instance, Zhu et al.40 using experimental design via
Bayesian optimization package (EDBO)59 and Li et al.39 using
graph-based Bayesian optimization with pseudo labeling
(GBOPL), both benchmarked their algorithms on the crossed
barrel dataset, to nd modest maximum EF of 1.2 and 1.1,
reecting the narrower performance gap in this property space.
This is similar to the EF of 1.2 observed in the experimental
benchmarking study by Gongora et al.,37 the source of the
dataset. In contrast, studies shown as dashed lines dene EF as
the enhancement in the number of high-performing combina-
tions of parameters that have been found. These studies have
much larger magnitudes. For example, the largest EF observed
in our analysis was 23, reported by Fatehi et al.,28 who applied
a Bayesian optimization framework with a UCB acquisition
function to quantify the proportion of top-performing oxygen
evolution reaction (OER) catalysts identied relative to random
sampling, using the dataset by Rohr et al.19 While these varia-
tions on EF ultimately quantify different things, choosing
between them ultimately reects the priority of the campaign.
4. Exploration of benchmarking
metrics

While it is clear from the reported values of EF that this metric
varies dramatically, it is not clear how this should be interpreted
or whether this variation is due to differences in algorithms or
the underlying parameter spaces. To explore this, we perform
a series of simulated Bayesian optimization campaigns
designed to illuminate how EF(n) depends on the underlying
parameter space. In particular, we develop a simple two-
dimensional parameter space that features a single Gaussian
peak in the center of the space (Fig. 5A). The results of simu-
lated BO campaigns in this space are reported as a horse race
plot in which shaded regions depict the interquartile ranges
from 100 independent campaigns (Fig. 5B). These are compared
to campaigns based on sampling uniformly at random which
center on the theoretical performance predicted by eqn (1).
These campaigns were executed using the BoTorch package,
and the code is shared at https://doi.org/10.5281/
zenodo.17287854.

In a rst round of simulations to explore the magnitude of
max(EF), we performed optimization campaigns using ve
functions that differed only in their contrast C (Fig. 5A). As ex-
pected, all campaigns achieved a max(EF) at similar n but
exhibited very different magnitudes depending on the function
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 5 Simulated Bayesian optimization (BO) campaigns to explore
how the property space dictates convergence. (A) Five two-dimen-
sional functions f under consideration that differ only in their contrast
C = max(f)/median(f). While all are two-dimensional, they depend on
x1 and x2 in the same way and x2 = 0.5 is shown. (B) Simulated horse
race plot showing the convergence of BO and random sampling for
function fC2

. Theory corresponds to eqn (1). The shaded regions show
interquartile ranges. (C) EF vs. n for the five functions shown in (A). (D)
max(EF) relating BO and random sampling vs. C. Dashed line shows
a fit to max(EF) = (aC + 1 − a)/(bC + 1 − b). (E) AF vs. y for the five
functions shown in (A) showing that they stop at commensurate
values. For all functions, AF is plotted until y*n is within 0.01 of y* (i.e.
surpassed the 99.94th percentile of the function).

Fig. 6 Simulated BO campaigns to explore how property space
complexity impacts learning. (A) Five two-dimensional parameter
spaces f under consideration that differ only in their Lipschitz
complexity L, as defined in eqn (5). While all are two-dimensional, they
depend on x1 and x2 in the same manner and x2 = 0.5 is shown. (B) EF
vs. n for the five functions shown in (A). (C) Optimum experiment
number n*AL corresponding to max(EF) vs. L. The dashed line shows
a linear fit. (D) max(EF) vs. noise standard deviation s normalized by
median(y). (E) n* and vs. s normalized by median(y).
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(Fig. 5C). Indeed, the theoretical and computed max(EF) fol-
lowed identical trends and monotonically increased with C
(Fig. 5D). These points are t to max(EF)= (aC + 1− a)/(bC + 1−
b), which reects the expected EF comparing two campaigns
whose rate of convergence does not depend directly on C. This
analysis conrms that while the complexity of the function
dictates how many samples are needed to nd the optima, its C
bounds EF, partially explaining why the literature features such
a wide range in reported max(EF).

While EF clearly depends on many C, the progression of AF
throughout a campaign along with its maximum does not
(Fig. 5E). In particular, AF is found to monotonically increase
throughout a campaign and reach a maximum when the
learning algorithm has found y*. Two facets of this trajectory
make AF more suitable than EF as a metric for broad compar-
ison. First, being equivariant with the output space is congruent
with our expectations that shiing by a constant should not
affect the quality of a learning algorithm. Second, being
© 2025 The Author(s). Published by the Royal Society of Chemistry
monotonic means makes it easier to compare campaigns with
a single value, namely max(AF).

While the functions explored in Fig. 5 exhibited the same
complexity, we sought to explore whether one can use simple
statistics of a function to gain insight into how many experi-
ments are needed to achieve optimum performance. In partic-
ular, we explore Lipschitz complexity L, which is dened as,68

L = maxjVfj, (5)

where jVfj represents the magnitude of the gradient of the
function f in which each independent variable has been
normalized to fall between 0 and 1. We construct a family of
functions with the same C but different L by changing the
standard deviation sa and linear offset of a two-dimensional
Gaussian (Fig. 6A). Unlike the case when only C is changed,
each campaign requires different numbers of experiments to
converge with sharper functions requiring more experiments
(Fig. 6B). Interestingly, we nd a linear relationship between L
and nAL, highlighting the challenge inherent to parameter
spaces that appear to be needles in a haystack. Interestingly, the
empirically observed best experiment number n*AL from the
AL
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literature appears to be ∼15/d, which amounts to 30 experi-
ments in the present example. This suggests that the functions
explored here share statistical features with the materials
spaces previously studied. Importantly, max(EF) increases with
L, highlighting that it is more impactful to use active learning in
parameter spaces that are more difficult to learn.

The analytical spaces considered here are deterministic,
while experimental parameter spaces will necessarily feature
noise. In an effort to understand how the presence of noise will
impact convergence, simulated BO campaigns were repeated for
the functions shown in Fig. 6A with homoscedastic Gaussian
noise with standard deviation s added. Both max(EF) and n*AL
had a smooth dependence on s (Fig. 6D), with the most complex
functions exhibiting drastic increases in n*AL (Fig. 6E). This
result indicates that reducing noise becomes more important
the more complex the parameter space. The observation that
noise slows convergence is consistent with prior analytical
work.69 The range of noise was chosen to be analogous to the
range of noise typically found in experimental systems. It is not
expected that larger values of noise will change the trends
observed, only that it wouldmake the simulations take longer to
converge.

While these heuristic simulations have focused on single
objectives, many recent SDLs focus on multiple objectives
simultaneously. That said, the most widely-used approach for
multi-objective optimization is hypervolume optimization
wherein the algorithm seeks to maximally improve the Pareto
front balancing all objectives.22,23 In many ways, once this type
of problem has been transitioned into a scalar optimization (i.e.
maximizing hypervolume), the same types of benchmarking
could be done to compare performance of an active learning
algorithm and a reference process. Simulations of such
processes reveal similar non-monotonic behavior of EF and
monotonically increasing AF,22 suggesting that the principles
studied here apply to multi-objective cases as well.

These heuristic simulations have provided context for how to
interpret AF and EF values generated by SDL campaigns and
guidance for how reparameterizing the input or output space
may affect convergence. One reason why EF is an imperfect
metric is that shiing the output space by a constant will
change EF but not impact the actual learning rate. In contrast,
applying a non-linear transform to the property space that
reduces L is likely to accelerate convergence. Analogously, nar-
rowing parameter space to focus on regions of interest will
similarly reduce L, which provides a mechanism for under-
standing how approaches such as ZoMBI improve learning.70 AF
is likely a more useful metric for comparing algorithms, but it
still depends on the length of campaigns and, being monotonic,
it does not help experimentalists determine the point of di-
minishing returns for additional experiments.
5. Conclusions and future
recommendations

Benchmarking SDLs is important because it provides part of the
justication for developing and running these systems. As
Digital Discovery
a result, there have been signicant efforts in the community to
quantify performance. The two most reported metrics are the
enhancement factor EF and the acceleration factor AF, which
address the questions of howmuch better and howmuch faster,
respectively. A systematic evaluation of the reported metrics
reveals key insights:

(i) SDLs achieve top-performing results on average six times
faster than random sampling, and this acceleration improves
with the dimensionality of the parameter space.

(ii) The enhancement inherent to SDLs is reported to peak at
10–20 experiments per dimension of parameter space, with
enhancement factors that vary tremendously depending on the
space.

It is important to highlight that both of these outcomes
depend intimately on the nature of the property spaces, but the
fact that these all represent actual experimental materials
datasets suggests that they are useful guidelines for the eld.
Further, simulated campaigns in analytical spaces reveal key
features of how to interpret metrics, namely that EF can simply
be related to the statistics of the parameter space such as its
contrast, the complexity of the space determines the speed with
which convergence can be expected, and that noise affects AF
more than EF. Despite the simplicity of the heuristic simula-
tions presented here, the fact that they required similar
numbers of experiments to converge relative to what is seen in
the SDL literature suggests that these functions share statistical
features with studied materials systems. With the growing
condence and expertise present in the SDL eld, researchers
will undoubtedly explore much more complex spaces going
forward. While the specic values in this study will hopefully be
improved upon in the coming years as more advanced algo-
rithms are employed, they nevertheless provide a valuable
snapshot of the eld and a useful tool to align progress. While
there are many ways to parameterize a function that might be
useful to contextualize benchmarking, we have focused on
contrast as dened in eqn (4) and the Lipschitz constant. The
former directly bounds EF and is a very straightforward property
to compute while the latter is widely used in machine learning
to evaluate models.68,71–74 Other factors can play an important
role in optimization such as multimodality (having multiple
local optima) or anisotropy (having very different gradients in
different directions). The presence of these and other factors
emphasizes that the simulations shown here are heuristic and
more in-depth study is needed. Addressing the materials chal-
lenges facing our society demands rapid progress and a thor-
ough analysis of methods to accelerate this progress is
necessary to move the eld forward.
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include a Jupyter notebook that facilitates the exploration of
more complicated parameter spaces.
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