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15 Abstract
16 Natural products offer a vast reservoir of bioactive compounds, playing a crucial role in drug 
17 discovery. In this big data era, the annotation of their pharmacological categories holds great 
18 potential for accelerating drug discovery and advancing mechanistic studies of herbal medicines. 
19 However, vast majority of natural products’ classification remain unannotated. Existing 
20 recommendation frameworks for pharmacological categories are predominantly tailored to 
21 conventional drugs and frequently require extensive experimental data which are typically lacking 
22 for natural products. Traditional cheminformatic approaches based on structural similarity, while 
23 widely adopted, often struggle to achieve a satisfactory balance between prediction recall and 
24 precision, thereby limiting their overall effectiveness. In this study, a simple and explainable 
25 category recommendation framework for drugs and natural products based on multi-representation 
26 structural similarity data fusion, AgreementPred, was proposed. The framework utilized PubChem 
27 compound annotations which comprised two compound classification systems, Anatomical 
28 Therapeutic Chemical (ATC) classification and Medical Subject Headings (MeSH) as category 
29 labels, extending the scope of application beyond conventional drugs. The similarity search results 
30 using 22 molecular representations were combined to improve prediction recall. The predicted 
31 annotations were subsequently filtered by agreement scores to enhance prediction precision. 
32 Compared to existing equivalent approaches, AgreementPred achieved superior recall-precision 
33 balance in both ATC and category prediction tasks. With agreement score threshold of 0.1, 
34 AgreementPred showed 0.73 and 0.55 of recall and precision, respectively, for the category 
35 prediction for 1,000 compounds from a pool of 1,520 categories. Finally, AgreementPred was 
36 applied to 321,605 unannotated drugs and natural products. The resulting prediction is expected 
37 to be of contribution to drug discovery, as well as mechanistic study purposes.
38
39
40 Keywords: Pharmacological category; Cheminformatic framework; Multi-representation; 
41 Molecular representation; Similarity-based; Agreement-based; Agreement score.
42
43
44
45
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46 Introduction
47 Herbal medicine has been acknowledged as a valuable source for drug discovery, contributing 
48 significantly to pharmacological advancement [1]. Natural products isolated from herbal materials 
49 have demonstrated clinical efficacy in the treatment of various diseases, with notable examples 
50 including ephedrine [2], artemisinin [3], and paclitaxel [4]. In recent years, the focus has gradually 
51 shifted from screening isolated natural compounds for specific biological activities or targets to 
52 exploring the therapeutic benefits of multi-component herbal extracts and formulations, which may 
53 offer synergistic pharmacological effects [5-7].
54 For mechanistic studies, the understanding of the chemical composition of each herb, as well 
55 as the pharmacological effects of the components is essential. However, relevant data on natural 
56 products remain limited [8]. Unlike synthetic drugs, which benefit from standardized classification 
57 systems, vast majority of natural products’ pharmacological classification remain unannotated. 
58 Although several databases, such as ChEMBL and the Natural Product Activity and Species 
59 Source (NPASS), provide quantitative biological activity data of natural products on specific targets, 
60 inferring classification of a compound solely from biological targets presents a great challenge, 
61 particularly given the inherent incompleteness of available datasets.
62 The Anatomical Therapeutic Chemical (ATC) classification system, established by the World 
63 Health Organization (WHO), provides a hierarchical framework for categorizing medical 
64 substances based on their anatomical, pharmacological, and chemical properties [9]. As a well-
65 curated and high-quality annotated dataset, it has significantly contributed to the advancement of 
66 computational methodologies for predicting new therapeutic applications of existing drugs, thereby 
67 facilitating drug repositioning [10-12].
68 Inspired by ATC-predicting methods, this study aimed to develop a category recommendation 
69 framework that can be applied to both drugs and natural products, using PubChem compound 
70 annotations as category labels. PubChem compound annotations comprised two compound 
71 classification systems, Anatomical Therapeutic Chemical (ATC) classification and Medical Subject 
72 Headings (MeSH). MeSH database, established by the United States National Library of Medicine, 
73 provides controlled vocabulary for indexing, cataloging, and searching of biomedical and health-
74 related information [13]. The database curated chemical compounds, including drugs and natural 
75 products, related to each MeSH term. Utilizing PubChem compound annotations enabled 
76 predictive frameworks to extend its application beyond conventional drug space and provide 
77 reasonable annotation for natural products in the database.
78 Within the domain of natural products, molecular structure remains the most consistently 
79 available and reliable source of information for method development. Unlike approved drugs, most 
80 natural products lack well-documented data such as chemical-chemical interaction, gene 
81 expression, drug target, or side effect profiles utilized in various ATC-predicting methods [11, 12, 
82 14-16]. Moreover, MeSH terms also lack the hierarchical relationships inherent in the ATC 
83 classification system, which several ATC-prediction frameworks have leveraged [16-18]. Therefore, 
84 this study focused exclusively on predicting categories using only molecular structures.
85 In computational chemistry, a molecular structure can be represented in multiple ways, each 
86 capturing different aspects of a molecule [19]. Molecular fingerprints are typically employed to 
87 represent predefined structural features, such as topological distance between atom pairs, atomic 
88 environment within a preset radius, or presence of specific pharmacophores. Notable examples 
89 include atom pair fingerprint (AP), extended connectivity fingerprint (ECFP), and pharmacophore 
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90 fingerprint (PHFP) [19, 20]. On the other hand, for deep learning implementation, graph neural 
91 network based learned representation has increasingly gained prominence owing to its flexibility, 
92 task-specificity, and oftentimes superior prediction performance compared to predefined molecular 
93 descriptors, especially on large datasets [21-23].
94 However, to date, there has not been a single molecular representation that outperformed 
95 others in all types of tasks and datasets. Previously published ATC prediction frameworks that 
96 relied solely on molecular structure as input employed distinct molecular representations [11, 24, 
97 25]. Yang et al. [21] discovered that given certain conditions such as small (less than 1000 
98 molecules) and highly imbalanced dataset, models that integrated learned representation with 
99 fixed molecular descriptor outperformed those that employed only learned representation. 

100 Furthermore, Boldini et al. [20] investigated the effectiveness of various molecular fingerprints for 
101 characterizing the chemical space of natural products, as well as their applicability on the 
102 bioactivity prediction. The study revealed inherent variation among different molecular fingerprints, 
103 highlighting that each fingerprint offered a different aspect of the same molecule. 
104 In this study, the performance of multiple molecular representations, including 28 molecular 
105 fingerprints and 1 unsupervised learned representation, in similarity-based category 
106 recommendation was further explored on drug and natural product datasets. Moreover, leveraging 
107 the integration of multi-representation structural similarity data, a novel category recommendation 
108 framework, AgreementPred, was proposed. After eliminating redundant representations, the 
109 framework combined the similarity search results of 22 molecular representations and 
110 subsequently filtered the predictions using agreement scores. AgreementPred achieved recall-
111 precision balance superior to previous ATC-predicting frameworks in both ATC and category 
112 recommendation tasks and was applied to 321,605 unannotated compounds from drug and natural 
113 product databases. A total of 2,888,927 categories were recommended for 321,596 compounds 
114 with agreement score higher than 0.1. The resulting prediction is expected to be useful in furthering 
115 drug discovery, as well as mechanistic study of herbal medicine and natural products.
116
117 Material and Methods
118
119 Data collection and preparation
120
121 Datasets
122 The aim of this study is to utilize existing classification annotations of drugs and natural 
123 products to reasonably predict categories for unannotated natural products. Therefore, compounds 
124 of interest in this study comprised those from established databases of modern drugs and natural 
125 products, namely DrugBank [26], SIDER [27], LOTUS [28], NPASS [29], HERB2.0 [30], and TM-
126 MC2.0 [31] with collectable PubChem Compound ID (CID). The scope of each database and data 
127 from each database used in this study is explained in Supplementary Table 1.
128 PubChem record of each compound was obtained by searching concatenated CID lists on 
129 PubChem database. The resulting tabular data were composed of names, synonyms, identifiers, 
130 chemical properties, and annotations of the compounds. A total of 331,326 PubChem records were 
131 collected, in which 9,721 compounds contained classification annotations. The annotated records 
132 were extracted to construct Annotated-Compound dataset (Supplementary Table 2).
133 The drug side effect (SE) dataset was constructed in a similar manner, by mapping 
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134 compounds in SIDER database to PubChem compounds. Finally, 1,376 compounds with 
135 obtainable CIDs were incorporated into Annotated-SE dataset (Supplementary Table 3).
136 To reduce computation burden during method development and validation, a sample dataset, 
137 AnnoCom1000 was constructed by random sampling 1,000 compounds from Annotated-
138 Compound. Moreover, DrugBank1000 and NP1000 datasets were also constructed by random 
139 sampling from annotated compounds contained in DrugBank and natural products databases, 
140 respectively. The purpose of constructing these two datasets was to compare the prediction 
141 performance of each representation on drug and natural product space.
142
143 Category labels
144 PubChem annotations of each compound contained available ATC and/or MeSH codes and terms. 
145 These terms are used as category labels in this study. Most of the annotations contained several 
146 ontologies of category in broad to specific order. Each level of category was separated by a 
147 character “>”, and each system of classification was separated by a character “|”. For example, the 
148 annotation of rosuvastatin was “D004791 - Enzyme Inhibitors > D019161 - Hydroxymethylglutaryl-
149 CoA Reductase Inhibitors|C78276 - Agent Affecting Digestive System or Metabolism > C29703 - 
150 Antilipidemic Agent|D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents > 
151 D000924 - Anticholesteremic Agents|C471 - Enzyme Inhibitor > C1655 - HMG-CoA Reductase 
152 Inhibitor|D009676 - Noxae > D000963 - Antimetabolites|C - Cardiovascular system > C10 - Lipid 
153 modifying agents > C10A - Lipid modifying agents, plain > C10AA - Hmg coa reductase inhibitors”.
154 For each compound, the terms contained in the annotations were extracted, stripped of codes, 
155 and converted to lower-cased letters. Singular and plural versions of the same terms in the dataset 
156 were merged (plural versions were kept, if present), and duplicated terms were eliminated from 
157 each record. Finally, the resulting Annotated-Compound dataset contained 54,675 compound-
158 annotation pairs with 1,520 unique annotations (Supplementary Table 4). The sample datasets, 
159 AnnoCom1000, DrugBank1000, and NP1000, contained 5,612, 6,978, 3,995 compound-
160 annotation pairs, comprising 872, 971, and 544 unique annotations, respectively.
161 In this study, minimization of manual manipulation of category labels was intended, 
162 rationalized that all unique labels, albeit highly similar, had different positions in the chain of 
163 ontology (Supplementary Table 5) and manual aggregation of the labels could compromise the 
164 traceability of the related annotations. For instance, antiparkinsonian agent and antiparkinson 
165 agents belong to separate chains of ontology, namely, C78272 - Agent Affecting Nervous 
166 System > C38149 - Antiparkinsonian Agent and D002491 - Central Nervous System Agents > 
167 D018726 - Anti-Dyskinesia Agents > D000978 - Antiparkinson Agents, respectively. Merging the 
168 two terms would obscure distinction between the two ontology systems. In contrast, preserving 
169 them as separate terms allows potential connection to be drawn while acknowledging that 
170 difference may exist. Thus, several similar labels, such as antidepressant agent & antidepressants 
171 and antiparkinsonian agent & antiparkinson agents, were kept as is in the developed framework.
172
173 Side effects (SEs)
174 Drug SE information was obtained from SIDER database. Only SEs that were MedDRA 
175 “preferred term” (“PT”) were extracted and used as SE annotations for Annotated-SE dataset. The 
176 deduplicated dataset was composed of 139,516 drug-SE pairs with 4,216 unique SEs 
177 (Supplementary Table 6). 
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178
179 Molecular representations
180 A total of 29 molecular representations were investigated in this study, including 28 molecular 
181 fingerprints and InfoGraph [32] unsupervised learned molecular representation implemented by 
182 Torchdrug [33]. Detailed description of each representation can be found in Table 1. Twenty 
183 fingerprints including TT, AP, Avalon, Daylight, DFS, ASP, RDKit, PH2, PH3, MACCSFP,  
184 PubChemFP, EstateFP, KRFP, EC1024, FC1024, RAD2D, LSTAR, LingoFP, MHFP, and MAP4 
185 were selected based on Boldini et al.’s study [20] and generated by source packages provided in 
186 the original publication. CDK-pywrapper package was used to generate all CDK fingerprints except 
187 for Daylight fingerprint. Parameters set in the aforementioned packages were maintained for all 
188 fingerprints except for ECFP2048 in which the optimal parameters according to Gallo et al.’s study 
189 [25] were adopted.
190
191 Hardware and software
192 All computation in this study was performed on a server with Intel® Xeon® Gold 5318Y 48-
193 core CPU and 512GB of RAM. Source packages provided by Boldini et al. [20] and CDK-pywrapper 
194 0.1.1 package were implemented on Python 3.9 to generate 28 molecular fingerprints whereas 
195 Torchdrug packages was implemented on Python 3.10 to generate InfoGraph representation as 
196 described in the previous section. Other packages, including RDKit 2023.3.3, scikit-learn 1.6.1, 
197 Scipy 1.11.2, and Matplotlib 3.8.0 implemented on Python 3.11, were also used for similarity 
198 measurement, statistical analysis, and data visualization purposes. The detailed version of each 
199 package used in this study can be found in .yml files provided with the implementation scripts (See 
200 Availability of Data and Materials)
201
202 Similarity metrics
203 In this study, the similarity between two compounds were measured by cosine similarity (C) 
204 or Jaccard similarity (J). Cosine similarity (1) was applied to count, binary, and numerical 
205 representations, whereas Jaccard similarity (2) as computed in terms of Jaccard-Needham 
206 dissimilarity by scipy.spatial.distance.jaccard (3) was applied to categorical representations.
207

𝐶 (𝐴,𝐵) =  
∑𝑛

𝑖=1 𝐴𝑖𝐵𝑖

∑𝑛
𝑖=1 𝐴2

𝑖 ∑𝑛
𝑖=1 𝐵2

𝑖
(1)

𝐽 (𝐴,𝐵) = 1 ― 𝑗𝑎𝑐𝑐𝑎𝑟𝑑 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝐴,𝐵) (2)
208
209

𝑗𝑎𝑐𝑐𝑎𝑟𝑑 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝐴,𝐵) =  
𝑐𝑖≠𝑗

𝑐𝑖=𝑗 +  𝑐𝑖≠𝑗
(3)

210
211 where, for non-zero vectors A = (a1, a2, …, an) and B = (b1, b2, …, bn), cij is the number of 
212 occurrences of A[k] = i and B[k] = j for k ≤ n. 
213 Similarity of categorical fingerprints were calculated in a similar manner to Boldini et al.’s study 
214 [20], considering two bits as a match only if they possessed the exact same integer.
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215
216 Single-representation similarity-based annotation prediction
217 Similarity-based annotation prediction was investigated for each compound in AnnoCom1000, 
218 DrugBank1000, NP1000, and Annotated-SE datasets, using 29 molecular representations. 
219 Predicted annotations for each query compound q was the union of the sets of annotations of N 
220 most similar compounds (MSCs) of the query compound, as defined in equation (4),
221

𝑷𝒓𝒆𝒅(𝑟,𝑞) =  
𝑗 ∈ 𝑴𝑺𝑪𝑟

𝑨𝑗
(4)

222 where Pred(r,q) is the predicted annotations computed using representation r for query 
223 compound q, Aj is the set of annotations of compound j, and MSCr is the set of N compounds from 
224 the comparison dataset with maximal similarity to query compound q as determined by the 
225 similarity metric of representation r.
226 For the AnnoCom1000, DrugBank1000, and NP1000 datasets, the search for MSCs was 
227 performed in batches of 50 compounds. In each batch, a query compound was compared against 
228 the remaining 9,671 compounds in the Annotated-Compound dataset from which the top N most 
229 similar compounds were determined for each query compound. In contrast, the search for MSCs 
230 for Annotated-SE dataset which only contained 1,376 compounds were conducted in a leave-one-
231 out manner.
232
233 Performance evaluation
234 In this study, prediction performance was evaluated using precision (P) and recall (R), as 
235 defined in equation (5) and (6), respectively.
236

𝑃 =
1
𝐶  ⋅

𝐶

𝑞=1

|𝒂𝑞|
|𝑷𝒓𝒆𝒅𝑞|

(5)

237

𝑅 =
1
𝐶  ⋅

𝐶

𝑞=1

|𝒂𝑞|
|𝑨𝑞|

(6)

238
239 where C is the number of query compounds evaluated, Aq is the set of annotations of query 
240 compound q, aq is the set of correctly predicted annotations for query compound q, and Predq is 
241 the set of predicted annotations assigned to query compound q
242 Prediction performance based on 1, 2, 3, 4, 5, 10, 15, 20, and 30 MSCs computed using 29 
243 representations was compared against one another and that based on the same number of random 
244 compounds to observe the enrichment of correct annotations among top MSCs. Prediction using 
245 the same molecular representation based on N compounds of MSCs and the same number of 
246 random compounds constitute each comparing pair.
247 Mann-Whitney U tests were used to compare the performance each comparing pair, whereas 
248 Kruskal-Wallis tests followed by Bonferroni-corrected pairwise Mann-Whitney U tests were used 
249 to detect statistically significant difference among the performance of 29 representations. 
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250
251 Similarity ranking and MSC profile of 29 representations
252 The similarity between three query compounds (CID=5280343, 441764, and 446157) and the 
253 remaining 9,720 compounds were ranked using 29 representations, and the average Pearson’s 
254 correlation of the ranking was computed. Furthermore, the relationship between MSCs 
255 recommended by each representation and the prediction performance was also explored.
256
257 Agreement-based Data Fusion
258 As it was hypothesized that different molecular representations captured different aspects of 
259 molecular structure and integration of structural similarity data based on multiple representations 
260 could lead to improved prediction performance, an annotation recommendation framework based 
261 on multi-representation data fusion, AgreemenPred, was developed. 
262 In AgreementPred (Figure 1), predicted annotations resulting from multi-representation MSC-
263 based prediction (MultiPred) of a query compound q were further filtered by agreement score (AgS), 
264 which was computed for each predicted annotations k, according to the equations below:
265
266

𝑴𝒖𝒍𝒕𝒊𝑷𝒓𝒆𝒅𝑞 =  
𝑟 ∈ 𝑹

𝑷𝒓𝒆𝒅(𝑟,𝑞)
(7)

267

𝐴𝑔𝑆𝑘 =
𝑐𝑜𝑢𝑛𝑡𝑴𝒖𝒍𝒕𝒊𝑷𝒓𝒆𝒅𝑞(𝑘)

|𝑹𝒆𝒑| ∙  𝑁 
(8)

268
269

𝑨𝒈𝑷𝒓𝒆𝒅𝑞 = { 𝑘 ∣𝑘 ∈ 𝑴𝒖𝒍𝒕𝒊𝑷𝒓𝒆𝒅𝑞,  𝐴𝑔𝑆𝑘 > 𝑡 } (9)
270
271
272
273 where AgPredq is the final set of predicted annotations for query compound q using 
274 AgreementPred framework, Rep is the set of selected molecular representations incorporated in 
275 the prediction model, N is the number of MSCs used in the similarity-based prediction, and t is the 
276 predefined threshold of AgS used for the prediction model. 
277 The prediction performance of AgreementPred was evaluated on AnnoCom1000, 
278 DrugBank1000, NP1000, and Annotated-SE datasets, comparing different t and N parameters. 
279
280 Method comparison
281 To benchmark AgreementPred, its performance in annotation prediction was tested using 
282 PubChem annotations (AnnoCom1000), second-, and fourth-level ATC annotations, comparing 
283 with two previous ATC-predicting models, SD-ATC [11] and iSEA [24], as well as EC1024 
284 similarity-based prediction.
285 For reasons mentioned in the Introduction section, only methods which adopted molecular 
286 structure as the sole input were considered for comparison. SD-ATC employed KRFP as the 
287 molecular representation and utilized network-based inference approach to extract the relationship 
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288 between molecular substructures and ATC classes, whereas iSEA utilized similarity ensemble 
289 approach using average similarity of 3 molecular representations (CDKFP, PubChemFP, and 
290 MACCSFP) to quantify the relation of a given drug to each ATC class based on the level of 
291 molecular similarity between the drug and drug set belonging to each class.
292 SuperPred frameworks [25, 34, 35] also adopted molecular structure as the sole input of the 
293 models. However, extensive preprocessing of training data was required for SuperPred 
294 approaches, especially SuperPred3.0 in which single-label training dataset was mandatory for 
295 logistic regression model. Therefore, SuperPred frameworks were not selected to be compared in 
296 this section.
297 The benchmark datasets for second- and fourth-level ATC used in this study were derived 
298 from the training set containing 1,151 approved drugs provided in iSEA original publication. A 
299 subset containing 1,107 compounds with obtainable PubChem CIDs and PubChem’s canonical 
300 SMILES were used in this study. Second-level ATC labels were obtained from the original dataset, 
301 whereas fourth-level ATC labels were extracted from DrugBank database. The ATC datasets were 
302 divided into 22 batches containing 50-51 compounds. AgreementPred and SD-ATC were 
303 implemented using the same batches of testing data for all datasets.
304 As iSEA required computing average similarity based on 3 molecular representations with 
305 1,000 permutations for every drug-ATC pair, the framework was presumed to be inapplicable for 
306 a dataset with a large number of classes such as PubChem annotations and fourth-level ATC. 
307 Therefore, iSEA was compared with other methods only for the performance on second-level ATC 
308 prediction, and the results were directly derived from the publication without implementation.  
309
310
311 Application
312 AgreementPred was applied on 321,605 unannotated compounds from drug and natural 
313 product databases. After eliminating redundant representations, 22 molecular representations, 
314 namely CircFP, LSTAR, RAD2D, EC1024, FC1024, AP2DFP, HybridFP, GraphFP, ExtFP, SPFP, 
315 DFS, AP, Avalon, RDKit, PH3, LingoFP, MAP4, EstateFP, KRFP, PubChemFP, MACCSFP, and 
316 InfoGraph, were incorporated (Summarized in Table 1), using MSC and agreement score threshold 
317 of 1 and 0.1, respectively. The predicted annotations were assigned to each query compound, and 
318 the results were further analyzed for plausibility. 
319
320 Results
321
322 Single-representation similarity-based annotation prediction
323 AnnoCom1000, DrugBank1000, and NP1000 datasets showed a similar pattern of 
324 performance resulting from 29 molecular representations (Figure 2). The performance of MSC-
325 based prediction (Figure 2A, C, E) was significantly higher (p-value < 0.05) than that of random 
326 prediction (Figure 2B, D, F) for all comparing pairs except for PH2 at various MSCs. Significant 
327 difference (Kruskal-Wallis p-value < 0.05) in recall and precision was detected among MSC-based 
328 prediction of 29 representations at every MSC, while no difference was detected for prediction 
329 performance among 29 representations based on random compounds. However, post-hoc Mann-
330 Whitney U tests indicated comparable performance among most representations (Bonferroni-
331 corrected p-value > 0.05), except for PH2, PH3, EStateFP, AP2DFP, and GraphFP in which the 
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332 recall and precision were significantly lower than those of other representations. 
333 The results suggested that similarity-based prediction was somewhat effective for category 
334 annotations, comprising ATC and MeSH classification, as the annotations significantly enriched 
335 among compounds with high similarity to query compounds, aligning with a well-established 
336 concept that chemical compounds with similar structure tend to possess similar properties [36]. 
337 The results were also consistent with the findings of Boldini et al.’s which showed that while 
338 different molecular fingerprints performed best on different datasets, pharmacophore-based 
339 fingerprints tended to underperform other types [20]. 
340 Comparing the performance of similarity-based prediction on drug and natural product 
341 datasets, it was discovered that the overall recall and precision were significantly higher (p-value 
342 < 0.05) for NP1000 than DrugBank1000 dataset (Figure 2C, E), except for the recall of PH2, and 
343 the precision of PH3, EStateFP, AP2DFP, GraphFP, and SPFP at various MSCs. The difference 
344 possibly stemmed from higher number of annotations (971 vs 544) and compound-specific 
345 annotations (339 vs 234) in DrugBank1000 than in NP1000, indicating that the performance of 
346 similarity-based prediction could be compromised by the diversity of annotations. This problem 
347 could be mitigated by annotation screening and/or grouping; however, elimination or manipulation 
348 of labels might also lead to loss of relevant information.
349 For Annotated-SE dataset, the difference between the comparing pairs of MSCs and random 
350 compounds were not as noticeable as in AnnoCom1000, DrugBank1000, and NP1000 (Figure 
351 2G-H), however, Mann-Whitney U tests resulted in p-value lower than 0.05 for all comparing pairs, 
352 except for the precision of PH2, PH3, and EStateFP at various MSCs. 
353 It was noteworthy that the average number of annotations per compound were 5.62 vs 101.78, 
354 and the maximum number of annotations per compound were 47 (dexamethasone) vs 742 
355 (pregabalin) in Annotated-Compound and Annotated-SE dataset, respectively. Especially high 
356 occurrences of some SEs, such as headache, nausea, and vomiting, were likely to be responsible 
357 for high apparent performance of prediction based on random compounds. Nevertheless, MSC-
358 based predictions showed significant difference in recall and precision resulting from 29 
359 representations (Kruskal-Wallis p-value < 0.05) at every MSC, while no difference was shown 
360 among random predictions. The pattern of performance of 29 molecular representations also 
361 differed from that on Annotated-Compound datasets, with RDKit fingerprint obtaining prominent 
362 recall especially at 1 MSC, and only PH2, PH3, and EStateFP showed notably inferior performance 
363 to other representations. 
364 The results suggested that molecular similarity might be insufficient to deliver a reliable SE 
365 prediction based on currently available data. Unlike pharmacological categories which are 
366 established based on experimental results, drug SEs are typically defined based on observation 
367 during randomized controlled clinical trials. Consequently, the SEs of each drug vary significantly 
368 in frequency, severity, and clinical relevance, adding considerable complexity to the prediction task 
369 that may necessitate more sophisticated approaches. 
370
371 Similarity ranking profile of 29 representations
372 Figure 3 shows Pearson’s correlation among 29 molecular representations. High correlation, 
373 indicating similar ranking profile, was observed between representations generated by similar 
374 computing algorithms, such as EC1024 and EC2048, PH2 and PH3, MHFP and MAP4. 
375 Considering the prediction performance of each representation (see previous section), it was 
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376 noteworthy that representations with different ranking profiles, as indicated by low correlation, 
377 resulted in comparable prediction performance. This suggested that different aspects of similarity 
378 might be responsible for the retrieval of different annotations, as exemplified by the similarity-based 
379 prediction of an antihypertensive drug, diltiazem, whose annotations include cardiovascular 
380 system, cardiovascular agents, antihypertensive agent, membrane transport modulators, and 
381 vasodilator agents.
382 MSCs of diltiazem computed using 29 representations are demonstrated in Figure 4A with 
383 the corresponding structures and representations shown in Table 2. Of 22 compounds, 3 
384 compounds possessed the annotations of diltiazem: antihypertensive agent, cardiovascular agents, 
385 and cardiovascular system were among benazepril’s annotations, predicted by SPFP and Avalon; 
386 cardiovascular agents and vasodilator agents belonged to tadalafil, predicted by AP; while 
387 cardiovascular agents and membrane transport modulators were retrieved by EStateFP among 
388 the annotations of cocaine. It is also worth mentioning that annotations relating to cardiovascular 
389 system were common among the annotations of different compounds, predicted by different 
390 molecular representations 
391 Consequently, it was further hypothesized that integration of multiple representations in 
392 similarity-based prediction might lead to improved performance relative to single-representation 
393 prediction. 
394
395 Agreement-based Data Fusion
396 Although similarity-based prediction resulted in moderately satisfying performance, there 
397 remained two key disadvantages. Firstly, the recall and precision of the prediction greatly diverged. 
398 As shown in Figure 2, while recall increased with the number of MSCs, precision sharply decreased. 
399 Secondly, since there was no guarantee that structurally similar compounds would be present in 
400 the annotated dataset, MSC-based prediction without a similarity threshold could lead to poor 
401 performance due to the absence of compounds truly similar to the query compound. On the other 
402 hand, setting a strict similarity threshold might cause certain annotations to be missed, particularly 
403 when compounds within certain annotation groups share similar substructures but differ in other 
404 parts that lower the overall similarity score. Determining an optimal threshold could present an 
405 additional challenge.
406  AgreementPred (Figure 1), a category recommendation framework for drugs and natural 
407 products based on multi-representation data fusion, was developed to address these problems. 
408 The framework was devised based on the hypothesis that the degree of agreement among 
409 different molecular representations in identifying MSCs of a query compound could indicate the 
410 overall similarity of the pair of compounds, and the overall similarity could, in turn, indicate the 
411 degree of certainty the pair belongs to the same categories. Moreover, annotations that are 
412 common among different MSCs predicted using different molecular representations were also 
413 more likely to be related to the query compound.
414 This hypothesis was supported by diltiazem’s annotation prediction (see previous section) and 
415 the MSC profile computed by 29 molecular representations of levomilnacipran, in comparison to 
416 previously-mentioned diltiazem. Whereas 29 representations identified 22 different compounds as 
417 the MSC of diltiazem, 28 out of 29 representations identified milnacipran, a stereoisomer of 
418 levomilnacipran as the most similar compound of levomilnacipran. Milnacipran possessed 10 out 
419 of 12 of levomilnacipran’s annotations, while benazepril possessed 4 out of 14 of diltiazem’s 
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420 annotations, reflecting that prediction performance increased with degree of agreement.
421 Leveraging this finding, 22 representations, 1 from each group of representations that were 
422 within the same category and highly correlated (Pearson’s correlation > 0.75) representations 
423 shown in Figure 3, were incorporated into AgreementPred framework to prevent biased agreement. 
424 As a result, TT, ASP, Daylight, CDKFP, EC2048, MHFP, and PH2 fingerprints were excluded. 
425 Annotations predicted by the 22 representations were subsequently filtered by a preset threshold 
426 of agreement score which was computed for each of the predicted annotations as the indicator of 
427 the degree of agreement (equation 7). In this way, prediction recall could be improved through the 
428 pooling of predicted annotations resulting from multiple representations, and prediction precision 
429 could be enhanced by agreement-based filtering, in which only the annotations of a compound 
430 with high overall similarity to the query compound or the annotations shared among multiple MSCs 
431 would be predicted for the query compound. 
432 The performance of AgreementPred on 3 sample datasets adopting various N of MSCs and 
433 the threshold (t) of agreement score was shown in 
434 Figure 5. At t=0, the performance of AgreementPred was comparable to the performance of 
435 similarity-based prediction using equivalent number of compounds. However, unlike similarity-
436 based prediction, recall and precision of AgreementPred demonstrated convergence with 
437 increasing t of agreement score up to certain points, where precision began to outweigh recall. 
438 Thus, by adjusting N and t, the preferred balance of recall and precision could be achieved.
439 Moreover, as shown in 
440 Figure 5D-F, the agreement score of correct prediction was significantly higher (Mann-Whitney U 
441 p-value < 10-30) than that of incorrect prediction in all datasets, confirming the correlation between 
442 agreement score and prediction accuracy. Hence, in AgreementPred, predicted annotations could 
443 be sorted by their agreement scores as the indicators of prediction confidence.
444
445 Method comparison
446 AgreementPred showed superiority in the balance of prediction recall and precision to other 
447 models in all comparison tasks, including PubChem annotations, second-, and forth-level ATC 
448 prediction. As shown in Table 3, at MSC and AgS threshold of 2 and 0.0, respectively, the resulting 
449 precision of AgreementPred was comparable to that of iSEA and SD-ATC in all tasks while the 
450 recall was notably higher. At MSC and AgS threshold of 1 and 0.1, respectively, AgreementPred 
451 showed inferior recall to iSEA in second-level ATC task, and comparable recall to SD-ATC in 
452 second- and fourth-level ATC tasks, however, the precision was significantly superior.
453 On the PubChem annotation prediction task (AnnoCom1000), the performance of SD-ATC 
454 was shown to be greatly inferior to EC1024 and AgreementPred (Figure 6). This possibly stemmed 
455 from the task-specificity of SD-ATC which was optimized for ATC prediction and inherent difference 
456 between the two tasks. In this regard, the prediction performance of SD-ATC and AgreementPred 
457 on each PubChem annotation were further explored. Detailed comparison of prediction precision 
458 of each annotation by the two methods were shown in Supplementary Table 7. It was 
459 demonstrated that SD-ATC, utilizing network-based inference approach, suffered greatly from 
460 class imbalance in PubChem annotation dataset, and clearly biased toward annotations with high 
461 occurrence. For example, SD-ATC predicted ‘enzyme inhibitor’, which was the annotation with the 
462 highest occurrence, for 997 compounds out of 1,000 compounds in AnnoCom1000 dataset. As a 
463 result, SD-ATC was only able to correctly predict 86 out of 872 unique annotations with prediction 
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464 length of 10 (10,000 predictions in total). In contrast, AgreementPred was shown to be more 
465 tolerant of a highly diverse and imbalanced dataset. It correctly predicted 665 out of 872 unique 
466 annotations among 9,403 predictions in total. Mean precision across all annotations for SD-ATC 
467 and AgreementPred were 0.06 and 0.41, respectively.
468 Extended connectivity fingerprint (ECFP) is widely accepted for its superior performance in 
469 bioactivity prediction to other molecular fingerprints [19]. However, similarity-based prediction 
470 using ECFP as molecular representation implemented in this study revealed comparable 
471 performance to most other molecular representations (See Single-representation similarity-based 
472 annotation prediction section). Therefore, EC1024 was employed here as the representative 
473 single-representation prediction method. 
474 As shown in Figure 6, EC1024 and SD-ATC exhibited a pattern in which recall and precision 
475 continued to diverge as the number of MSCs or prediction length increased, until eventually 
476 reaching a plateau. For both methods, precision peaked at small values of MSCs or shorter 
477 prediction lengths, but this improvement came at the expense of reduced recall. Notably, EC1024 
478 similarity-based prediction with 2–5 MSCs achieved a balance of recall and precision only slightly 
479 inferior to that of AgreementPred. However, owing to the use of agreement scores, AgreementPred 
480 demonstrated distinct advantages including greater adjustability, presence of prediction filtering 
481 and a confidence indicator. These features are critical, as they help to mitigate poor prediction 
482 performance that may arise in single-representation similarity-based methods when no annotated 
483 compounds with sufficient similarity to the query are present in the dataset. Moreover, by applying 
484 higher agreement score thresholds, AgreementPred could achieve substantially higher precision, 
485 further underscoring its superiority over single-representation approaches. 
486
487 Application
488 AgreementPred was applied to predict categories of 321,605 unannotated compounds from 
489 drug and natural product databases, using 22 selected molecular representations (Table 1). Before 
490 agreement-based filtering, 12,691,685 category labels were recommended for 321,605 
491 compounds. Subsequently, 9,802,758 predictions were removed using an agreement score 
492 threshold of 0.1, as described in the Material and Methods, giving a total of 2,888,927 predicted 
493 category labels for 321,596 compounds (Supplementary Table 8). After the concatenation of 
494 Annotated-Compound dataset with the final prediction result, 2,943,602 category labels were 
495 provided for 331,317 compounds (Supplementary Table 9). The average number of category 
496 labels per compound in the final concatenated dataset was 8.9±5.0, increasing from that in the 
497 original Annotated-Compound dataset (5.6±4.2).
498 Predictions were analyzed for a subset of relatively well-studied compounds that remained 
499 unannotated in PubChem database, namely apigenin, licochalcone C, and phillyrin. These 
500 compounds have been extensively investigated in previous pharmacological studies, providing a 
501 valuable reference for external validation. The predicted categories for these compounds were all 
502 derived from annotated compounds with high structural similarity. Mean similarity value across 
503 MSCs resulting from 22 molecular representations of the three compounds were 0.89, 0.83, and 
504 0.77, respectively, indicating high plausibility of the prediction. Indeed, Table 4 showed that the 
505 key pharmacological effects predicted for each compound were consistent with findings reported 
506 in previously published literature. 
507 Furthermore, in an attempt to relate the pharmacological categories of chemical components 
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508 to the pharmacological properties of medicinal herbs for further mechanistic study of herbal 
509 medicines as mentioned in the Introduction section, the resulting annotations of natural products 
510 contained in 3 prominent traditional Chinese medicine (TCM) herbs, Ephedrae Herba (Mahuang), 
511 Rhei Radix et Rhizoma (Dahuang), and Salvieae Miltiorrhizae Radix et Rhizoma (Danshen), were 
512 investigated. It was discovered that the pharmacological categories widely recognized as the main 
513 pharmacological properties of all 3 herbs were among top 20 annotations of highest occurrences. 
514 In detail, Mahuang, a TCM herb well-recognized for its effects on respiratory and 
515 cardiovascular systems [37], comprised 42 and 39 compounds in ‘cardiovascular agents’ and 
516 ‘respiratory system agents’ categories, ranking top 16 and 18 of annotations with the highest 
517 occurrences, respectively. Among these, 35 and 34 compounds were predicted by AgreementPred. 
518 In Dahuang, an herb well-renowned for its strong laxative effect [38], 74 compounds in total 
519 were predicted to possess pharmacological categories ‘laxative’ and ‘cathartics’, ranking top 9 and 
520 10, respectively. Lastly, in Dashen, an herb well-recognized for its uses in various cardiovascular 
521 diseases [39], hematologic agents’ and ‘anticoagulants’ were predicted for 150 and 112 
522 compounds, ranking top 9 and 11, respectively.
523 These results tentatively lent empirical support to AgreementPred’s predictive capability and 
524 revealed an inherent relationship between the pharmacological properties of herbs and the 
525 pharmacological categories of their constituents, offering valuable insights into further mechanistic 
526 studies of herbal medicines. 
527
528 Discussion
529 In this study, AgreementPred, a simple and completely interpretable category 
530 recommendation framework for drugs and natural products was proposed. Unlike machine-
531 learning approaches that require a large amount of training data, AgreementPred only requires a 
532 few similar compounds in the annotated dataset for reasonable predictions. As such, the 
533 framework also possessed high tolerance of class imbalance compared to network-based 
534 approach, in which the occurrences of predicted annotations were directly proportional to the 
535 occurrences of the annotations in the dataset. Moreover, for AgreementPred, each predicted 
536 annotation can be transparently traced back to the specific annotated compounds that contributed 
537 to the prediction, allowing the rationale behind each annotation to be evaluated, serving as another 
538 significant advantage over other sophisticated approaches.
539 Nevertheless, the proposed framework is far from perfect. Its main limitation lies in its inability 
540 to “think outside the box”. Unlike machine learning or network-based approaches that are capable 
541 of recognizing latent, complex patterns across high-dimensional data spaces and uncovering non-
542 obvious association, the framework is inherently constrained by its reliance on known and explicitly 
543 defined similarity. As a result, this framework is not capable of identifying compound-specific 
544 properties or a novel class of bioactivities that are not shared by structurally similar compounds. 
545 To mitigate this limitation, additional approaches could be integrated into the framework. For 
546 example, alternative molecular representations, such as physicochemical property profiles or 
547 knowledge graph embeddings, could be utilized to provide complementary aspects of compounds 
548 beyond chemical structure. Moreover, natural language processing techniques and large language 
549 models could be employed to explore semantic relationships among annotation terms, thereby 
550 enabling the extraction of related annotations even when compounds are not structurally similar. 
551 Collectively, these strategies have the potential to improve the framework’s generalizability while 
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552 alleviating the trade-off between interpretability and discovery potential.
553
554
555 Conclusion
556 In the proposed framework, AgreementPred, categories of drugs and natural products were 
557 predicted through multi-representation structural similarity data fusion and subsequently subjected 
558 to agreement-based filtering. The prediction performance of the framework was validated on ATC 
559 and PubChem annotation datasets and was shown to be superior in terms of recall-precision 
560 balance to existing equivalent methods. It also offers significant advantages over existing 
561 approaches in explainability, adjustability, and tolerance to limited data points and class imbalance. 
562 However, the framework suffers from inability to predict properties that are not shared by 
563 structurally similar compounds. 
564 AgreementPred was applied to predict categories of 321,605 unannotated compounds from 
565 drug and natural product databases. A total of 2,888,927 categories were recommended for 
566 321,596 compounds. The results provided preliminary support for the framework's predictive 
567 capability, reasonably annotated pharmacological categories for numerous natural products, and 
568 outlined a relationship between the pharmacological effects of herbs and their components, 
569 offering potential insights into drug discovery and future mechanistic studies of herbal medicines.
570
571
572 List of Abbreviations: 
573 ATC: Anatomical therapeutic chemical,
574 MeSH: Medical subject headings,
575 SE: Side effect,
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580 PH2: Pharmacophore pair fingerprint
581 PH3: Pharmacophore triplet fingerprint
582 EStateFP: Electrotopological state fingerprint
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584 GraphFP: Graph fingerprint
585 SPFP: Shortest path fingerprint
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587 MSC: Most similar compound
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Figures

Figure 1 Overview of AgreementPred framework. 
The similarity search results using 22 molecular representations were combined to improve prediction recall. Subsequently, the predicted annotations 
were filtered by agreement scores to enhance prediction precision.
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Figure 2 Single-representation similarity-based annotation prediction. 
Prediction recall (in solid line) and precision (in dashed line) of similarity-based prediction based 
on MSCs (left column) and random compounds (right column) computed using 29 molecular 
representations on AnnoCom1000 (A-B), DrugBank1000 (C-D), NP1000 (E-F), and Annotated-
SE (G-H) datasets. Bracketed numbers in the legend show the number of MSCs or random 
compounds used for prediction. 
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Figure 3 Pearson’s correlation among the similarity ranking profile of 29 molecular 
representations
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Figure 4 The degree of agreement indicates overall similarity.
The MSCs of diltiazem (A) and levomilnacipran (B) identified through similarity search using 29 
molecular representations. Compounds that possessed one or more annotations of the query 
compound were shown in green.
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Figure 5 Prediction performance of AgreementPred framework. 
Recall (in solid line) and precision (in dashed line) of AgreementPred framework adopting various 
N of MSCs and the threshold (t) of agreement score on DrugBank1000 (A), AnnoCom1000 (B), 
and NP1000 (C) dataset; and agreement score comparison between correct and incorrect 
prediction of DrugBank1000 (D), AnnoCom1000 (E), and NP1000 (F) dataset. Bracketed 
numbers in the legend show the number of MSCs used for prediction.
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Figure 6 Method comparison. 
Prediction recall (in solid line) and precision (in dashed line) of AgreementPred (left column), 
EC1024 similarity-based prediction (center column), and SD-ATC (right column) on second-level 
ATC (A-C), fourth-level ATC (D-F), and AnnoCom1000 (G-I) dataset. Bracketed numbers in the 
legend show the number of MSCs used for prediction in AgreementPred.
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Table 1 List of 29 molecular representations implemented in this study

Name Abbreviation Implementation Category Type
Specified 

parameters
Size

Used in

AgreementPred
Reference

Circular fingerprint CircFP CDK Circular Binary - 1024 Yes [40]

Local path environment fingerprint LSTAR jCompoundMapper Circular Binary - 4096 Yes [20]

Topological Molprint-like fingerprint RAD2D jCompoundMapper Circular Binary - 4096 Yes [20]

Extended connectivity fingerprint 

(1024 bit) EC1024 RDKit Circular Binary Radius=2 1024
Yes

[20]

Extended connectivity fingerprint 

(2048 bit) EC2048 RDKit Circular Binary Radius=2 2048
No

[25]

Functional class extended connectivity 

fingerprint (1024 bit) FC1024 RDKit Circular Binary

Radius=2, 

useFeatures=True 1024
Yes

[20]

Atom pair 2D fingerprint (implemented 

in PaDEL)
AP2DFP

CDK Path Binary - 780
Yes

[40]

CDK fingerprint CDKFP CDK Path Binary 1024 No [40]

Hybrid fingerprint (CDK fingerprint 

ignoring aromaticity) HybridFP CDK Path Binary 1024
Yes

[40]

Graph fingerprint (CDK fingerprint 

ignoring bond orders)
GraphFP

CDK Path Binary 1024
Yes

[40]

Daylight fingerprint Daylight CDK Path Binary Depth=7 1024 No [20]

Extended CDK fingerprint (includes 25 

bits for ring features and isotopic 

masses) ExtFP CDK Path Binary - 1024

Yes

[40]

Shortest path fingerprint SPFP CDK Path Binary - 1024 Yes [40]

All shortest path fingerprint ASP jCompoundMapper Path Binary - 4096 No [20]

Depth first search fingerprint DFS jCompoundMapper Path Binary Depth=7 4096 Yes [20]

Atom pair fingerprint AP RDKit Path Count - 2048 Yes [20]

Avalon fingerprint Avalon RDKit Path Count - 512 Yes [20]

RDKit fingerprint RDKit RDKit Path Binary - 2048 Yes [20]

Topological torsion fingerprint TT RDKit Path Count - 2048 No [20]

Pharmacophore pair fingerprint PH2 jCompoundMapper Pharmacophore Binary - 4096 No [20]

Pharmacophore triplet fingerprint PH3 jCompoundMapper Pharmacophore Binary - 4096 Yes [20]

LINGO fingerprint LingoFP CDK String Binary - 1024 Yes [40]

Minhased atom pair fingerprint MAP4 Ref. String Categorical - 1024 Yes [20]

Minhashed fingerprint MHFP Ref. String Categorical - 1024 No [20]

Electrotopological state fingerprint EstateFP CDK Substructure Binary - 79 Yes [40]

Klekota-Roth fingerprint KRFP CDK Substructure Binary - 4860 Yes [40]

PubChem substructure fingerprint PubChemFP CDK Substructure Binary - 881 Yes [40]

Public MACCS fingerprint MACCSFP CDK Substructure Binary - 166 Yes [40]

InfoGraph graph feature InfoGraph Torchdrug

Unsupervised

learned 

representation Numerical

Learning rate (lr) = 
1e-3; batch_size= 

1024 300

Yes

[32]
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Table 2 Molecular structure of MSC of diltiazem identified through similarity search using 29 molecular representations

Query 

compound
RDKit MHFP KRFP InfoGraph

MAP4 PH3 EStateFP PubChemFP HybridFP

ECFP1024 RAD2D LingoFP AP2DFP DFS

PH2 AP
LSTAR,

TT
GraphFP

ASP,

FCFP1024

CircFP,

EC2048

SPFP,

Avalon

ExtFP,

Daylight,

CDKFP,

MACCSFP
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Table 3 Prediction performance of AgreementPred in comparison to iSEA, SD-ATC, and EC1024 
similarity-based prediction on second-, fourth-level ATC, and AnnoCom1000 datasets

AgreementPred 

(MSC = 1; 

AgS > 0.0)

AgreementPred 

(MSC = 1; 

AgS > 0.1)

AgreementPred 

(MSC = 2; 

AgS > 0.0)

AgreementPred 

(MSC = 2; 

AgS > 0.1)

EC1024

(MSC=1)

EC1024

(MSC=2)

iSEA

(L = 10)

SD-ATC

(L =10)

Second-level ATC*

Recall** 0.745

(1041/1397)

0.633

(884/1397)

0.819

(1144/1397)

0.670

(937/1397)

0.523

(731/1397)

0.601

(840/1397)

0.748 

(1128/1509)

0.671

(937/1397)

Precision**
0.139

(1041/7481)

0.363

(884/2436)

0.090

(1144/12867)

0.322

(937/2914)

0.491

(731/1488)

0.363

(840/2315)

0.098

(1128/11510

)

0.085

(937/11070)

Fourth-level ATC*

Recall 0.579 0.480 0.635 0.529 0.369 0.459 - 0.478

Precision 0.158 0.348 0.091 0.311 0.365 0.307 - 0.060

AnnoCom1000

Recall 0.833 0.739 0.875 0.772 0.607 0.685 - 0.374

Precision 0.236 0.547 0.148 0.487 0.574 0.510 - 0.173

L: Prediction length. 

**Recall and precision in second-level ATC prediction task is computed in the same manner as iSEA [24], by 

dividing the total number of correct predictions by the total number of labeled classes (recall); and by the total 

number of predictions (precision), respectively, as specified in the brackets.
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Table 4 Annotations predicted by AgreementPred and the corresponding supporting literature for 
apigenin, licochalcone C, and phillyrin

Compound name CID Prediction Agreement score Supporting literature

Protective agent 0.41 [41], [42]

Hormone antagonist 0.41 [43-45]

Anticarcinogenic agents 0.18 [42, 46, 47]

Tyrosine kinase inhibitor 0.18 [41], [47]

Angiogenesis inhibitor 0.18 [48-50]

Prostaglandin antagonists 0.14 [51-53]

Apigenin 5280443

Anti-inflammatory agents 0.14 [41, 42], [52]

Antineoplastic agent 0.64 [54, 55]

Angiogenesis inhibitor 0.36 [54]

Licochalcone C 9840805

Growth inhibitors 0.36 [55]

Antihypertensive agent 0.32 [56, 57]

Hypolipidemic agents 0.32 [58, 59]

Anti-inflammatory agents 0.23 [60-63]

Phillyrin 101712

Cyclooxygenase inhibitor 0.18 [62]
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Availability of Data and Materials

The data, scripts and instruction necessary to implement AgreementPred, and to reproduce the 
key results presented in this study are available on GitHub 
(https://github.com/ChayanisSu/AgreementPred) and Zenodo (https://zenodo.org/records/17169919) 
repositories. 
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