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ath-dependent properties using
a cloud-based materials acceleration platform

Dan Guevarra,ab Michael J. Statt,*c Kostiantyn Popovich,c Brian A. Rohr,*c

John M. Gregoire, ab Kevin Tran, d Santosh K. Suram, d Joel A. Haber *ab

and Willie Neiswanger*e

Solid state materials are central to many modern technologies in which a given material may be exposed to

a variety of environments. The material properties often vary with the sequence of environments in an

irreversible manner, resulting in a quintessential path-dependency in experimental observables. While

sequential learning techniques have been effectively deployed for accelerating learning of state

properties of materials, they often use a consistent environment path in all experiments. To elevate such

techniques for making optimal decisions in experimental investigations of path-dependent properties,

we introduce an iterated expected information gain acquisition function that optimizes over entire

experimental trajectories. This approach is implemented within a cloud-based Materials Acceleration

Platform architecture utilizing an event-driven stateful broker coupled with remote HELAO (Hierarchical

Experimental Laboratory Automation and Orchestration) instances and an AI science manager. The

platform's efficacy was demonstrated through a case study optimizing multi-step spectro-

electrochemical experiments to identify optically stable potential windows in (Co–Ni–Sb)Oz metal

oxides. The system successfully integrated AI-driven experiment design, remote laboratory automation,

and cloud-based data infrastructure, validating the platform's capability for managing complex, adaptive,

path-dependent workflows in materials discovery.
1 Introduction

The acceleration of experiments involving state-changing
materials, such as electrochemical stability assessments or
corrosion studies, is fundamentally linked to experimental
provenance—the concept that a material's current properties
are signicantly inuenced by its history of processing and
measurement. Prominent examples include the optimization of
multi-step charging protocols to preserve battery capacity1 and
the development of break-in procedures to enhance the effi-
ciency and durability of proton exchange membrane fuel cells
(PEMFCs).2,3 In such scenarios, the specic sequence and
duration of applied conditions (e.g., charging rates, potentials)
dene unique paths for conditioning materials into desired
states. For PEMFCs, the machine learning-based diagnosis of
break-in processes remains underdeveloped,4 given protocols
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potentially varying across wide ranges of temperature,
humidity, current density, and potential, in addition to the
number and duration of steps involved.

The substantial cost associated with measurement time,
coupled with the general scarcity of experimental data5 for such
path-dependent phenomena, positions sequential learning
techniques as highly suitable for the efficient exploration of
these complex parameter spaces. While active experimental
design has been pursued for many settings without path
dependency,6–8 effective experiment selection in our setting
must explicitly account for the path-dependence of predicted
properties; the outcome of a future measurement is contingent
not only on the current state but also on the sequence of
preceding observations. To address this challenge, acquisition
strategies must consider the inuence of experimental history
on both the observations themselves and the accessibility of
subsequent data points.

We introduce an acquisition function termed iterated ex-
pected information gain (iEIG), extending the classical EIG
concept.9–11 This function evaluates the anticipated reduction in
uncertainty over a trajectory of potential observations. It
explicitly incorporates the compounding effect of early experi-
mental decisions on the informativeness and feasibility of
subsequent measurements, which is particularly relevant when
initial observations constrain or enable access to parts of an
© 2025 The Author(s). Published by the Royal Society of Chemistry
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experimental path. Consequently, the total information gain
accrued over a path becomes a more pertinent objective than its
pointwise equivalent.

This active learning strategy is deployed within a cloud-
based Materials Acceleration Platform (MAP), i.e., a self-
driving laboratory.12–14 While early distributed MAPs demon-
strated remote control,15 and cloud-server management for
shared hardware,16 recent architectures utilize “stateless”
brokers17 to integrate diverse resources across institutions.
Although stateless designs offer resilience, event-driven “state-
ful” brokers18 provide a veriable event log essential for data
provenance, aligning with modern cloud data pipelines (e.g.,
AWS, Azure, GCP) that inherently support scalability and reli-
ability. Our implementation couples a stateful, event-driven
cloud broker with remote instances of the Hierarchical Experi-
mental Laboratory Automation and Orchestration (HELAO)
system19 and an AI science manager operating in a closed loop.
The platform's utility is demonstrated via a case study involving
the optimization of multi-step spectro-electrochemical experi-
ments to identify optically stable potential windows in (Co–Ni–
Sb)Oz metal oxides.

2 Methodology
2.1 Materials synthesis and characterization

A pseudo-ternary materials system comprising Co–Ni–Sb oxides
was selected based on its diverse Pourbaix stability domains
calculated via the Materials Project20 (Fig. S2). Material libraries
were synthesized on FTO-coated glass substrates using reactive
Fig. 1 A planar optical flow cell derived from the scanning droplet cell des
the cell through the primary flow path (“Electrolyte In” to “Electrolyte O
contact with a membrane separating working and counter electrode cha
above the working electrode chamber.

© 2025 The Author(s). Published by the Royal Society of Chemistry
RF magnetron co-sputtering from elemental metal targets (Co,
Ni, Sb) in a partial pressure environment of 4.8 mTorr Ar and 1.2
mTorr O2. Following deposition, the libraries underwent
annealing at 610 °C for 1 hour in air. Compositions and lm
thicknesses across each library were characterized using X-ray
uorescence (XRF) on a uniformly spaced grid of 296 points
with an EDAX Orbis MicroXRF system. To access a broad range
of composition with moderate variation in thickness, only data
points with thicknesses within two standard deviations of the
mean pseudo-ternary oxide thickness (490 nm ± 40 nm) were
included in the study. Pseudo-binary (Co–Sb, Ni–Sb, Ni–Co)
oxide libraries contained an average of 60 points within this
thickness window, while pseudo-ternary (Co–Ni–Sb) oxide
libraries contained an average of 260 points.
2.2 Spectro-electrochemical measurements

Operando spectro-electrochemical measurements were per-
formed utilizing a modied scanning electrochemical cell21

shown in Fig. 1, featuring a 1.8 mm diameter measurement
area. The system incorporated automated components for high-
throughput operation, including an automated z-stage (Thor-
labs MLJ250), counter and working electrode chamber vent
valves (Bio-Chem 100T2NC12), and peristaltic pumps (Master-
ex C/L) for rapid lling and controlled electrolyte ow. A leak-
free Ag/AgCl reference electrode (Innovative Instruments LF1-
45) ensured stable potential measurements. Experiments were
conducted in two electrolytes: 0.1 M H2SO4 (pH 1) and 0.2 M
ign to accommodate gasket-sealed operation. Electrolyte is pulled into
ut”). Red arrows show the secondary low-flow path which establishes
mbers. An optical fiber is terminated at a gasket-sealed quartz window

Digital Discovery, 2025, 4, 3674–3682 | 3675
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Fig. 2 An example measurement sequence request made by the AI
science manager (active learning algorithm) to the automated instru-
mentation (HELAO) using the cloud-deployed data requests API. We
illustrate the eleven 85-second CA steps at evenly spaced potentials
(column 1), the transmitted intensity at a given potential (column 2),
and the relative changes in absorbance (column 3), which are used in
eqn (1).
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K2HPO4/KH2PO4 buffer (pH 7), both containing 0.25 M Na2SO4

as a supporting electrolyte.
Operationally, the working electrode chamber was located

beneath a quartz window positioned below the ber optic
terminal. The entire cell assembly was mounted to a xed arm
and kept at constant elevation. Motorized X-, Y-, and Z-stages
control the translation and height of the sample composition
library beneath the cell assembly. During operation, the compo-
sition library was translated to a given sample location then
raised to engage the cell assembly. The assembly was gasket-
sealed around the working electrode chamber aperture, then l-
led with electrolyte. Electrolyte was pulled into the working
chamber and out through two ow paths: one high-ow path
directly across the working electrode chamber, and a low-ow
path that established liquid contact with the counter electrode
membrane or separator frit. An independent ow path and
peristaltic pump was used for the counter electrode chamber. For
every sample composition, electrolyte ow was constant
throughout the series of spectro-electrochemical measurements,
then stopped and both working and counter chambers drained at
a higher pump rate prior to disengaging the cell assembly. When
switching between electrolytes, the cell assembly was purged with
the working electrolyte at ∼2 mL per minute for three minutes,
enough for 30 changeovers of the ∼200 mL working electrode
chamber volume. Human interaction was required in replacing
the electrolyte reservoir and mounting the binary and ternary
composition libraries to the motorized stage. A connectorized
white light LED (Doric Lenses LEDC2_385/W35) was used as the
illumination source. An integrating sphere (Spectral Products AT-
IS-1) was positioned about 2 m below the bottom side of the
composition library and connected to a spectrometer (Spectral
Products SM303) for transmission measurements.

An optical “instability” metric, b(V), was dened to quantify
spectral changes during chronoamperometry (CA) relative to an
initial open-circuit potential (OCV) measurement. Specically,
b(V) represents themean relative change in absorbance, DA(V, l)
averaged over the wavelength range 430–700 nm during the
nal 5 seconds of each 85-second CA step,

bðVÞ ¼

Pln
l0

jDAðV ; lÞj

n
; (1)

where the relative change in absorbance is dened as:

DAðV ; lÞ ¼ AðV ; lÞ � A0ðV ; lÞ

¼ �log IðV ; lÞ
IincidentðV ; lÞ þ log

I0ðVOC; lÞ
IincidentðV ; lÞ

¼ �log IðV ; lÞ
I0ðVOC; lÞ:

here, I(V,l) is the transmitted intensity at potential V and
wavelength l, I0(l) is the initial intensity measured at OCV, and
n is the number of spectrometer channels (Spectral Products
SM303) within the 430–700 nm range determined by the white
LED source (Doric LEDC2_450/white). This metric quanties
relative spectral changes without distinguishing between
reversible and irreversible processes.
3676 | Digital Discovery, 2025, 4, 3674–3682
For each catalyst composition and pH, a sequence of eleven
85-second CA steps was executed at potentials evenly spaced
between 0.0 V and 2.0 V vs. RHE. Each CA step was preceded by
a 5-second OCVmeasurement. The starting potential V0 and the
initial potential sweep direction for the sequence were deter-
mined by the active learning algorithm. The potential was
stepped systematically in the chosen direction until a limit
(0.0 V or 2.0 V vs. RHE) was reached, aer which the direction
reversed to scan back towards the opposite limit, without
revisiting intermediate potentials. The initial potential step was
measured only once during the sequence. Fig. 2 depicts an
example measurement sequence.
2.3 Active learning framework

The AI science manager aimed to identify optically stable
potential windows within the pseudo-ternary (Co–Ni–Sb)Oz

composition space. Eight material libraries were investigated in
distinct closed-loop active learning runs. The AI manager was
provided the parameter space encompassing acquirable
compositions, selectable starting potentials V0, and initial
potential step directions. The initial surrogate model was
seeded using prior data from Ni–Co (pH 1: 52 points; pH 7: 50
points) and Co–Sb (pH 1: 61 points) pseudo-binary oxide
systems.

The probabilistic surrogate model characterizes the optical
instability metric as an unknown function where X is the 5-
dimensional design space and the co-domain consists of optical
instability metric measurements, real values in ℝ. The design
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 3 Illustration of the iEIG acquisition function, on a single
composition and pH value, at a single time step. We show the standard
EIG acquisition function (top), the iEIG acquisition function over
a downwards scan (middle), and the iEIG acquisition function over an
upwards scan (bottom), each over a range of potential, or starting
potential, values. Vertical dotted colored lines denote the locations of
the acquisition functionmaximizers for the three acquisition functions,
with maximum values shown as horizontal dashed lines. The iEIG
acquisition function selects the maximizer over the bottom two axes

Paper Digital Discovery

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

4 
N

ov
em

be
r 

20
25

. D
ow

nl
oa

de
d 

on
 1

/3
0/

20
26

 1
2:

27
:0

0 
A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online
space X consists of ve-dimensional elements, x˛ℝ5, including:
fraction of Co, fraction of Ni, pH value, potential V, and initial
step direction. The composition dimension molar fraction of Sb
is constrained by fraction of Sb= 1 – (fraction of Co + fraction of
Ni). Each query of the black-box function f at input design point
x yields a noisy observation b of the optical instability metric
f(x), written as b ∼ f(x) + 3, where 3 � N ð0; s2Þ represents
Gaussian noise (i.e., a perturbation of the deterministic metric).

A Gaussian process (GP) Bayesian model models this black-
box function. Given a dataset of T optical instability metric
observations from T design points, denoted as D = {(x1, b1), .,
(xT, bT)}, the GP posterior predictive distribution for an input x
is written as p(bjx, D), with variance denoted as Var[p(brx,D)]. To
make predictions, we can use the mean of our optical instability
forecast, E½pðbjx;DÞ� (where Eð$Þ denotes an expectation).

The acquisition function maximizes the expected informa-
tion gain (EIG) about f for any design point x ˛ X. For homo-
scedastic noise and a Gaussian posterior, maximizing EIG is
equivalent to maximizing the posterior predictive variance:

x* ¼ argmax
x˛X

EIGfðxÞ ¼ argmax
x˛X

logðVar½pðbjx;DÞ�Þ: (2)

Intuitively, we want to modify the EIG to produce an acqui-
sition function that selects design points which are both highly
informative and unlikely to terminate prematurely due to
instabilities. In practice, this means the acquisition function
should favor compositions, starting potentials, and sweep
directions that maximize expected reduction in model uncer-
tainty while extending the number of stable steps in each scan.
To incorporate a sequence of potential steps V until an insta-
bility, we employ an “expected-EIG acquisition function” using
the iterated expected information gain. For a tuple �x repre-
senting a potential scan (dened by composition, pH value,
starting potential V0, and potential scan direction Vd), the
iterated-EIG (iEIG) is:

iEIGfð~xÞ ¼
Xm

i¼1

EIGfð~x;ViÞp
�
si

~x ¼ 1
��~x; si ~x;.; si�1

~x
�
; (3)

where we assume that a scan consists of m steps, i = 1, ., m,
and we dene si~x to be a binary variable indicating the stability
of potential Vi within a given scan �x (si~x ¼ 1 for stable, si~x ¼ 0 for
unstable). This acquisition function is approximated as follows:
rst, for i = 1, ., m, each term in the sum (in eqn (3)) is
computed similar to the vanilla EIG expression, where

EIGf(�x,Vi) = EIGf(x) f log(Var[p(bjx,D)]), (4)

i.e., the log variance of the posterior predictive distribution at
the input x corresponding to potential Vi. Second, for a given
scan �x, over each i = 1, ., m, the expression
pðsi~x ¼ 1

��~x; si~x;.; si�1
~xÞ is approximated via posterior sampling

(similar to Thompson sampling22,23), where we draw a posterior
sample from our model and record the sequence of stable
potential probabilities (starting from potental V1 and
proceeding to potential Vi−1). Note that, once a stability of zero
(si = 0) has been observed, then the stability indicator variable
© 2025 The Author(s). Published by the Royal Society of Chemistry
remains at zero for the remainer of the scan (i.e., s
0
i ¼ 0, for all i0

> i). Inuitively, the iEIGf(�x) acquisition function value is calcu-
lated from a sum of the EIGf(x) values multiplied by its proba-
bility of stability, taken over the potential scan.

We use the iEIG acquisition function to guide sequential
experiments, as it balances expected information gain against
the risk of path-dependent instabilities that can prematurely
terminate measurement sequences—e.g., environment-induced
sample destruction. The iEIG acquisition function explicitly
balances these two considerations: it prioritizes queries that are
expected to yield the largest reduction in model uncertainty (as
in the classical EIG formulation), while simultaneously incor-
porating the probability of encountering instabilities along
a potential scan. This “iterated” extension is essential in our
experimental setup, where each query corresponds to a trajec-
tory of sequential measurements rather than an isolated point.

In Fig. 3, we illustrate the iEIG acquisition function for
a single composition and pH value, and compare it against
a standard EIG acquisition function over the same scanning
range. Note that both scanning up and scanning down lead to
path-dependent measurements—i.e., can run into an insta-
bility—but our acquisition function aims to choose a design
point (e.g., composition, initial voltage, scanning direction) that
is expected to be both informative and take a larger number of
measurements before hitting such an instability. In Fig. 4, we
(i.e., over both the “scanning down” and “scanning up” directions).

Digital Discovery, 2025, 4, 3674–3682 | 3677
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Fig. 4 Illustration of the iEIG acquisition function, over three time steps (t= 5, 6, 7) on one plate. We show the previously measured observations
(red squares), the acquisition function optimizer over the composition space (gold star), and the acquisition function values over the ternary
composition space (blue shaded circles). For each composition in this figure, the maximizer of the iEIG acquisition function (over the full set of
starting potentials) is shown. Note that in this figure, this maximizer is only shown over the ternary composition space.
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illustrate the acquisition optimization process, showing the
queried value over the course of three time steps.
3 Data infrastructure

The platform's data infrastructure utilized two primary AWS
DynamoDB tables: a ‘lab table’ for tracking completed experi-
ments, parameters, and associated data, and a ‘data requests
table’ for managing the status of active learning campaigns.

Upon completion of an experiment and subsequent data
upload to AWS S3 by HELAO, an AWS EventBridge trigger
invoked an AWS Lambda function. This function inserted
Fig. 5 Overview diagram showing the cloud-deployed Data Orchestrati
(left) and AI Science Manager (right). The Data Orchestration module int
data access, sendsmeasurement requests to the Instrument Orchestratio
out analysis and logging steps.

3678 | Digital Discovery, 2025, 4, 3674–3682
metadata—including the S3 location of raw data and experi-
ment details—into the lab DynamoDB table, adhering to the
ESAMP (Event-Sourced Architecture for Materials Provenance)
paradigm.24 A second Lambda function initiated data process-
ing routines, generating performance metrics. These metrics
were then associated with corresponding experiment requests
within the data requests database.

The machine learning model iteratively updated its predic-
tions based on newly available data. A Python client interfaced
with the data requests API to retrieve processed data, then
a Python script retrained the model, and computed acquisition
scores (iterated-EIG values) for unevaluated design points.
on module (middle), connecting the Instrument Orchestration module
eracts with the AI Science Manager to handle acquisition requests and
nmodule, stores corresponding instrument measurements, and carries

© 2025 The Author(s). Published by the Royal Society of Chemistry
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These scores were subsequently stored back into the data
requests database. The HELAO orchestrator queried this data-
base, identied the highest-priority acquisition score, and
executed the corresponding spectro-electrochemical experi-
ment sequence. Each entry in the data requests database con-
tained a unique ID, experiment input parameters (composition,
pH, V0, Vd), the calculated acquisition score, and ultimately, the
resulting performance metrics upon experiment completion.
This closed-loop system enabled dynamic prioritization and
execution of experiments driven by the AI model. Fig. 5 provides
a schematic overview of the interactions between instrument
orchestration (HELAO), data orchestration (cloud services), and
AI modeling entities.
4 Discussion

As the experimental campaign required hundreds of hours of
automated measurements, we had the resources to conduct
only a single run of experimentation, for which we applied our
proposed method. In lieu of direct comparisons against alter-
native baselines—such as random search (RS) or Bayesian
experimental design with expected information gain (EIG)—we
evaluated our approach using online metrics that assessed the
quality of the probabilistic model and acquisition strategy,
providing evidence that the method was functioning as inten-
ded. We also note that common baselines such as Bayesian
optimization (BO), as well as RS and EIG, are not well suited to
this setting. Our aim was to learn the full function landscape
rather than identify a single optimum, which makes BO less
suitable as it tends to concentrate sampling around candidate
extrema. RS and EIG, though exploratory, do not account for
path dependence and therefore oen produce unstable trajec-
tories that degrade model quality. Consequently, to evaluate the
proposed iEIG method, we dened performance metrics to
Fig. 6 Absolute error of model predictions on each subsequent query,
compositions within the full set of ternary combinations are illustrated. Bo
(excluding instabilities) on each plate.

© 2025 The Author(s). Published by the Royal Society of Chemistry
validate its ability to efficiently learn the path-dependent
landscape.

Evaluating the performance of the online experimental
procedure involves assessing both the probabilistic surrogate
model p(brx, D) and the experimental design efficacy. This
evaluation is complex due to the unavailability of the true
underlying function f(x) and the corruption of measurements
following instability events during potential scans of V, limiting
ground truth access to a subset of observed measurements.

To assess the quality of our surrogate model, we utilize two
distinct approaches. The rst approach involves evaluating the
error of the probabilistic surrogate model throughout the
course of the experiments. Specically, we compare the pre-
dicted value of a given measurement before a query is per-
formed with the true measurement observed during
experimentation. Recall that our Gaussian process model
predicts the mean of our optical instability forecast, E½pðbjx;DÞ�,
which is then compared against a noisy draw of the ground
truth optical instability measurement b ∼ f(x) + 3. Therefore, we
anticipate that there will always be a lower bound on the
possible error, owing to aleatoric uncertainty.

This type of error metric has been used in prior online
experimentation studies,8,14,25 and it can be computed online
during the course of the experiment without the need to wait
until the conclusion of the experiment or rely on synthetic
experimental setups.

In Fig. 6, we show the results of this error metric over the
course of our eight composition libraries. The rst six experi-
mental scenarios involve binary combinations of (Co–Ni, Co–
Sb, and Ni–Sb) oxides, while the nal two experimental
scenarios involve ternary (Co–Ni–Sb) oxide combinations.
Specically, we plot the absolute error,

Absolute error ¼ jE½pðbjxt;DÞ� � btj; (5)
over all experiments. Top: for each plate, the subset of experimental
ttom: the absolute error, as defined in eqn (5), is shown for each query
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where bt is the observed optical instability metric for a given
queried input point in our experiment, xt. It is worth noting that
our model is trained across all eight scenarios, with the input
points xt ˛ X (fraction of Co, fraction of Ni, fraction of Sb, pH
value, and potential V) being consistent across these eight
different experimental settings.

Several interesting behaviors emerge as we examine the
results over the course of the training. In general, we observe
a decrease in error as additional measurements are acquired for
a given composition space. This trend is relatively consistent
across all experiments, and suggests that the model improves as
it gainsmore observational data. For example, the elevated error
observed in the rst Ni–Co plate reects its position as the very
rst experiment in the sequence, when the model had little
prior data. More generally, early experiments begin with higher
error that decreases as observations accumulate, with brief
increases only when the design space expands substantially
(e.g., from binary to ternary systems).

In our second approach, we record an error metric that
cannot be computed online during the experiments, but can be
computed aer the experiments are nished. This approach
still adheres to our constraints, as it avoids using corrupted
measurements that occur aer encountering an instability. In
this approach, we take a held-out set of data, denoted Dk, from
the full ternary (Co–Ni–Sb) oxide composition space, where we
have ground truth measurements from the end of the experi-
mental regime. This held-out dataset serves as a consistent
reference set with which we can estimate the error of our model
over the course of the full experiment.

In this approach, we compute the mean absolute error over
predictions on our held-out set, dened as
Fig. 7 Mean absolute error of model predictions on fixed held-out
experiments. Top: for each plate, the subset of experimental composition
solid lines depict the mean absolute error, as defined in eqn (6), on a c
dashed lines depict the mean absolute error on a plate-specific held-ou
plate. Note that, for the final ternary plate, the solid and dashed lines are e
and thus only one line is shown.

3680 | Digital Discovery, 2025, 4, 3674–3682
Mean absolute error ¼ 1

k

X

i

jE½pbjxi;D� � bij; (6)

where the held-out data Dk = {(xi,bi)}i=1k consists of k input
points xi with corresponding true measurements bi.

We show the results of this metric over the course of all eight
experimental scenarios in Fig. 7. In addition to evaluating this
metric on a common held-out dataset from the full ternary (Ni–
Co–Sb) oxide composition space (solid lines), we also compute it
on plate-specic held-out datasets for each experimental plate
(dashed lines). The plate-specic held-out datasets reveal how
model accuracy improves during each set of plate experiments,
while the common dataset provides a consistent benchmark
across plates and more directly reects the objective of learning
unseen compositions—e.g., in ternary space. Together, these
two evaluations distinguish between within-plate learning
dynamics and cross-plate generalization.

In general, we observe that the held-out error decreases
smoothly as the experiment progresses, reecting the continual
improvement of the model as more data points are observed. The
only exception to this smooth decrease occurs in the rst Ni–Sb
binary experiment and the rst ternary-combination experiment,
where a temporary increase in error was observed. Notably, in the
nal ternary experiment, we see a large decrease in error. This is
expected, as the common held-out set (solid lines in Fig. 7) was
sourced from a ternary composition space with a similar pH value.

Overall, these ndings demonstrate the robustness of our
probabilistic surrogate model and experimental design proce-
dure, as well as the ability of the model to adapt to the chal-
lenges posed by the experimental environment. The consistent
reduction in error, especially following space expansion and
brief anomalies, supports the validity of the active learning
approach in guiding the experimental process effectively.
datasets given measurements on the ternary space, shown over all
s within the full set of ternary combinations are illustrated. Bottom: the
ommon held-out dataset derived from the final ternary plate, and the
t dataset, for a sequence of queries (excluding instabilities) from each
quivalent (as the plate-specific dataset is equal to the held-out dataset)

© 2025 The Author(s). Published by the Royal Society of Chemistry
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The cloud-based active learning platform successfully
orchestrated the spectro-electrochemical stability campaign,
acquiring 9755 CA measurements across 887 unique
composition-pH combinations over 11 days. The platform
demonstrated robust integration of the AI science manager,
HELAO orchestrator, cloud data infrastructure, and remote
hardware. Experiment selection was efficiently guided by the
iterated-EIG acquisition function, prioritizing informative
measurements based on model uncertainty and stability
predictions. The optical instability metric employed does not
account for irreversible spectral changes. To date, the Materials
Project Pourbaix application20,26 provides the largest repository
of aqueous electrochemistry data, where Pourbaix energetics
are derived from the thermodynamics of dissolved molecular
species and bulk solid state materials, without consideration of
the electrode–electrolyte interface. Given the lack of kinetic
passivation in the calculations, it is interesting to consider the
nature of the relationship between the optical instability metric
and the Pourbaix energetics. As we show in the SI, these data are
poorly correlated, with no apparent predictability of the optical
instability results based on the computational data, high-
lighting the critical role of experimentation in mapping the
electrochemical behavior of solid state materials.

5 Conclusion

This work presents a cloud-based, state-tracking broker architec-
ture successfully managing distributed MAPs. It integrates remote
laboratory automation via HELAO, AI-driven active learning using
a novel iterated-EIG acquisition function suitable for path-
dependent properties, and event-driven data management
leveraging commercial cloud services. The platform enables
automated, closed-loop optimization of experiments, demon-
strated by accelerating the exploration of optical stability in (Co–
Ni–Sb)Oz metal oxides. While the specic optical metric used in
the case study showed limitations in correlating with thermody-
namic Pourbaix stability for the (Co–Ni–Sb)Oz system, the
campaign successfully validated the platform's core capability to
manage complex, adaptive workows across distributed compo-
nents, including handling path-dependent experimental
sequences. This architecture advances the development of inter-
connected, self-driving laboratories poised to address complex
materials discovery challenges.

Glossary

AWS – Amazon Web Services, Inc. is a subsidiary of Amazon that
provides on-demand cloud computing platforms and APIs to
individuals, companies, and governments, on a metered, pay-as-
you-go basis. Clients will oen use this in combination with
autoscaling.

EventBridge – Amazon EventBridge is a serverless event bus
that makes it easy to connect applications together using data
from your own applications.

DynamoDB – Amazon DynamoDB is a managed NoSQL
database service provided by Amazon Web Services (AWS). It
supports key-value and document data structures and is
© 2025 The Author(s). Published by the Royal Society of Chemistry
designed to handle a wide range of applications requiring
scalability and performance.

S3 – Amazon Simple Storage Service (S3) is a service offered
by Amazon Web Services (AWS) that provides object storage
through a web service interface. Amazon S3 uses the same
scalable storage infrastructure that Amazon (https://
amazon.com) uses to run its e-commerce network.

HELAO – Hierarchical Experimental Laboratory Automation
and Orchestration, an open-source automation and orchestra-
tion soware which facilitates parallel and distributed opera-
tion of devices and instruments through an interconnected
network of web services deployed via FastAPI.

ESAMP – An event-sourced architecture for materials prove-
nance management and application to accelerated materials
discovery.
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