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chine learning strategy using
structural features to predict the glass transition
temperature of oxide glasses

Satwinder Singh Danewalia * and Kulvir Singh

We present a physics-informed machine learning approach to predict the glass transition temperature (Tg)

of sodium borosilicate glasses. Four models—random forest, extreme gradient boosting, support vector

machines, and K-nearest neighbors—were trained using both compositional and structural features

derived from statistical mechanics. Incorporating these structural descriptors significantly improved

model performance. This is evident from reduction in mean absolute error (14.85 K / 13.76 K), root

mean square error (21.78 / 19.12) and increase in R2 (0.88 / 0.91) measured on testing the dataset for

the random forest model. Similar performance improvement was seen for other models as well. Building

on this, we propose a three-step predictive strategy that enhances generalization across compositions

and accurately predict the Tg of unseen compositions, achieving a mean absolute error of approximately

8 K and an R2 value of around 0.98. Our method demonstrates improved accuracy when benchmarked

against GlassNet, which represents the current state-of-the-art in property prediction for glasses. These

results highlight the importance of considering structural information in improving prediction capabilities

of machine learning models for composition-specific small datasets. This approach can assist in the

rapid screening and design of glass materials, reducing the reliance on time-consuming experiments and

guiding future research toward targeted property optimization.
1 Introduction

Glasses have a lot of applications in modern life, such as
medicine, engineering, science, etc.1,2 Synthesizing glasses
usually involves signicant time, labor, chemicals, and energy
consumption, contributing to a considerable carbon footprint.
Furthermore, the glasses must be characterized and tested to
determine their suitability for real-life applications. Glass
transition temperature (Tg) is one of the important character-
istic temperatures of glasses. It is the temperature interval in
which a glass loses its brittleness while heating. Glasses behave
as rigid and brittle solids below Tg. At the same time, they
exhibit viscous liquid-like behavior above Tg. At a fundamental
level, knowing Tg provides insights into the relationship
between glasses' composition, structure, and physical proper-
ties. Tg is closely related to glass forming ability, which is crucial
to developing novel glass compositions for various applica-
tions.3 Tg is also of great importance from the industry
perspective. It dictates the temperature range in which glasses
can be safely processed and used in various applications such as
ber drawing, molding, and shaping. It helps to decide the
annealing temperature to relieve internal stresses and prevent
glass cracking.4 The change in thermal expansion at Tg is an
ce, Thapar Institute of Engineering and
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important consideration when designing glass sealants in solid
oxide fuel cells, microelectronicz devices, and other systems
where thermal stresses can be problematic during operation.5,6

Experimentally, Tg of glasses is measured via thermal char-
acterization techniques such as differential thermal analysis
(DTA), differential scanning calorimetry (DSC), and dilatometry.
On the other hand, classical computational methods can help
in predicting glass properties using molecular dynamics studies
and density functional theory (DFT).7 These computational
methods help in understanding the atomic-scale mechanisms
of glasses; however, they have limitations. Limited system size,
unrealistic cooling rates, dependency on the choice of inter-
atomic potentials, and high computational cost are major
disadvantages of these theoretical methods.8 Machine learning
(ML) has shown promising results in the property prediction of
variousmaterials.9–12 Reducing costs, saving time, and exploring
unconventional compositions would reduce the carbon foot-
prints and accelerate the material design.13–16 ML methods can
handle large datasets while capturing complex, nonlinear rela-
tionships between the composition and material properties.
Tools like SHapley Additive exPlanations (SHAP) and partial
dependence plots (PDP) can further be used to visualize and
interpret the outputs of these models.17

Previous studies have attempted Tg prediction of glasses using
a range of approaches. O'Donnell et al. employed a linear tting
approach to predict Tg of oxide glasses, though their study was
© 2025 The Author(s). Published by the Royal Society of Chemistry
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limited to fewer than 100 bioactive glasses.18 Cassar et al. used
articial neural networks for Tg prediction of multicomponent
oxide glasses.19 The model was trained on more than 55 000
glasses containing up to 45 chemical elements. For high Tg
glasses, the uncertainty in predictions was found to be high
compared to low Tg glasses. This model was purely trained on
compositional data. Alcobaca et al. developed ML models using
a dataset of 43 240 oxide glasses,20 but they considered only
compositional features as input without additional feature engi-
neering. Similarly, Ravinder et al. used deep learning to model
glass properties on a dataset of 100 000 glasses,21 again relying
solely on compositional features. In a closely related study, Bi-
shnoi et al. applied Gaussian processes to predict a range of glass
properties using a large dataset, also emphasizing compositional
inputs.22 Zhang et al. developed a Tg prediction model with more
than 15 features, although their focus was primarily on Fe-based
metallic glasses.23 In 2023, Cassar developed GlassNet, which is
a multitask deep neural network model trained onmore than 218
000 different glass compositions using 98 features.24 This model is
capable of predicting 85 properties of glasses ranging from oxides,
chalcogenides, halides and others. Many researchers reported Tg
prediction of polymers using various ML methods.25–27

ML models applied on large datasets with too many composi-
tional features may give overall good performance metrics;
however, their performance may be poor in specic composition
domains.19,28 On the other hand, when focusing on specic glass
systems, preprocessing oen reduces the dataset to a very small
size,29 which makes the model training a challenging task.11

Furthermore, the properties of the glasses cannot be fully
explained based on their composition alone; many glass proper-
ties depend on the glass's local structure, the interaction of
ingredients, thermal history, testing conditions, etc.30–32 Thus,
a research gap remains in exploring features beyond composition
for ML studies, particularly in composition-specic domains
where datasets are small. This gap is addressed in the present
work using physics-informed models that can integrate domain
knowledge, aligning predictions with established theories and
published literature.33,34

In the present work, widely employed ML models have been
used to predict the Tg of sodium borosilicate glasses. The struc-
tural features were obtained using principles of statistical
mechanics. The effect of distribution of the structural units on
predicted Tg was determined. The current work aims to improve
ML models' performances for Tg predictions of glasses in specic
composition domains with the help of statistical mechanical
calculations. The work is hoped to provide fruitful insights into
the inter-ingredient interactions that affect the Tg of sodium
borosilicate glasses. The results would help accelerate the glass
design with minimal experimental efforts. This cost-effective
approach would help reduce carbon footprints and mitigate
environment-related problems.

2 Methodology
2.1 Data source

The dataset used in the present work was extracted from the
SciGlass database (v2.0.1), which contains composition and
© 2025 The Author(s). Published by the Royal Society of Chemistry
property data of around 420 000 glass compositions, including
268 000 oxide glasses and melts, 18 500 halide glasses, and 38
500 chalcogenide glasses.35 For the present work, data were
fetched using the GlassPy (v0.5.3) python module.24 The data
were accessed on 22nd May 2025.
2.2 Data preprocessing

2.2.1 Feature extraction. The data, including SiO2, B2O3,
and Na2O as key ingredients, were extracted, with the target
property being Tg. Microso Excel was used to lter and keep
only required columns and rows. Any data involving glasses
with any other elements were excluded to ensure accuracy and
relevance. It was ensured that the selected data contained no
missing values. Additionally, it was conrmed that the mole
fractions of all ingredients for each sample sum up to unity.
Mole fractions were later converted to mole percentages (by
multiplying with 100) as per requirements for the statistical
mechanical calculations (discussed later). Inconsistency was
observed in the reported Tg values for the same compositions by
different research groups. Only unique compositions were
retained by replacing multiple Tg values with their median.
These data cleaning steps along with the requirements by the
statistical calculations discussed in next subsection have greatly
reduced the size of the dataset. Such reduction in dataset size is
common while dealing with specic composition–property
data.29 The nal dataset contained 500 data points.

2.2.2 Feature engineering. Feature engineering is an
important step to make ML models more effective using
domain knowledge. For the present work, the distribution of
different structural units corresponding to SiO2 and B2O3 was
calculated using the StatMechGlass python package.8 This
distribution of structural units arises due to modier oxides,
such as Na2O, interacting with network formers, such as SiO2

and B2O3. The StatMechGlass package uses a statistical
mechanical framework to calculate the distribution of struc-
tural units. It considers both the entropic (Si/B ratio) and the
enthalpy contribution (energy barrier) to model the interaction
of Na2O with SiO2 and B2O3. The smg.smg_structur-
e(glass_comp, Tg) function from the StatMechGlass framework
was employed in the present work to calculate the percentage of
various structural units in borosilicate glasses. The instructions
for installing StatMechGlass and other packages can be found
in the readme.md le available in the link provided in the “Data
availability” section. The details of using this package, its
mathematical foundation and effectiveness in predicting glass
structure are given elsewhere.8,33 Basic processes governing
structural units are discussed in subsection 3.2. It was found
that the StatMechGlass module requires the values of all three
glass components to be non-zero to calculate the structural
distribution of the glasses with given compositions. So, all those
rows where any of SiO2, B2O3 and Na2O was equal to zero were
removed, which further reduced the dataset size. This clean
dataset was used as the input for the StatMechGlass module.
The function smg.smg_structure(glass_comp, Tg) returns the
percentage of various silicate units as S0, S1, S2, S3 and S4 while
borate units as B0, B1, B2, B3, B4. These features were then
Digital Discovery, 2025, 4, 3764–3773 | 3765
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appended to the dataset and used as input descriptors for
model training. The column headers for silicate units were
renamed as more familiar and standard notations used in glass
science, i.e., Q4, Q3, Q2, Q1 and Q0. In glass science,Q4,Q3,Q2,Q1

and, Q0, represent SiO4 tetrahedra with 4, 3, 2, 1, and 0 bridging
oxygen (BO) atoms, respectively. Similarly, structural units in
the borate network were denoted as B4, B3, B2, B1, and B0.
2.3 ML models

Four standard ML models, support vector machines (SVM), K-
nearest neighbors (KNN), extreme gradient boosting (XGB),
and random forest (RF), were used as starting codes and further
amended to optimize their performance. SVM uses kernels to
map input data into a high-dimensional space and tries to t
a hyperplane that minimizes prediction errors while ensuring
generalization.36 KNN, a simple and interpretable instance-
based algorithm, predicts values by averaging the target
values of the K number of nearest neighbors. KNN may struggle
with high-dimensional or noisy data, however its predictions
are interpretable.37 The choice of K and the distance metric (e.g.,
Euclidean distance) are important parameters that affect the
model's prediction performance. XGB, a tree-based, gradient-
boosting algorithm, sequentially improves weak decision trees
to minimize residual errors, while employing regularization for
robustness and scalability.38 It employs regularization tech-
niques and efficiently handles missing values, making it robust
and scalable. RF is another tree-based ML technique that builds
multiple decision trees using random subsets of data and
features.39 It reduces overtting, improves accuracy and is
effective for regression tasks with continuous data.11 Data pro-
cessing and analysis were performed using Python. Its Inte-
grated Development and Learning Environment (IDLE) was
used to edit and compile codes. ML modeling was done using
the Scikit-learn package. Other major libraries used in the
present work include pandas, numpy, xgboost, seaborn, mat-
plotlib and SHAP.

All the mentioned ML models were tested on three feature
sets, (a) set 1 – compositional features only, (b) set 2 – structural
features only (silicate and borate units), and (c) set 3 –both
compositional and structural features together. The dataset
with each set of features was divided into a ratio of 80 : 20 for
training and testing purposes. To make the study more robust,
5-fold cross-validation was employed. In this method, training
data are further divided into ve parts. Four parts are used for
training; the remaining is reserved for validation. Cross-
validated performance metrics are the average of performance
metrics aer each iteration.40 The optimizedmodel selected this
way is nally run on the hold-out testing set to assess its
generalization. The root mean squared error (RMSE), mean
absolute error (MAE), and R2 values were used to evaluate the
models' performance. Themodels' hyperparameters were tuned
by grid search. In the preliminary trials, a broad range of
hyperparameters were tried. However, to settle a balance
between computational time and performance of the models,
the most inuencing hyperparameters were selected for nal
grid search (Table 1). SHAP algorithm was used to interpret and
3766 | Digital Discovery, 2025, 4, 3764–3773
visualize the outputs of MLmodels. For the validation purposes,
a subset of 20 samples was selected from the full dataset using
quantile-based binning to ensure a diverse representation of
glass compositions across the full range of Tg. One composition
from each Tg bin was randomly chosen to span the entire
distribution. The remaining data formed the training and
testing sets as discussed above. Such stratied sampling helps
evaluate model generalization across different Tg regimes. We
compared our results against GlassNet, which represents the
current state-of-the-art in property prediction for glasses. The
codes and datasets used for this study are available in the link
given in the Data availability section.

3 Results and discussion
3.1 Data distribution

The distribution of compositional variables is represented by
plotting histograms, as shown in Fig. 1(a–c). The distribution of
SiO2 is slightly skewed, with values more concentrated toward
the higher range (60–75 mol%), indicating the predominance of
silica-rich compositions in the current dataset. In contrast, B2O3

values are primarily concentrated in the lower mol% range (10–
40 mol%) but exhibit a wide spread range extending up to
95 mol%. Na2O is also concentrated towards lower concentra-
tions, with a few compositions exceeding 50 mol%. This is
intuitive as Na2O is a network modier and too high modier
amounts at the cost of the glass former will lead to low glass
forming ability. Tg values range nearly from 500 to 900 K, as
shown in Fig. 1(d).

The group of taller bars towards relatively high Tg represents
silica-rich compositions, while a group of shorter bars toward
lower Tg represents borate-rich compositions. To elucidate this,
Fig. 2(a) shows the ternary graphs representing the distribution
of Tg of glasses according to their compositions.

Each dot in this graph represents a sample from the dataset.
Red and orange dots represent compositions with Tg > 760 K,
which arise from glasses containing higher concentrations of
SiO2. On the other hand, light and dark blue dots represent
glasses with relatively lower Tg, which can be seen for the borate-
rich glasses and the soda (Na2O)-rich compositions due to the
modier nature of Na2O.

3.2 Structural evolution

Bodker et al., in their research, have shown the potential of
statistical mechanical calculations to predict the structural
evolution of ternary alkali borosilicate glasses with good accu-
racy.41 Leveraging the potential of these calculations, the
distribution of structural units within glass compositions in our
dataset was calculated. The StatMechGlass package considers
the following reaction mechanisms for the structural evolution
in silica network of the alkali-borosilicate glasses:8

2Qn + M2O / 2Qn−1 (1)

Here, M2O represents the alkali oxide (Na2O in the present
case), and Qn is the silica tetrahedra with n = 0, 1, 2, 3, 4.
Similarly, borate structural units can be denoted as Bn units.
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Table 1 Performance metrics computed on the test set for various models across different feature sets

Feature set Model MAE R2 RMSE Best parameters

Set 1 (composition only) RF 14.85 0.88 21.78 {‘Bootstrap’: true, ‘max_depth’: 10,
‘n_estimators’: 100, ‘random_state’: 42}

XGB 15.75 0.87 22.24 {‘learning_rate’: 0.1, ‘n_estimators’: 50}
SVM 22.37 0.78 28.94 {‘C’: 10, ‘kernel’: ‘rbf’}
KNN 17.82 0.84 24.98 {‘n_neighbors’: 7, ‘weights’: ‘distance’}

Set 2 (structural units only) RF 13.76 0.91 19.12 {‘Bootstrap’: true, ‘max_depth’: 10,
‘n_estimators’: 200, ‘random_state’: 42}

XGB 14.60 0.89 20.67 {‘learning_rate’: 0.2, ‘n_estimators’: 200}
SVM 20.61 0.82 26.48 {‘C’: 0.1, ‘kernel’: ‘linear'}
KNN 16.31 0.87 22.67 {‘n_neighbors’: 7, ‘weights’: ‘distance'}

Set 3 (all features) RF 13.38 0.91 18.76 {‘Bootstrap’: true, ‘max_depth’: 10,
‘n_estimators’: 200, ‘random_state’: 42}

XGB 15.01 0.88 21.56 {‘learning_rate’: 0.2, ‘n_estimators’: 200}
SVM 19.80 0.84 25.35 {‘C’: 1, ‘kernel’: ‘linear'}
KNN 16.42 0.87 22.53 {‘n_neighbors’: 7, ‘weights’: ‘distance’}
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Boron can exist in both 3-fold and 4-fold coordination in
glasses.42 Reaction mechanisms governing the conversion of
one type of borate structural units into another are given as:

2B3 + M2O / 2B4 (2)

2B3 + M2O / 2B2 (3)

The relative dominance of these reaction mechanisms is
inuenced by the modier concentration.43 Fig. 2(b–k) repre-
sents calculated structural units of glasses as a function of their
compositions. Values <5% are represented by the ovals in a light
gray color to improve clarity and focus on themore relevant data
points only. Q4 is found to be the most abundant structural unit
in the glasses, with moderate to higher SiO2 content (50% and
more). Q3 units are the second most widely occurring structural
units in silica networks. At the same time, Q2 and Q1 are present
in fewer samples at higher Na2O content, while Q0 units are
quite rare in glasses of the present dataset. These structural
units could have been present in greater quantity at higher
Na2O concentrations in binary alkali silicate glasses. However,
in borosilicate glasses, partial Na2O is consumed to modify the
borate network as well. Hence, the tendency to form SiO2
Fig. 1 Histograms showing the distribution of (a) SiO2 (b) B2O3 (c) Na2O

© 2025 The Author(s). Published by the Royal Society of Chemistry
tetrahedra with three and four NBOs reduces. Similarly, B0 units
in the present glass dataset are rare, existing only at higher B2O3

and low Na2O content. It may also be due to fewer samples in
this composition domain. B2 units are high in low borate-
containing glasses with moderate to high Na2O content.
Glasses with low B2O3 content (<30%) exhibit the coexistence of
B4, B3 and B2 units with a minor number of B2 and B1 units.
Glasses containing more than 30% B2O3 exhibit both B2 and B1

units. The variation in the number of structural units of each
kind with respect to Na2O content is due to the competition of
Na2O interaction with both the borate and the silicate network.
3.3 ML for Tg prediction

3.3.1 Using only compositional features as input (set 1).
Performance metrics computed on the test set and the best
hyperparameters for the ML models are given in Table 1. A
good-performing model is characterized by lower MAE and
higher R2 values. Tree-based models (RF and XGB) performed
better than KNN and SVM. Results indicate that RF predicts Tg
closer to the actual values (low MAE) and tries to t more data
points (high R2 value) for this set of features compared to any
and (d) Tg (K) values in the used dataset.

Digital Discovery, 2025, 4, 3764–3773 | 3767
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Fig. 2 Ternary graphs showing the distribution of (a) Tg and (b–k) various structural units in SiO2–B2O3–Na2O glasses.
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other model. SVM performed poorer both in terms of MAE as
well as R2 across all the feature sets.

Fig. 3 shows the SHAP summary (beeswarm) plots of the
SHAP values for RF and XGBmodels for compositional features.
The data points are stacked (top to bottom) in order of
3768 | Digital Discovery, 2025, 4, 3764–3773
decreasing contribution of the features towards the prediction
of Tg. Na2O is observed to have the highest contribution towards
Tg in both models. In a SHAP summary plot, blue dots represent
lower feature values, and red dots represent higher ones. If
a feature contributes to lowering the predicted value, its blue
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 3 SHAP summary plots for compositional features from the (a) RF and (b) XGB model.
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dots will be more concentrated towards the negative SHAP value
side, while its red dots will be towards the positive SHAP value
side.

The SHAP summary plot for Na2O shows a mix of red and
blue dots spread across the x-axis, indicating its nonlinear
contribution to the predicted Tg. This aligns with the relatively
low performance of ML models when using only compositional
features. Both models agree on the contribution of the
constituent oxides and consistently indicate that the predicted
Tg increases with SiO2 content, with a few exceptions. A deeper
understanding of how features inuence the predicted Tg can be
gained from partial dependence plots (PDPs), as shown in
Fig. 4.

Both RF and XGB models exhibit similar overall trends for
compositional features, though variations exist in local regions
of the curves. Tg remained largely unaffected up to∼30 mol% of
SiO2, aer which it showed a sharp increase, continuing up to
∼50 mol%, before nearly saturating at higher concentrations
(Fig. 4(a)). This aligns with the SHAP analysis, which indicated
that SiO2 generally contributes positively to Tg prediction. Below
Fig. 4 Partial dependence plots for compositional features (a) SiO2 (b) N

© 2025 The Author(s). Published by the Royal Society of Chemistry
∼30 mol% SiO2, the glass compositions are correspondingly
enriched in either B2O3 or Na2O. In the former case, Tg is low as
borate glasses exhibit lower Tg compared to silicate glasses.1 On
the other hand, if compositions have high Na2O content, the
silicate network is fragmented into clusters, again leading to
low Tg. But once sufficient SiO2 is present, a continuous network
of Si–O–Si bonds forms, leading to a sharp increase in network
rigidity and hence Tg. Beyond ∼50 mol%, the network is already
well-connected, so the effect of further SiO2 additions gradually
saturates.

Tg reaches a maximum at around 20 mol% of Na2O, beyond
which it decreases (Fig. 4(b)). This supports the SHAP summary
plot, where Na2O exhibited a nonlinear inuence on Tg, with
positive and negative contributions spread across the range of
SHAP values. It also aligns with the nonlinear variation in the
experimentally determined Tg of borosilicate glasses containing
alkali metal oxides.44 From a structural viewpoint, Na2O initially
increases Tg by stabilizing tetrahedral BO4 units and enhancing
cross-linking between borate and silicate species. However, at
higher concentrations, excess Na2O starts breaking Si–O–Si
a2O and (c) B2O3 in RF and XGB models.
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linkages and generating more NBOs, which reduces network
connectivity and lowers Tg.

The dependence of Tg on B2O3 is also nonlinear: it initially
increases up to∼15mol%, then decreases up to∼40mol%, and
has minimal effect on Tg at higher concentrations (Fig. 4(c)). As
observed in the SHAP analysis, this nonlinear role of B2O3 in Tg
prediction is further supported by its complex behavior in PDP
plots. At any given B2O3 content, Tg depends on the relative
fractions of SiO2 and Na2O in the remaining composition. If the
remaining composition is SiO2-rich, higher Tg is expected and
vice versa. However, various probable structural arrangements
(BO3, BO4) at different concentrations of Na2O add more
complexity. The high non-linearity in Tg with respect to B2O3

suggests that compositional features alone are insufficient to
fully interpret the Tg variations. Thus, it is worthwhile to
consider the distribution of various silicate and borate struc-
tural units in order to interpret these variations as discussed in
the next subsection.

Overall, PDPs conrm the nonlinear inuences captured by
SHAP analysis and also pinpoint composition ranges where
sharp transitions in Tg occur, while necessitating further anal-
ysis by expanding the input feature space.

3.3.2 Including structural features as input (set 2 and set 3).
Interestingly, using structural features as input variables gives
rise to better Tg prediction by the models. All models showed
improvement in MAE (>7%) and R2 with the inclusion of struc-
tural features as input. Beeswarm plots for the RF and XGB
models for Set 2 (Structural features) are given in Fig. 5. Q4 has
the highest and most clear impact on Tg prediction according to
the RF model. The smooth transition from blue to red as SHAP
values shi from negative to positive suggests that a higher
fraction of Q4 units increases the Tg. Although Q0 appears at the
top of the list for the XGB model, from domain knowledge, it is
known that these are the least abundant structural units for most
Fig. 5 SHAP summary plots for structural features from (a) RF and (b) X

3770 | Digital Discovery, 2025, 4, 3764–3773
of the glasses in the present dataset. Q0 units exist only at very
high alkali oxide content in glasses.1 Considering this fact, Q4 is
effectively the most important feature with a clear impact on Tg,
similar to that in the RF model.

B1 is another feature that clearly impacts predicted Tg values
in both models. It contributes to lowering Tg, as evidenced by
red dots on the negative SHAP value side and blue dots on the
positive side. B2 and Q3 units in both models show a nonlinear
trend indicated by mixed red and blue dots on the summary
plots. B0, B4, Q1 and Q2 are the bottom four features with the
least importance in both models. The RF model incorporates
contributions from both silicate and borate structural units, as
evidenced by a balanced distribution of both types of structural
units among its top ve features. In contrast, the XGB model
assigns higher importance to silicate units (the top three are
silicate units) than to the borate structural units.

Fig. 6 presents PDP plots for structural features, offering
clearer insights into their inuence on Tg. The Q4 units
consistently increased Tg across the entire range for both
models, reinforcing the SHAP analysis, where Q4 had the
strongest positive contribution to Tg. This trend is expected, as
a higher fraction of Q4 units indicates greater connectivity and
stronger bonding in the glass network, leading to a higher Tg.
The contribution of Q3 towards Tg is largely neutral according to
the RF model. The XGB model exhibits a sharp decrease in Tg
with Q3 up to ∼10% aer which further changes in Q3 have
minimal impact. Q2 and Q1 units show only a minor effect on Tg,
inuencing predictions only at their low values, beyond which
Tg remains primarily unchanged. From the borate network, B1

units exhibit a negative inuence on Tg, consistent across both
models in PDP analysis, supporting their trend in the SHAP
plots. B2 and B3 units initially increase Tg, but their effect either
saturates or reverses at higher values. B0 units, on the other
hand, have a negligible impact on Tg except at low values, where
GB model.

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 6 Partial dependence plots for compositional features (a–e) Qn units (f–j) Bn units.
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they tend to increase Tg. Better performance metrics of the ML
models with structural features than with compositional
features indicate that these models may be applied to glasses
with any composition, provided their structural unit distribu-
tion is calculable. It must be stressed here that the same
amount of different alkali oxides does not result in the same
distribution of structural units in different glass systems.45

Depending on the characteristics of alkali oxides, their inter-
action with different glass formers would differ. The distribu-
tion of structural units in the present work is calculated
considering the enthalpy barriers by Na2O towards its interac-
tion with silicate and borate network.8 This approach allowed us
to capture the non-linear and system-specic evolution of
structural units, thereby improving the reliability of model
predictions across diverse glass compositions. Thus, the
improved performance of structure-based models emphasizes
the importance of including structural features in property
prediction for composition-specic small datasets.
Fig. 7 Three-step workflow for improved T predictions.
3.4 Three-step prediction strategy

Based on the improved prediction results using structural
features, a three-step prediction framework was designed as
shown in Fig. 7. The steps involved are given below:

(i) Apply ML model trained on compositional data (ML1) for
prediction of initial Tg from the compositions. Name it Tg1.

(ii) Use StatMechGlass package to calculate distribution of
structural units using composition and Tg1.

(iii) Use ML model trained on compositional and structural
data (ML2) to predict nal Tg.

As RF has given the best Tg predictions using compositions
alone as well as including structural features, it has been used
for predictions at both step (i) and step (iii) as given above. This
strategy was applied to the validation set of 20 compositions
that were not part of training and testing of the models. The
© 2025 The Author(s). Published by the Royal Society of Chemistry
performance metrics of the model using this strategy on unseen
data are given in Table 2.

We compared our model with the state-of-the-art GlassNet
model and a traditional ML method (RF on compositional
features only). The inclusion of structural features improved the
predictive performance of the RF model. Our three-step strategy
reduced errors, achieving better MAE, RMSE and R2 compared
to GlassNet for the studied composition system. This clear
improvement in the performance of our model demonstrates
that our framework provides superior Tg prediction accuracy for
sodium borosilicate glasses. However, it must be noted here
that GlassNet is not exclusively trained on this dataset and
performance metrics are subject to variation in other compo-
sition domains. The importance of our results lies in the fact
that the validation set contains diverse ranges of compositions
(SiO2 (min 10 mol%, max 82 mol%); B2O3 (min 5.2 mol%, max
45 mol%); Na2O (min 4.5 mol%, max 70 mol%)) as well as Tg
(min 526 K, max 884 K).

Although Tg1 is a predicted value and will introduce uncer-
tainty in the calculated structural unit values, the gain achieved
in the nal Tg prediction by using structural features together
g
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Table 2 Performance comparison of GlassNet, regular RF model and three-step ML strategy on validation set

Model Trained on
Validation
MAE (K)

Validation
R2

Validation
RMSE

GlassNet Compositional and physicochemical
data

15.40 0.93 20.06

Regular ML (RF) Compositional data 10.59 0.96 15.59
Three-step ML Structural data 9.15 0.97 12.84

Both compositional and structural data 8.32 0.98 11.69
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with compositional features overcomes the noise introduced
due to Tg1 and leads to more accurate Tg prediction. It is worth
mentioning here that decision-tree-based algorithms such as
RF and XGB partition the input space based on the training
data. Consequently, while these models perform well within the
domain of the training data, their ability to extrapolate beyond
this range is limited. Therefore, predictions outside the training
domain should be interpreted with caution. As statistical
mechanics calculations can be extended to derive the structural
features of more complex glass systems, it would be worthwhile
to check the inuence of structural features on other properties
of other glass systems by implementing the proposed three-step
ML prediction strategy.
4 Conclusion

Statistical mechanical calculations benecially transformed the
composition–property database into a structure–property data-
base for predicting the Tg of ternary sodium borosilicate glasses.
Structural features dictate Tg of glasses more profoundly than
compositional features, improving ML models' prediction
capabilities. Q4 and B1 structural units in borosilicate glasses
clearly inuence Tg more than other structural units. RF
exhibited better performance than KNN, SVM and XGB for Tg
prediction across all the feature sets. The three-step prediction
strategy worked well even on unseen data. Our results showed
improved performance compared to the state-of-the-art Glass-
Net model for predicting Tg specically for sodium borosilicate
glasses. Thus, it is worthwhile to consider structural features to
improve the predictive performance of the ML model for
composition-specic small datasets. The proposed workow
may be generalized to predict other properties of sodium
borosilicate glasses and may also be extended to other glass
systems.
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37 I. Triguero, D. Garćıa-Gil, J. Maillo, J. Luengo, S. Garćıa and
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